(* Title: HOLCF/Up.thy
ID: $Id: Up.thy,v 1.12 2005/09/22 17:06:06 huffman Exp $
Author: Franz Regensburger and Brian Huffman
Lifting.
*)
header {* The type of lifted values *}
theory Up
imports Cfun Sum_Type Datatype
begin
defaultsort cpo
subsection {* Definition of new type for lifting *}
datatype 'a u = Ibottom | Iup 'a
consts
Ifup :: "('a -> 'b::pcpo) => 'a u => 'b"
primrec
"Ifup f Ibottom = ⊥"
"Ifup f (Iup x) = f·x"
subsection {* Ordering on type @{typ "'a u"} *}
instance u :: (sq_ord) sq_ord ..
defs (overloaded)
less_up_def:
"(op \<sqsubseteq>) ≡ (λx y. case x of Ibottom => True | Iup a =>
(case y of Ibottom => False | Iup b => a \<sqsubseteq> b))"
lemma minimal_up [iff]: "Ibottom \<sqsubseteq> z"
by (simp add: less_up_def)
lemma not_Iup_less [iff]: "¬ Iup x \<sqsubseteq> Ibottom"
by (simp add: less_up_def)
lemma Iup_less [iff]: "(Iup x \<sqsubseteq> Iup y) = (x \<sqsubseteq> y)"
by (simp add: less_up_def)
subsection {* Type @{typ "'a u"} is a partial order *}
lemma refl_less_up: "(x::'a u) \<sqsubseteq> x"
by (simp add: less_up_def split: u.split)
lemma antisym_less_up: "[|(x::'a u) \<sqsubseteq> y; y \<sqsubseteq> x|] ==> x = y"
apply (simp add: less_up_def split: u.split_asm)
apply (erule (1) antisym_less)
done
lemma trans_less_up: "[|(x::'a u) \<sqsubseteq> y; y \<sqsubseteq> z|] ==> x \<sqsubseteq> z"
apply (simp add: less_up_def split: u.split_asm)
apply (erule (1) trans_less)
done
instance u :: (cpo) po
by intro_classes
(assumption | rule refl_less_up antisym_less_up trans_less_up)+
subsection {* Type @{typ "'a u"} is a cpo *}
lemma is_lub_Iup:
"range S <<| x ==> range (λi. Iup (S i)) <<| Iup x"
apply (rule is_lubI)
apply (rule ub_rangeI)
apply (subst Iup_less)
apply (erule is_ub_lub)
apply (case_tac u)
apply (drule ub_rangeD)
apply simp
apply simp
apply (erule is_lub_lub)
apply (rule ub_rangeI)
apply (drule_tac i=i in ub_rangeD)
apply simp
done
text {* Now some lemmas about chains of @{typ "'a u"} elements *}
lemma up_lemma1: "z ≠ Ibottom ==> Iup (THE a. Iup a = z) = z"
by (case_tac z, simp_all)
lemma up_lemma2:
"[|chain Y; Y j ≠ Ibottom|] ==> Y (i + j) ≠ Ibottom"
apply (erule contrapos_nn)
apply (drule_tac x="j" and y="i + j" in chain_mono3)
apply (rule le_add2)
apply (case_tac "Y j")
apply assumption
apply simp
done
lemma up_lemma3:
"[|chain Y; Y j ≠ Ibottom|] ==> Iup (THE a. Iup a = Y (i + j)) = Y (i + j)"
by (rule up_lemma1 [OF up_lemma2])
lemma up_lemma4:
"[|chain Y; Y j ≠ Ibottom|] ==> chain (λi. THE a. Iup a = Y (i + j))"
apply (rule chainI)
apply (rule Iup_less [THEN iffD1])
apply (subst up_lemma3, assumption+)+
