(* Title: ZF/AC/DC.thy
ID: $Id: DC.thy,v 1.16 2005/06/17 14:15:10 haftmann Exp $
Author: Krzysztof Grabczewski
The proofs concerning the Axiom of Dependent Choice
*)
theory DC imports AC_Equiv Hartog Cardinal_aux begin
lemma RepFun_lepoll: "Ord(a) ==> {P(b). b ∈ a} \<lesssim> a"
apply (unfold lepoll_def)
apply (rule_tac x = "λz ∈ RepFun (a,P) . LEAST i. z=P (i) " in exI)
apply (rule_tac d="%z. P (z)" in lam_injective)
apply (fast intro!: Least_in_Ord)
apply (rule sym)
apply (fast intro: LeastI Ord_in_Ord)
done
text{*Trivial in the presence of AC, but here we need a wellordering of X*}
lemma image_Ord_lepoll: "[| f ∈ X->Y; Ord(X) |] ==> f``X \<lesssim> X"
apply (unfold lepoll_def)
apply (rule_tac x = "λx ∈ f``X. LEAST y. f`y = x" in exI)
apply (rule_tac d = "%z. f`z" in lam_injective)
apply (fast intro!: Least_in_Ord apply_equality, clarify)
apply (rule LeastI)
apply (erule apply_equality, assumption+)
apply (blast intro: Ord_in_Ord)
done
lemma range_subset_domain:
"[| R ⊆ X*X; !!g. g ∈ X ==> ∃u. <g,u> ∈ R |]
==> range(R) ⊆ domain(R)"
by blast
lemma cons_fun_type: "g ∈ n->X ==> cons(<n,x>, g) ∈ succ(n) -> cons(x, X)"
apply (unfold succ_def)
apply (fast intro!: fun_extend elim!: mem_irrefl)
done
lemma cons_fun_type2:
"[| g ∈ n->X; x ∈ X |] ==> cons(<n,x>, g) ∈ succ(n) -> X"
by (erule cons_absorb [THEN subst], erule cons_fun_type)
lemma cons_image_n: "n ∈ nat ==> cons(<n,x>, g)``n = g``n"
by (fast elim!: mem_irrefl)
lemma cons_val_n: "g ∈ n->X ==> cons(<n,x>, g)`n = x"
by (fast intro!: apply_equality elim!: cons_fun_type)
lemma cons_image_k: "k ∈ n ==> cons(<n,x>, g)``k = g``k"
by (fast elim: mem_asym)
lemma cons_val_k: "[| k ∈ n; g ∈ n->X |] ==> cons(<n,x>, g)`k = g`k"
by (fast intro!: apply_equality consI2 elim!: cons_fun_type apply_Pair)
lemma domain_cons_eq_succ: "domain(f)=x ==> domain(cons(<x,y>, f)) = succ(x)"
by (simp add: domain_cons succ_def)
lemma restrict_cons_eq: "g ∈ n->X ==> restrict(cons(<n,x>, g), n) = g"
apply (simp add: restrict_def Pi_iff)
apply (blast intro: elim: mem_irrefl)
done
lemma succ_in_succ: "[| Ord(k); i ∈ k |] ==> succ(i) ∈ succ(k)"
apply (rule Ord_linear [of "succ(i)" "succ(k)", THEN disjE])
apply (fast elim: Ord_in_Ord mem_irrefl mem_asym)+
done
lemma restrict_eq_imp_val_eq:
"[|restrict(f, domain(g)) = g; x ∈ domain(g)|]
==> f`x = g`x"
by (erule subst, simp add: restrict)
lemma domain_eq_imp_fun_type: "[| domain(f)=A; f ∈ B->C |] ==> f ∈ A->C"
by (frule domain_of_fun, fast)
lemma ex_in_domain: "[| R ⊆ A * B; R ≠ 0 |] ==> ∃x. x ∈ domain(R)"
by (fast elim!: not_emptyE)
constdefs
DC :: "i => o"
"DC(a) == ∀X R. R ⊆ Pow(X)*X &
(∀Y ∈ Pow(X). Y \<prec> a --> (∃x ∈ X. <Y,x> ∈ R))
--> (∃f ∈ a->X. ∀b<a. <f``b,f`b> ∈ R)"
DC0 :: o
"DC0 == ∀A B R. R ⊆ A*B & R≠0 & range(R) ⊆ domain(R)
--> (∃f ∈ nat->domain(R). ∀n ∈ nat. <f`n,f`succ(n)>:R)"
ff :: "[i, i, i, i] => i"
"ff(b, X, Q, R) ==
transrec(b, %c r. THE x. first(x, {x ∈ X. <r``c, x> ∈ R}, Q))"
locale (open) DC0_imp =
fixes XX and RR and X and R
assumes all_ex: "∀Y ∈ Pow(X). Y \<prec> nat --> (∃x ∈ X. <Y, x> ∈ R)"
defines XX_def: "XX == (\<Union>n ∈ nat. {f ∈ n->X. ∀k ∈ n. <f``k, f`k> ∈ R})"
