(* Title: ZF/AC.thy
ID: $Id: AC.thy,v 1.10 2005/06/17 14:15:09 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*The Axiom of Choice*}
theory AC imports Main begin
text{*This definition comes from Halmos (1960), page 59.*}
axioms AC: "[| a: A; !!x. x:A ==> (EX y. y:B(x)) |] ==> EX z. z : Pi(A,B)"
(*The same as AC, but no premise a ∈ A*)
lemma AC_Pi: "[| !!x. x ∈ A ==> (∃y. y ∈ B(x)) |] ==> ∃z. z ∈ Pi(A,B)"
apply (case_tac "A=0")
apply (simp add: Pi_empty1)
(*The non-trivial case*)
apply (blast intro: AC)
done
(*Using dtac, this has the advantage of DELETING the universal quantifier*)
lemma AC_ball_Pi: "∀x ∈ A. ∃y. y ∈ B(x) ==> ∃y. y ∈ Pi(A,B)"
apply (rule AC_Pi)
apply (erule bspec, assumption)
done
lemma AC_Pi_Pow: "∃f. f ∈ (Π X ∈ Pow(C)-{0}. X)"
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
apply (erule_tac [2] exI, blast)
done
lemma AC_func:
"[| !!x. x ∈ A ==> (∃y. y ∈ x) |] ==> ∃f ∈ A->Union(A). ∀x ∈ A. f`x ∈ x"
apply (rule_tac B1 = "%x. x" in AC_Pi [THEN exE])
prefer 2 apply (blast dest: apply_type intro: Pi_type, blast)
done
lemma non_empty_family: "[| 0 ∉ A; x ∈ A |] ==> ∃y. y ∈ x"
by (subgoal_tac "x ≠ 0", blast+)
lemma AC_func0: "0 ∉ A ==> ∃f ∈ A->Union(A). ∀x ∈ A. f`x ∈ x"
apply (rule AC_func)
apply (simp_all add: non_empty_family)
done
lemma AC_func_Pow: "∃f ∈ (Pow(C)-{0}) -> C. ∀x ∈ Pow(C)-{0}. f`x ∈ x"
apply (rule AC_func0 [THEN bexE])
apply (rule_tac [2] bexI)
prefer 2 apply assumption
apply (erule_tac [2] fun_weaken_type, blast+)
done
lemma AC_Pi0: "0 ∉ A ==> ∃f. f ∈ (Π x ∈ A. x)"
apply (rule AC_Pi)
apply (simp_all add: non_empty_family)
done
end
lemma AC_Pi:
(!!x. x ∈ A ==> ∃y. y ∈ B(x)) ==> ∃z. z ∈ Pi(A, B)
lemma AC_ball_Pi:
∀x∈A. ∃y. y ∈ B(x) ==> ∃y. y ∈ Pi(A, B)
lemma AC_Pi_Pow:
∃f. f ∈ (ΠX∈Pow(C) - {0}. X)
lemma AC_func:
(!!x. x ∈ A ==> ∃y. y ∈ x) ==> ∃f∈A -> \<Union>A. ∀x∈A. f ` x ∈ x
lemma non_empty_family:
[| 0 ∉ A; x ∈ A |] ==> ∃y. y ∈ x
lemma AC_func0:
0 ∉ A ==> ∃f∈A -> \<Union>A. ∀x∈A. f ` x ∈ x
lemma AC_func_Pow:
∃f∈Pow(C) - {0} -> C. ∀x∈Pow(C) - {0}. f ` x ∈ x
lemma AC_Pi0:
0 ∉ A ==> ∃f. f ∈ (Πx∈A. x)