apply (simp add: chainE)
done
lemma up_lemma5:
"[|chain Y; Y j ≠ Ibottom|] ==>
(λi. Y (i + j)) = (λi. Iup (THE a. Iup a = Y (i + j)))"
by (rule ext, rule up_lemma3 [symmetric])
lemma up_lemma6:
"[|chain Y; Y j ≠ Ibottom|]
==> range Y <<| Iup (\<Squnion>i. THE a. Iup a = Y(i + j))"
apply (rule_tac j1 = j in is_lub_range_shift [THEN iffD1])
apply assumption
apply (subst up_lemma5, assumption+)
apply (rule is_lub_Iup)
apply (rule thelubE [OF _ refl])
apply (erule (1) up_lemma4)
done
lemma up_chain_cases:
"chain Y ==>
(∃A. chain A ∧ lub (range Y) = Iup (lub (range A)) ∧
(∃j. ∀i. Y (i + j) = Iup (A i))) ∨ (Y = (λi. Ibottom))"
apply (rule disjCI)
apply (simp add: expand_fun_eq)
apply (erule exE, rename_tac j)
apply (rule_tac x="λi. THE a. Iup a = Y (i + j)" in exI)
apply (simp add: up_lemma4)
apply (simp add: up_lemma6 [THEN thelubI])
apply (rule_tac x=j in exI)
apply (simp add: up_lemma3)
done
lemma cpo_up: "chain (Y::nat => 'a u) ==> ∃x. range Y <<| x"
apply (frule up_chain_cases, safe)
apply (rule_tac x="Iup (lub (range A))" in exI)
apply (erule_tac j1="j" in is_lub_range_shift [THEN iffD1])
apply (simp add: is_lub_Iup thelubE)
apply (rule exI, rule lub_const)
done
instance u :: (cpo) cpo
by intro_classes (rule cpo_up)
subsection {* Type @{typ "'a u"} is pointed *}
lemma least_up: "∃x::'a u. ∀y. x \<sqsubseteq> y"
apply (rule_tac x = "Ibottom" in exI)
apply (rule minimal_up [THEN allI])
done
instance u :: (cpo) pcpo
by intro_classes (rule least_up)
text {* for compatibility with old HOLCF-Version *}
lemma inst_up_pcpo: "⊥ = Ibottom"
by (rule minimal_up [THEN UU_I, symmetric])
subsection {* Continuity of @{term Iup} and @{term Ifup} *}
text {* continuity for @{term Iup} *}
lemma cont_Iup: "cont Iup"
apply (rule contI)
apply (rule is_lub_Iup)
apply (erule thelubE [OF _ refl])
done
text {* continuity for @{term Ifup} *}
lemma cont_Ifup1: "cont (λf. Ifup f x)"
by (induct x, simp_all)
lemma monofun_Ifup2: "monofun (λx. Ifup f x)"
apply (rule monofunI)
apply (case_tac x, simp)
apply (case_tac y, simp)
apply (simp add: monofun_cfun_arg)
done
lemma cont_Ifup2: "cont (λx. Ifup f x)"
apply (rule contI)
apply (frule up_chain_cases, safe)
apply (rule_tac j1="j" in is_lub_range_shift [THEN iffD1])
apply (erule monofun_Ifup2 [THEN ch2ch_monofun])
apply (simp add: cont_cfun_arg)
apply (simp add: thelub_const lub_const)
done
subsection {* Continuous versions of constants *}
constdefs
up :: "'a -> 'a u"
"up ≡ Λ x. Iup x"
fup :: "('a -> 'b::pcpo) -> 'a u -> 'b"
"fup ≡ Λ f p. Ifup f p"
translations
"case l of up·x => t" == "fup·(LAM x. t)·l"