and RR_def: "RR == {<z1,z2>:XX*XX. domain(z2)=succ(domain(z1))
& restrict(z2, domain(z1)) = z1}"
(* ********************************************************************** *)
(* DC ==> DC(omega) *)
(* *)
(* The scheme of the proof: *)
(* *)
(* Assume DC. Let R and X satisfy the premise of DC(omega). *)
(* *)
(* Define XX and RR as follows: *)
(* *)
(* XX = (\<Union>n ∈ nat. {f ∈ n->X. ∀k ∈ n. <f``k, f`k> ∈ R}) *)
(* f RR g iff domain(g)=succ(domain(f)) & *)
(* restrict(g, domain(f)) = f *)
(* *)
(* Then RR satisfies the hypotheses of DC. *)
(* So applying DC: *)
(* *)
(* ∃f ∈ nat->XX. ∀n ∈ nat. f`n RR f`succ(n) *)
(* *)
(* Thence *)
(* *)
(* ff = {<n, f`succ(n)`n>. n ∈ nat} *)
(* *)
(* is the desired function. *)
(* *)
(* ********************************************************************** *)
lemma (in DC0_imp) lemma1_1: "RR ⊆ XX*XX"
by (unfold RR_def, fast)
lemma (in DC0_imp) lemma1_2: "RR ≠ 0"
apply (unfold RR_def XX_def)
apply (rule all_ex [THEN ballE])
apply (erule_tac [2] notE [OF _ empty_subsetI [THEN PowI]])
apply (erule_tac impE [OF _ nat_0I [THEN n_lesspoll_nat]])
apply (erule bexE)
apply (rule_tac a = "<0, {<0, x>}>" in not_emptyI)
apply (rule CollectI)
apply (rule SigmaI)
apply (rule nat_0I [THEN UN_I])
apply (simp (no_asm_simp) add: nat_0I [THEN UN_I])
apply (rule nat_1I [THEN UN_I])
apply (force intro!: singleton_fun [THEN Pi_type]
simp add: singleton_0 [symmetric])
apply (simp add: singleton_0)
done
lemma (in DC0_imp) lemma1_3: "range(RR) ⊆ domain(RR)"
apply (unfold RR_def XX_def)
apply (rule range_subset_domain, blast, clarify)
apply (frule fun_is_rel [THEN image_subset, THEN PowI,
THEN all_ex [THEN bspec]])
apply (erule impE[OF _ lesspoll_trans1[OF image_Ord_lepoll
[OF _ nat_into_Ord] n_lesspoll_nat]],
assumption+)
apply (erule bexE)
apply (rule_tac x = "cons (<n,x>, g) " in exI)
apply (rule CollectI)
apply (force elim!: cons_fun_type2
simp add: cons_image_n cons_val_n cons_image_k cons_val_k)
apply (simp add: domain_of_fun succ_def restrict_cons_eq)
done
lemma (in DC0_imp) lemma2:
"[| ∀n ∈ nat. <f`n, f`succ(n)> ∈ RR; f ∈ nat -> XX; n ∈ nat |]
==> ∃k ∈ nat. f`succ(n) ∈ k -> X & n ∈ k
& <f`succ(n)``n, f`succ(n)`n> ∈ R"
apply (induct_tac "n")
apply (drule apply_type [OF _ nat_1I])
apply (drule bspec [OF _ nat_0I])
apply (simp add: XX_def, safe)
apply (rule rev_bexI, assumption)
apply (subgoal_tac "0 ∈ y", force)
apply (force simp add: RR_def
intro: ltD elim!: nat_0_le [THEN leE])
(** LEVEL 7, other subgoal **)
apply (drule bspec [OF _ nat_succI], assumption)
apply (subgoal_tac "f ` succ (succ (x)) ∈ succ (k) ->X")
apply (drule apply_type [OF _ nat_succI [THEN nat_succI]], assumption)
apply (simp (no_asm_use) add: XX_def RR_def)
apply safe
apply (frule_tac a="succ(k)" in domain_of_fun [symmetric, THEN trans],
assumption)
apply (frule_tac a=y in domain_of_fun [symmetric, THEN trans],
assumption)
apply (fast elim!: nat_into_Ord [THEN succ_in_succ]
dest!: bspec [OF _ nat_into_Ord [THEN succ_in_succ]])
apply (drule domain_of_fun)
apply (simp add: XX_def RR_def, clarify)
