(* Title: Sequents/ILL.thy
ID: $Id: ILL.thy,v 1.3 2005/09/18 13:20:08 wenzelm Exp $
Author: Sara Kalvala and Valeria de Paiva
Copyright 1995 University of Cambridge
*)
theory ILL
imports Sequents
begin
consts
Trueprop :: "two_seqi"
"><" ::"[o, o] => o" (infixr 35)
"-o" ::"[o, o] => o" (infixr 45)
"o-o" ::"[o, o] => o" (infixr 45)
FShriek ::"o => o" ("! _" [100] 1000)
"&&" ::"[o, o] => o" (infixr 35)
"++" ::"[o, o] => o" (infixr 35)
zero ::"o" ("0")
top ::"o" ("1")
eye ::"o" ("I")
aneg ::"o=>o" ("~_")
(* context manipulation *)
Context :: "two_seqi"
(* promotion rule *)
PromAux :: "three_seqi"
syntax
"@Trueprop" :: "single_seqe" ("((_)/ |- (_))" [6,6] 5)
"@Context" :: "two_seqe" ("((_)/ :=: (_))" [6,6] 5)
"@PromAux" :: "three_seqe" ("promaux {_||_||_}")
parse_translation {*
[("@Trueprop", single_tr "Trueprop"),
("@Context", two_seq_tr "Context"),
("@PromAux", three_seq_tr "PromAux")] *}
print_translation {*
[("Trueprop", single_tr' "@Trueprop"),
("Context", two_seq_tr'"@Context"),
("PromAux", three_seq_tr'"@PromAux")] *}
defs
liff_def: "P o-o Q == (P -o Q) >< (Q -o P)"
aneg_def: "~A == A -o 0"
axioms
identity: "P |- P"
zerol: "$G, 0, $H |- A"
(* RULES THAT DO NOT DIVIDE CONTEXT *)
derelict: "$F, A, $G |- C ==> $F, !A, $G |- C"
(* unfortunately, this one removes !A *)
contract: "$F, !A, !A, $G |- C ==> $F, !A, $G |- C"
weaken: "$F, $G |- C ==> $G, !A, $F |- C"
(* weak form of weakening, in practice just to clean context *)
(* weaken and contract not needed (CHECK) *)
promote2: "promaux{ || $H || B} ==> $H |- !B"
promote1: "promaux{!A, $G || $H || B}
==> promaux {$G || $H, !A || B}"
promote0: "$G |- A ==> promaux {$G || || A}"
tensl: "$H, A, B, $G |- C ==> $H, A >< B, $G |- C"
impr: "A, $F |- B ==> $F |- A -o B"
conjr: "[| $F |- A ;
$F |- B |]
==> $F |- (A && B)"
conjll: "$G, A, $H |- C ==> $G, A && B, $H |- C"
conjlr: "$G, B, $H |- C ==> $G, A && B, $H |- C"
disjrl: "$G |- A ==> $G |- A ++ B"
disjrr: "$G |- B ==> $G |- A ++ B"
disjl: "[| $G, A, $H |- C ;
$G, B, $H |- C |]
==> $G, A ++ B, $H |- C"
(* RULES THAT DIVIDE CONTEXT *)
tensr: "[| $F, $J :=: $G;
$F |- A ;
$J |- B |]
==> $G |- A >< B"
impl: "[| $G, $F :=: $J, $H ;
B, $F |- C ;
$G |- A |]
==> $J, A -o B, $H |- C"
cut: " [| $J1, $H1, $J2, $H3, $J3, $H2, $J4, $H4 :=: $F ;
$H1, $H2, $H3, $H4 |- A ;
$J1, $J2, A, $J3, $J4 |- B |] ==> $F |- B"
(* CONTEXT RULES *)
context1: "$G :=: $G"
context2: "$F, $G :=: $H, !A, $G ==> $F, A, $G :=: $H, !A, $G"
context3: "$F, $G :=: $H, $J ==> $F, A, $G :=: $H, A, $J"
context4a: "$F :=: $H, $G ==> $F :=: $H, !A, $G"
context4b: "$F, $H :=: $G ==> $F, !A, $H :=: $G"
context5: "$F, $G :=: $H ==> $G, $F :=: $H"
ML {* use_legacy_bindings (the_context ()) *}
end
theorem aux_impl:
$F, $G |- A ==> $F, ! (A -o B), $G |- B
theorem conj_lemma:
$F, ! A, ! B, $G |- C ==> $F, ! (A && B), $G |- C
theorem impr_contract:
! A, ! A, $G |- B ==> $G |- ! A -o B
theorem impr_contr_der:
A, ! A, $G |- B ==> $G |- ! A -o B
theorem contrad1:
$F, ! B -o 0, $G, ! B, $H |- A
theorem contrad2:
$F, ! B, $G, ! B -o 0, $H |- A
theorem ll_mp:
A -o B, A |- B
theorem mp_rule1:
$F, B, $G, $H |- C ==> $F, A, $G, A -o B, $H |- C
theorem mp_rule2:
$F, B, $G, $H |- C ==> $F, A -o B, $G, A, $H |- C
theorem or_to_and:
! (! (A ++ B) -o 0) |- ! (! A -o 0 && ! B -o 0)
theorem o_a_rule:
$F, ! (! A -o 0 && ! B -o 0), $G |- C ==> $F, ! (! (A ++ B) -o 0), $G |- C
theorem conj_imp:
! A -o C ++ ! B -o C |- ! (A && B) -o C
theorem a_not_a:
! A -o ! A -o 0 |- ! A -o 0
theorem a_not_a_rule:
$J1.0, ! A -o 0, $J2.0 |- B ==> $J1.0, ! A -o ! A -o 0, $J2.0 |- B