text {* continuous versions of lemmas for @{typ "('a)u"} *}
lemma Exh_Up: "z = ⊥ ∨ (∃x. z = up·x)"
apply (induct z)
apply (simp add: inst_up_pcpo)
apply (simp add: up_def cont_Iup)
done
lemma up_eq [simp]: "(up·x = up·y) = (x = y)"
by (simp add: up_def cont_Iup)
lemma up_inject: "up·x = up·y ==> x = y"
by simp
lemma up_defined [simp]: " up·x ≠ ⊥"
by (simp add: up_def cont_Iup inst_up_pcpo)
lemma not_up_less_UU [simp]: "¬ up·x \<sqsubseteq> ⊥"
by (simp add: eq_UU_iff [symmetric])
lemma up_less [simp]: "(up·x \<sqsubseteq> up·y) = (x \<sqsubseteq> y)"
by (simp add: up_def cont_Iup)
lemma upE: "[|p = ⊥ ==> Q; !!x. p = up·x ==> Q|] ==> Q"
apply (case_tac p)
apply (simp add: inst_up_pcpo)
apply (simp add: up_def cont_Iup)
done
lemma fup1 [simp]: "fup·f·⊥ = ⊥"
by (simp add: fup_def cont_Ifup1 cont_Ifup2 inst_up_pcpo)
lemma fup2 [simp]: "fup·f·(up·x) = f·x"
by (simp add: up_def fup_def cont_Iup cont_Ifup1 cont_Ifup2)
lemma fup3 [simp]: "fup·up·x = x"
by (rule_tac p=x in upE, simp_all)
end
lemma minimal_up:
Ibottom << z
lemma not_Iup_less:
¬ Iup x << Ibottom
lemma Iup_less:
Iup x << Iup y = x << y
lemma refl_less_up:
x << x
lemma antisym_less_up:
[| x << y; y << x |] ==> x = y
lemma trans_less_up:
[| x << y; y << z |] ==> x << z
lemma is_lub_Iup:
range S <<| x ==> range (%i. Iup (S i)) <<| Iup x
lemma up_lemma1:
z ≠ Ibottom ==> Iup (THE a. Iup a = z) = z
lemma up_lemma2:
[| chain Y; Y j ≠ Ibottom |] ==> Y (i + j) ≠ Ibottom
lemma up_lemma3:
[| chain Y; Y j ≠ Ibottom |] ==> Iup (THE a. Iup a = Y (i + j)) = Y (i + j)
lemma up_lemma4:
[| chain Y; Y j ≠ Ibottom |] ==> chain (%i. THE a. Iup a = Y (i + j))
lemma up_lemma5:
[| chain Y; Y j ≠ Ibottom |] ==> (%i. Y (i + j)) = (%i. Iup (THE a. Iup a = Y (i + j)))
lemma up_lemma6:
[| chain Y; Y j ≠ Ibottom |] ==> range Y <<| Iup (LUB i. THE a. Iup a = Y (i + j))
lemma up_chain_cases:
chain Y ==> (∃A. chain A ∧ lub (range Y) = Iup (lub (range A)) ∧ (∃j. ∀i. Y (i + j) = Iup (A i))) ∨ Y = (%i. Ibottom)
lemma cpo_up:
chain Y ==> ∃x. range Y <<| x
lemma least_up:
∃x. ∀y. x << y
lemma inst_up_pcpo:
UU = Ibottom
lemma cont_Iup:
cont Iup
lemma cont_Ifup1:
cont (%f. Ifup f x)
lemma monofun_Ifup2:
monofun (Ifup f)
lemma cont_Ifup2:
cont (Ifup f)
lemma Exh_Up:
z = UU ∨ (∃x. z = up·x)
lemma up_eq:
(up·x = up·y) = (x = y)
lemma up_inject:
up·x = up·y ==> x = y
lemma up_defined:
up·x ≠ UU
lemma not_up_less_UU:
¬ up·x << UU
lemma up_less:
up·x << up·y = x << y
lemma upE:
[| p = UU ==> Q; !!x. p = up·x ==> Q |] ==> Q
lemma fup1:
fup·f·UU = UU
lemma fup2:
fup·f·(up·x) = f·x
lemma fup3:
fup·up·x = x