apply (blast dest: domain_of_fun [symmetric, THEN trans] )
done
lemma (in DC0_imp) lemma3_1:
"[| ∀n ∈ nat. <f`n, f`succ(n)> ∈ RR; f ∈ nat -> XX; m ∈ nat |]
==> {f`succ(x)`x. x ∈ m} = {f`succ(m)`x. x ∈ m}"
apply (subgoal_tac "∀x ∈ m. f`succ (m) `x = f`succ (x) `x")
apply simp
apply (induct_tac "m", blast)
apply (rule ballI)
apply (erule succE)
apply (rule restrict_eq_imp_val_eq)
apply (drule bspec [OF _ nat_succI], assumption)
apply (simp add: RR_def)
apply (drule lemma2, assumption+)
apply (fast dest!: domain_of_fun)
apply (drule_tac x = xa in bspec, assumption)
apply (erule sym [THEN trans, symmetric])
apply (rule restrict_eq_imp_val_eq [symmetric])
apply (drule bspec [OF _ nat_succI], assumption)
apply (simp add: RR_def)
apply (drule lemma2, assumption+)
apply (blast dest!: domain_of_fun
intro: nat_into_Ord OrdmemD [THEN subsetD])
done
lemma (in DC0_imp) lemma3:
"[| ∀n ∈ nat. <f`n, f`succ(n)> ∈ RR; f ∈ nat -> XX; m ∈ nat |]
==> (λx ∈ nat. f`succ(x)`x) `` m = f`succ(m)``m"
apply (erule natE, simp)
apply (subst image_lam)
apply (fast elim!: OrdmemD [OF nat_succI Ord_nat])
apply (subst lemma3_1, assumption+)
apply fast
apply (fast dest!: lemma2
elim!: image_fun [symmetric, OF _ OrdmemD [OF _ nat_into_Ord]])
done
theorem DC0_imp_DC_nat: "DC0 ==> DC(nat)"
apply (unfold DC_def DC0_def, clarify)
apply (elim allE)
apply (erule impE)
(*these three results comprise Lemma 1*)
apply (blast intro!: DC0_imp.lemma1_1 DC0_imp.lemma1_2 DC0_imp.lemma1_3)
apply (erule bexE)
apply (rule_tac x = "λn ∈ nat. f`succ (n) `n" in rev_bexI)
apply (rule lam_type, blast dest!: DC0_imp.lemma2 intro: fun_weaken_type)
apply (rule oallI)
apply (frule DC0_imp.lemma2, assumption)
apply (blast intro: fun_weaken_type)
apply (erule ltD)
(** LEVEL 11: last subgoal **)
apply (subst DC0_imp.lemma3, assumption+)
apply (fast elim!: fun_weaken_type)
apply (erule ltD)
apply (force simp add: lt_def)
done
(* ************************************************************************
DC(omega) ==> DC
The scheme of the proof:
Assume DC(omega). Let R and x satisfy the premise of DC.
Define XX and RR as follows:
XX = (\<Union>n ∈ nat. {f ∈ succ(n)->domain(R). ∀k ∈ n. <f`k, f`succ(k)> ∈ R})
RR = {<z1,z2>:Fin(XX)*XX.
(domain(z2)=succ(\<Union>f ∈ z1. domain(f)) &
(∀f ∈ z1. restrict(z2, domain(f)) = f)) |
(~ (∃g ∈ XX. domain(g)=succ(\<Union>f ∈ z1. domain(f)) &
(∀f ∈ z1. restrict(g, domain(f)) = f)) &
z2={<0,x>})}
Then XX and RR satisfy the hypotheses of DC(omega).
So applying DC:
∃f ∈ nat->XX. ∀n ∈ nat. f``n RR f`n
Thence
ff = {<n, f`n`n>. n ∈ nat}
is the desired function.
************************************************************************* *)
lemma singleton_in_funs:
"x ∈ X ==> {<0,x>} ∈
(\<Union>n ∈ nat. {f ∈ succ(n)->X. ∀k ∈ n. <f`k, f`succ(k)> ∈ R})"
apply (rule nat_0I [THEN UN_I])
apply (force simp add: singleton_0 [symmetric]
intro!: singleton_fun [THEN Pi_type])
done
locale (open) imp_DC0 =
fixes XX and RR and x and R and f and allRR
defines XX_def: "XX == (\<Union>n ∈ nat.
{f ∈ succ(n)->domain(R). ∀k ∈ n. <f`k, f`succ(k)> ∈ R})"
and RR_def:
"RR == {<z1,z2>:Fin(XX)*XX.
