(* Title: ZF/AC/Hartog.thy
ID: $Id: Hartog.thy,v 1.8 2005/06/17 14:15:10 haftmann Exp $
Author: Krzysztof Grabczewski
Hartog's function.
*)
theory Hartog imports AC_Equiv begin
constdefs
Hartog :: "i => i"
"Hartog(X) == LEAST i. ~ i \<lesssim> X"
lemma Ords_in_set: "∀a. Ord(a) --> a ∈ X ==> P"
apply (rule_tac X1 = "{y ∈ X. Ord (y) }" in ON_class [THEN revcut_rl])
apply fast
done
lemma Ord_lepoll_imp_ex_well_ord:
"[| Ord(a); a \<lesssim> X |]
==> ∃Y. Y ⊆ X & (∃R. well_ord(Y,R) & ordertype(Y,R)=a)"
apply (unfold lepoll_def)
apply (erule exE)
apply (intro exI conjI)
apply (erule inj_is_fun [THEN fun_is_rel, THEN image_subset])
apply (rule well_ord_rvimage [OF bij_is_inj well_ord_Memrel])
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl, assumption)
apply (rule trans)
apply (rule bij_ordertype_vimage)
apply (erule restrict_bij [THEN bij_converse_bij])
apply (rule subset_refl)
apply (erule well_ord_Memrel)
apply (erule ordertype_Memrel)
done
lemma Ord_lepoll_imp_eq_ordertype:
"[| Ord(a); a \<lesssim> X |] ==> ∃Y. Y ⊆ X & (∃R. R ⊆ X*X & ordertype(Y,R)=a)"
apply (drule Ord_lepoll_imp_ex_well_ord, assumption, clarify)
apply (intro exI conjI)
apply (erule_tac [3] ordertype_Int, auto)
done
lemma Ords_lepoll_set_lemma:
"(∀a. Ord(a) --> a \<lesssim> X) ==>
∀a. Ord(a) -->
a ∈ {b. Z ∈ Pow(X)*Pow(X*X), ∃Y R. Z=<Y,R> & ordertype(Y,R)=b}"
apply (intro allI impI)
apply (elim allE impE, assumption)
apply (blast dest!: Ord_lepoll_imp_eq_ordertype intro: sym)
done
lemma Ords_lepoll_set: "∀a. Ord(a) --> a \<lesssim> X ==> P"
by (erule Ords_lepoll_set_lemma [THEN Ords_in_set])
lemma ex_Ord_not_lepoll: "∃a. Ord(a) & ~a \<lesssim> X"
apply (rule ccontr)
apply (best intro: Ords_lepoll_set)
done
lemma not_Hartog_lepoll_self: "~ Hartog(A) \<lesssim> A"
apply (unfold Hartog_def)
apply (rule ex_Ord_not_lepoll [THEN exE])
apply (rule LeastI, auto)
done
lemmas Hartog_lepoll_selfE = not_Hartog_lepoll_self [THEN notE, standard]
lemma Ord_Hartog: "Ord(Hartog(A))"
by (unfold Hartog_def, rule Ord_Least)
lemma less_HartogE1: "[| i < Hartog(A); ~ i \<lesssim> A |] ==> P"
by (unfold Hartog_def, fast elim: less_LeastE)
lemma less_HartogE: "[| i < Hartog(A); i ≈ Hartog(A) |] ==> P"
by (blast intro: less_HartogE1 eqpoll_sym eqpoll_imp_lepoll
lepoll_trans [THEN Hartog_lepoll_selfE])
lemma Card_Hartog: "Card(Hartog(A))"
by (fast intro!: CardI Ord_Hartog elim: less_HartogE)
end
lemma Ords_in_set:
∀a. Ord(a) --> a ∈ X ==> P
lemma Ord_lepoll_imp_ex_well_ord:
[| Ord(a); a lepoll X |] ==> ∃Y. Y ⊆ X ∧ (∃R. well_ord(Y, R) ∧ ordertype(Y, R) = a)
lemma Ord_lepoll_imp_eq_ordertype:
[| Ord(a); a lepoll X |] ==> ∃Y. Y ⊆ X ∧ (∃R. R ⊆ X × X ∧ ordertype(Y, R) = a)
lemma Ords_lepoll_set_lemma:
∀a. Ord(a) --> a lepoll X ==> ∀a. Ord(a) --> a ∈ {b . Z ∈ Pow(X) × Pow(X × X), ∃Y R. Z = 〈Y, R〉 ∧ ordertype(Y, R) = b}
lemma Ords_lepoll_set:
∀a. Ord(a) --> a lepoll X ==> P
lemma ex_Ord_not_lepoll:
∃a. Ord(a) ∧ ¬ a lepoll X
lemma not_Hartog_lepoll_self:
¬ Hartog(A) lepoll A
lemmas Hartog_lepoll_selfE:
Hartog(A) lepoll A ==> R
lemmas Hartog_lepoll_selfE:
Hartog(A) lepoll A ==> R
lemma Ord_Hartog:
Ord(Hartog(A))
lemma less_HartogE1:
[| i < Hartog(A); ¬ i lepoll A |] ==> P
lemma less_HartogE:
[| i < Hartog(A); i ≈ Hartog(A) |] ==> P
lemma Card_Hartog:
Card(Hartog(A))