(domain(z2)=succ(\<Union>f ∈ z1. domain(f))
& (∀f ∈ z1. restrict(z2, domain(f)) = f))
| (~ (∃g ∈ XX. domain(g)=succ(\<Union>f ∈ z1. domain(f))
& (∀f ∈ z1. restrict(g, domain(f)) = f)) & z2={<0,x>})}"
and allRR_def:
"allRR == ∀b<nat.
<f``b, f`b> ∈
{<z1,z2>∈Fin(XX)*XX. (domain(z2)=succ(\<Union>f ∈ z1. domain(f))
& (\<Union>f ∈ z1. domain(f)) = b
& (∀f ∈ z1. restrict(z2,domain(f)) = f))}"
lemma (in imp_DC0) lemma4:
"[| range(R) ⊆ domain(R); x ∈ domain(R) |]
==> RR ⊆ Pow(XX)*XX &
(∀Y ∈ Pow(XX). Y \<prec> nat --> (∃x ∈ XX. <Y,x>:RR))"
apply (rule conjI)
apply (force dest!: FinD [THEN PowI] simp add: RR_def)
apply (rule impI [THEN ballI])
apply (drule Finite_Fin [OF lesspoll_nat_is_Finite PowD], assumption)
apply (case_tac
"∃g ∈ XX. domain (g) =
succ(\<Union>f ∈ Y. domain(f)) & (∀f∈Y. restrict(g, domain(f)) = f)")
apply (simp add: RR_def, blast)
apply (safe del: domainE)
apply (unfold XX_def RR_def)
apply (rule rev_bexI, erule singleton_in_funs)
apply (simp add: nat_0I [THEN rev_bexI] cons_fun_type2)
done
lemma (in imp_DC0) UN_image_succ_eq:
"[| f ∈ nat->X; n ∈ nat |]
==> (\<Union>x ∈ f``succ(n). P(x)) = P(f`n) Un (\<Union>x ∈ f``n. P(x))"
by (simp add: image_fun OrdmemD)
lemma (in imp_DC0) UN_image_succ_eq_succ:
"[| (\<Union>x ∈ f``n. P(x)) = y; P(f`n) = succ(y);
f ∈ nat -> X; n ∈ nat |] ==> (\<Union>x ∈ f``succ(n). P(x)) = succ(y)"
by (simp add: UN_image_succ_eq, blast)
lemma (in imp_DC0) apply_domain_type:
"[| h ∈ succ(n) -> D; n ∈ nat; domain(h)=succ(y) |] ==> h`y ∈ D"
by (fast elim: apply_type dest!: trans [OF sym domain_of_fun])
lemma (in imp_DC0) image_fun_succ:
"[| h ∈ nat -> X; n ∈ nat |] ==> h``succ(n) = cons(h`n, h``n)"
by (simp add: image_fun OrdmemD)
lemma (in imp_DC0) f_n_type:
"[| domain(f`n) = succ(k); f ∈ nat -> XX; n ∈ nat |]
==> f`n ∈ succ(k) -> domain(R)"
apply (unfold XX_def)
apply (drule apply_type, assumption)
apply (fast elim: domain_eq_imp_fun_type)
done
lemma (in imp_DC0) f_n_pairs_in_R [rule_format]:
"[| h ∈ nat -> XX; domain(h`n) = succ(k); n ∈ nat |]
==> ∀i ∈ k. <h`n`i, h`n`succ(i)> ∈ R"
apply (unfold XX_def)
apply (drule apply_type, assumption)
apply (elim UN_E CollectE)
apply (drule domain_of_fun [symmetric, THEN trans], assumption, simp)
done
lemma (in imp_DC0) restrict_cons_eq_restrict:
"[| restrict(h, domain(u))=u; h ∈ n->X; domain(u) ⊆ n |]
==> restrict(cons(<n, y>, h), domain(u)) = u"
apply (unfold restrict_def)
apply (simp add: restrict_def Pi_iff)
apply (erule sym [THEN trans, symmetric])
apply (blast elim: mem_irrefl)
done
lemma (in imp_DC0) all_in_image_restrict_eq:
"[| ∀x ∈ f``n. restrict(f`n, domain(x))=x;
f ∈ nat -> XX;
n ∈ nat; domain(f`n) = succ(n);
(\<Union>x ∈ f``n. domain(x)) ⊆ n |]
==> ∀x ∈ f``succ(n). restrict(cons(<succ(n),y>, f`n), domain(x)) = x"
apply (rule ballI)
apply (simp add: image_fun_succ)
apply (drule f_n_type, assumption+)
apply (erule disjE)
apply (simp add: domain_of_fun restrict_cons_eq)
apply (blast intro!: restrict_cons_eq_restrict)
done
lemma (in imp_DC0) simplify_recursion:
"[| ∀b<nat. <f``b, f`b> ∈ RR;
f ∈ nat -> XX; range(R) ⊆ domain(R); x ∈ domain(R)|]
==> allRR"
apply (unfold RR_def allRR_def)
apply (rule oallI, drule ltD)
apply (erule nat_induct)
apply (drule_tac x=0 in ospec, blast intro: Limit_has_0)
apply (force simp add: singleton_fun [THEN domain_of_fun] singleton_in_funs)
(*induction step*) (** LEVEL 5 **)
(*prevent simplification of ~∃ to ∀~ *)
apply (simp only: separation split)
apply (drule_tac x="succ(xa)" in ospec, blast intro: ltI)
apply (elim conjE disjE)
apply (force elim!: trans subst_context
intro!: UN_image_succ_eq_succ)
apply (erule notE)
apply (simp add: XX_def UN_image_succ_eq_succ)
apply (elim conjE bexE)
apply (drule apply_domain_type, assumption+)
apply (erule domainE)+
apply (frule f_n_type)
apply (simp add: XX_def, assumption+)
apply (rule rev_bexI, erule nat_succI)
apply (rename_tac m i j y z)
apply (rule_tac x = "cons(<succ(m), z>, f`m)" in bexI)
prefer 2 apply (blast intro: cons_fun_type2)
apply (rule conjI)
prefer 2 apply (fast del: ballI subsetI
elim: trans [OF _ subst_context, THEN domain_cons_eq_succ]
subst_context
all_in_image_restrict_eq [simplified XX_def]
trans equalityD1)
(*one remaining subgoal*)
apply (rule ballI)
apply (erule succE)
(** LEVEL 25 **)
apply (simp add: cons_val_n cons_val_k)
(*assumption+ will not perform the required backtracking!*)
apply (drule f_n_pairs_in_R [simplified XX_def, OF _ domain_of_fun],
assumption, assumption, assumption)
apply (simp add: nat_into_Ord [THEN succ_in_succ] succI2 cons_val_k)
done
lemma (in imp_DC0) lemma2:
"[| allRR; f ∈ nat->XX; range(R) ⊆ domain(R); x ∈ domain(R); n ∈ nat |]
==> f`n ∈ succ(n) -> domain(R) & (∀i ∈ n. <f`n`i, f`n`succ(i)>:R)"
apply (unfold allRR_def)
apply (drule ospec)
apply (erule ltI [OF _ Ord_nat])
apply (erule CollectE, simp)
apply (rule conjI)
prefer 2 apply (fast elim!: f_n_pairs_in_R trans subst_context)
apply (unfold XX_def)
apply (fast elim!: trans [THEN domain_eq_imp_fun_type] subst_context)
done
lemma (in imp_DC0) lemma3:
"[| allRR; f ∈ nat->XX; n∈nat; range(R) ⊆ domain(R); x ∈ domain(R) |]
==> f`n`n = f`succ(n)`n"
apply (frule lemma2 [THEN conjunct1, THEN domain_of_fun], assumption+)
apply (unfold allRR_def)
apply (drule ospec)
apply (drule ltI [OF nat_succI Ord_nat], assumption, simp)
apply (elim conjE ballE)
apply (erule restrict_eq_imp_val_eq [symmetric], force)
apply (simp add: image_fun OrdmemD)
done
theorem DC_nat_imp_DC0: "DC(nat) ==> DC0"
apply (unfold DC_def DC0_def)
apply (intro allI impI)
apply (erule asm_rl conjE ex_in_domain [THEN exE] allE)+
apply (erule impE [OF _ imp_DC0.lemma4], assumption+)
apply (erule bexE)
apply (drule imp_DC0.simplify_recursion, assumption+)
apply (rule_tac x = "λn ∈ nat. f`n`n" in bexI)
apply (rule_tac [2] lam_type)
apply (erule_tac [2] apply_type [OF imp_DC0.lemma2 [THEN conjunct1] succI1])
apply (rule ballI)
apply (frule_tac n="succ(n)" in imp_DC0.lemma2,
(assumption|erule nat_succI)+)
apply (drule imp_DC0.lemma3, auto)
done
(* ********************************************************************** *)
(* ∀K. Card(K) --> DC(K) ==> WO3 *)
(* ********************************************************************** *)
lemma fun_Ord_inj:
"[| f ∈ a->X; Ord(a);
!!b c. [| b<c; c ∈ a |] ==> f`b≠f`c |]
==> f ∈ inj(a, X)"
apply (unfold inj_def, simp)
apply (intro ballI impI)
apply (rule_tac j=x in Ord_in_Ord [THEN Ord_linear_lt], assumption+)
apply (blast intro: Ord_in_Ord, auto)
apply (atomize, blast dest: not_sym)
done
lemma value_in_image: "[| f ∈ X->Y; A ⊆ X; a ∈ A |] ==> f`a ∈ f``A"
by (fast elim!: image_fun [THEN ssubst])
theorem DC_WO3: "(∀K. Card(K) --> DC(K)) ==> WO3"
apply (unfold DC_def WO3_def)
apply (rule allI)
apply (case_tac "A \<prec> Hartog (A)")
apply (fast dest!: lesspoll_imp_ex_lt_eqpoll
intro!: Ord_Hartog leI [THEN le_imp_subset])
apply (erule allE impE)+
apply (rule Card_Hartog)
apply (erule_tac x = A in allE)
apply (erule_tac x = "{<z1,z2> ∈ Pow (A) *A . z1 \<prec> Hartog (A) & z2 ∉ z1}"
in allE)
apply simp
apply (erule impE, fast elim: lesspoll_lemma [THEN not_emptyE])
apply (erule bexE)
apply (rule Hartog_lepoll_selfE)
apply (rule lepoll_def [THEN def_imp_iff, THEN iffD2])
apply (rule exI, rule fun_Ord_inj, assumption, rule Ord_Hartog)
apply (drule value_in_image)
apply (drule OrdmemD, rule Ord_Hartog, assumption+, erule ltD)
apply (drule ospec)
apply (blast intro: ltI Ord_Hartog, force)
done
(* ********************************************************************** *)
(* WO1 ==> ∀K. Card(K) --> DC(K) *)
(* ********************************************************************** *)
lemma images_eq:
"[| ∀x ∈ A. f`x=g`x; f ∈ Df->Cf; g ∈ Dg->Cg; A ⊆ Df; A ⊆ Dg |]
==> f``A = g``A"
apply (simp (no_asm_simp) add: image_fun)
done
lemma lam_images_eq:
"[| Ord(a); b ∈ a |] ==> (λx ∈ a. h(x))``b = (λx ∈ b. h(x))``b"
apply (rule images_eq)
apply (rule ballI)
apply (drule OrdmemD [THEN subsetD], assumption+)
apply simp
apply (fast elim!: RepFunI OrdmemD intro!: lam_type)+
done
lemma lam_type_RepFun: "(λb ∈ a. h(b)) ∈ a -> {h(b). b ∈ a}"
by (fast intro!: lam_type RepFunI)
lemma lemmaX:
"[| ∀Y ∈ Pow(X). Y \<prec> K --> (∃x ∈ X. <Y, x> ∈ R);
b ∈ K; Z ∈ Pow(X); Z \<prec> K |]
==> {x ∈ X. <Z,x> ∈ R} ≠ 0"
by blast
lemma WO1_DC_lemma:
"[| Card(K); well_ord(X,Q);
∀Y ∈ Pow(X). Y \<prec> K --> (∃x ∈ X. <Y, x> ∈ R); b ∈ K |]
==> ff(b, X, Q, R) ∈ {x ∈ X. <(λc ∈ b. ff(c, X, Q, R))``b, x> ∈ R}"
apply (rule_tac P = "b ∈ K" in impE, (erule_tac [2] asm_rl)+)
apply (rule_tac i=b in Card_is_Ord [THEN Ord_in_Ord, THEN trans_induct],
assumption+)
apply (rule impI)
apply (rule ff_def [THEN def_transrec, THEN ssubst])
apply (erule the_first_in, fast)
apply (simp add: image_fun [OF lam_type_RepFun subset_refl])
apply (erule lemmaX, assumption)
apply (blast intro: Card_is_Ord OrdmemD [THEN subsetD])
apply (blast intro: lesspoll_trans1 in_Card_imp_lesspoll RepFun_lepoll)
done
theorem WO1_DC_Card: "WO1 ==> ∀K. Card(K) --> DC(K)"
apply (unfold DC_def WO1_def)
apply (rule allI impI)+
apply (erule allE exE conjE)+
apply (rule_tac x = "λb ∈ K. ff (b, X, Ra, R) " in bexI)
apply (simp add: lam_images_eq [OF Card_is_Ord ltD])
apply (fast elim!: ltE WO1_DC_lemma [THEN CollectD2])
apply (rule_tac lam_type)
apply (rule WO1_DC_lemma [THEN CollectD1], assumption+)
done
end
lemma RepFun_lepoll:
Ord(a) ==> {P(b) . b ∈ a} lepoll a
lemma image_Ord_lepoll:
[| f ∈ X -> Y; Ord(X) |] ==> f `` X lepoll X
lemma range_subset_domain:
[| R ⊆ X × X; !!g. g ∈ X ==> ∃u. 〈g, u〉 ∈ R |] ==> range(R) ⊆ domain(R)
lemma cons_fun_type:
g ∈ n -> X ==> cons(〈n, x〉, g) ∈ succ(n) -> cons(x, X)
lemma cons_fun_type2:
[| g ∈ n -> X; x ∈ X |] ==> cons(〈n, x〉, g) ∈ succ(n) -> X
lemma cons_image_n:
n ∈ nat ==> cons(〈n, x〉, g) `` n = g `` n
lemma cons_val_n:
g ∈ n -> X ==> cons(〈n, x〉, g) ` n = x
lemma cons_image_k:
k ∈ n ==> cons(〈n, x〉, g) `` k = g `` k
lemma cons_val_k:
[| k ∈ n; g ∈ n -> X |] ==> cons(〈n, x〉, g) ` k = g ` k
lemma domain_cons_eq_succ:
domain(f) = x ==> domain(cons(〈x, y〉, f)) = succ(x)
lemma restrict_cons_eq:
g ∈ n -> X ==> restrict(cons(〈n, x〉, g), n) = g
lemma succ_in_succ:
[| Ord(k); i ∈ k |] ==> succ(i) ∈ succ(k)
lemma restrict_eq_imp_val_eq:
[| restrict(f, domain(g)) = g; x ∈ domain(g) |] ==> f ` x = g ` x
lemma domain_eq_imp_fun_type:
[| domain(f) = A; f ∈ B -> C |] ==> f ∈ A -> C
lemma ex_in_domain:
[| R ⊆ A × B; R ≠ 0 |] ==> ∃x. x ∈ domain(R)
lemma lemma1_1:
∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R) ==> {〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1} ⊆ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R})
lemma lemma1_2:
∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R) ==> {〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1} ≠ 0
lemma lemma1_3:
∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R) ==> range({〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1}) ⊆ domain ({〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1})
lemma lemma2:
[| ∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R); ∀n∈nat. 〈f ` n, f ` succ(n)〉 ∈ {〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1}; f ∈ nat -> (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}); n ∈ nat |] ==> ∃k∈nat. f ` succ(n) ∈ k -> X ∧ n ∈ k ∧ 〈f ` succ(n) `` n, f ` succ(n) ` n〉 ∈ R
lemma lemma3_1:
[| ∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R); ∀n∈nat. 〈f ` n, f ` succ(n)〉 ∈ {〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1}; f ∈ nat -> (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}); m ∈ nat |] ==> {f ` succ(x) ` x . x ∈ m} = {f ` succ(m) ` x . x ∈ m}
lemma lemma3:
[| ∀Y∈Pow(X). Y lesspoll nat --> (∃x∈X. 〈Y, x〉 ∈ R); ∀n∈nat. 〈f ` n, f ` succ(n)〉 ∈ {〈z1,z2〉 ∈ (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) × (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}) . domain(z2) = succ(domain(z1)) ∧ restrict(z2, domain(z1)) = z1}; f ∈ nat -> (\<Union>n∈nat. {f ∈ n -> X . ∀k∈n. 〈f `` k, f ` k〉 ∈ R}); m ∈ nat |] ==> (λx∈nat. f ` succ(x) ` x) `` m = f ` succ(m) `` m
theorem DC0_imp_DC_nat:
DC0 ==> DC(nat)
lemma singleton_in_funs:
x ∈ X ==> {〈0, x〉} ∈ (\<Union>n∈nat. {f ∈ succ(n) -> X . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R})
lemma lemma4:
[| range(R) ⊆ domain(R); x ∈ domain(R) |] ==> {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(z2, domain(f)) = f) ∨ ¬ (∃g∈\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}. domain(g) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(g, domain(f)) = f)) ∧ z2 = {〈0, x〉}} ⊆ Pow(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) ∧ (∀Y∈Pow(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}). Y lesspoll nat --> (∃x∈\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}. 〈Y, x〉 ∈ {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(z2, domain(f)) = f) ∨ ¬ (∃g∈\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}. domain(g) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(g, domain(f)) = f)) ∧ z2 = {〈0, x〉}}))
lemma UN_image_succ_eq:
[| f ∈ nat -> X; n ∈ nat |] ==> (\<Union>x∈f `` succ(n). P(x)) = P(f ` n) ∪ (\<Union>x∈f `` n. P(x))
lemma UN_image_succ_eq_succ:
[| (\<Union>x∈f `` n. P(x)) = y; P(f ` n) = succ(y); f ∈ nat -> X; n ∈ nat |] ==> (\<Union>x∈f `` succ(n). P(x)) = succ(y)
lemma apply_domain_type:
[| h ∈ succ(n) -> D; n ∈ nat; domain(h) = succ(y) |] ==> h ` y ∈ D
lemma image_fun_succ:
[| h ∈ nat -> X; n ∈ nat |] ==> h `` succ(n) = cons(h ` n, h `` n)
lemma f_n_type:
[| domain(f ` n) = succ(k); f ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); n ∈ nat |] ==> f ` n ∈ succ(k) -> domain(R)
lemma f_n_pairs_in_R:
[| h ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); domain(h ` n) = succ(k); n ∈ nat |] ==> ∀i∈k. 〈h ` n ` i, h ` n ` succ(i)〉 ∈ R
lemma restrict_cons_eq_restrict:
[| restrict(h, domain(u)) = u; h ∈ n -> X; domain(u) ⊆ n |] ==> restrict(cons(〈n, y〉, h), domain(u)) = u
lemma all_in_image_restrict_eq:
[| ∀x∈f `` n. restrict(f ` n, domain(x)) = x; f ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); n ∈ nat; domain(f ` n) = succ(n); (\<Union>x∈f `` n. domain(x)) ⊆ n |] ==> ∀x∈f `` succ(n). restrict(cons(〈succ(n), y〉, f ` n), domain(x)) = x
lemma simplify_recursion:
[| ∀b<nat. 〈f `` b, f ` b〉 ∈ {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(z2, domain(f)) = f) ∨ ¬ (∃g∈\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}. domain(g) = succ(\<Union>f∈z1. domain(f)) ∧ (∀f∈z1. restrict(g, domain(f)) = f)) ∧ z2 = {〈0, x〉}}; f ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); range(R) ⊆ domain(R); x ∈ domain(R) |] ==> ∀b<nat. 〈f `` b, f ` b〉 ∈ {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (\<Union>f∈z1. domain(f)) = b ∧ (∀f∈z1. restrict(z2, domain(f)) = f)}
lemma lemma2:
[| ∀b<nat. 〈f `` b, f ` b〉 ∈ {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (\<Union>f∈z1. domain(f)) = b ∧ (∀f∈z1. restrict(z2, domain(f)) = f)}; f ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); range(R) ⊆ domain(R); x ∈ domain(R); n ∈ nat |] ==> f ` n ∈ succ(n) -> domain(R) ∧ (∀i∈n. 〈f ` n ` i, f ` n ` succ(i)〉 ∈ R)
lemma lemma3:
[| ∀b<nat. 〈f `` b, f ` b〉 ∈ {〈z1,z2〉 ∈ Fin(\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) × (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}) . domain(z2) = succ(\<Union>f∈z1. domain(f)) ∧ (\<Union>f∈z1. domain(f)) = b ∧ (∀f∈z1. restrict(z2, domain(f)) = f)}; f ∈ nat -> (\<Union>n∈nat. {f ∈ succ(n) -> domain(R) . ∀k∈n. 〈f ` k, f ` succ(k)〉 ∈ R}); n ∈ nat; range(R) ⊆ domain(R); x ∈ domain(R) |] ==> f ` n ` n = f ` succ(n) ` n
theorem DC_nat_imp_DC0:
DC(nat) ==> DC0
lemma fun_Ord_inj:
[| f ∈ a -> X; Ord(a); !!b c. [| b < c; c ∈ a |] ==> f ` b ≠ f ` c |] ==> f ∈ inj(a, X)
lemma value_in_image:
[| f ∈ X -> Y; A ⊆ X; a ∈ A |] ==> f ` a ∈ f `` A
theorem DC_WO3:
∀K. Card(K) --> DC(K) ==> WO3
lemma images_eq:
[| ∀x∈A. f ` x = g ` x; f ∈ Df -> Cf; g ∈ Dg -> Cg; A ⊆ Df; A ⊆ Dg |] ==> f `` A = g `` A
lemma lam_images_eq:
[| Ord(a); b ∈ a |] ==> (λx∈a. h(x)) `` b = (λx∈b. h(x)) `` b
lemma lam_type_RepFun:
(λb∈a. h(b)) ∈ a -> {h(b) . b ∈ a}
lemma lemmaX:
[| ∀Y∈Pow(X). Y lesspoll K --> (∃x∈X. 〈Y, x〉 ∈ R); b ∈ K; Z ∈ Pow(X); Z lesspoll K |] ==> {x ∈ X . 〈Z, x〉 ∈ R} ≠ 0
lemma WO1_DC_lemma:
[| Card(K); well_ord(X, Q); ∀Y∈Pow(X). Y lesspoll K --> (∃x∈X. 〈Y, x〉 ∈ R); b ∈ K |] ==> ff(b, X, Q, R) ∈ {x ∈ X . 〈(λc∈b. ff(c, X, Q, R)) `` b, x〉 ∈ R}
theorem WO1_DC_Card:
WO1 ==> ∀K. Card(K) --> DC(K)