(* Title: ZF/EquivClass.thy
ID: $Id: EquivClass.thy,v 1.8 2005/06/17 14:15:11 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*Equivalence Relations*}
theory EquivClass imports Trancl Perm begin
constdefs
quotient :: "[i,i]=>i" (infixl "'/'/" 90) (*set of equiv classes*)
"A//r == {r``{x} . x:A}"
congruent :: "[i,i=>i]=>o"
"congruent(r,b) == ALL y z. <y,z>:r --> b(y)=b(z)"
congruent2 :: "[i,i,[i,i]=>i]=>o"
"congruent2(r1,r2,b) == ALL y1 z1 y2 z2.
<y1,z1>:r1 --> <y2,z2>:r2 --> b(y1,y2) = b(z1,z2)"
syntax
RESPECTS ::"[i=>i, i] => o" (infixr "respects" 80)
RESPECTS2 ::"[i=>i, i] => o" (infixr "respects2 " 80)
--{*Abbreviation for the common case where the relations are identical*}
translations
"f respects r" == "congruent(r,f)"
"f respects2 r" => "congruent2(r,r,f)"
subsection{*Suppes, Theorem 70:
@{term r} is an equiv relation iff @{term "converse(r) O r = r"}*}
(** first half: equiv(A,r) ==> converse(r) O r = r **)
lemma sym_trans_comp_subset:
"[| sym(r); trans(r) |] ==> converse(r) O r <= r"
by (unfold trans_def sym_def, blast)
lemma refl_comp_subset:
"[| refl(A,r); r <= A*A |] ==> r <= converse(r) O r"
by (unfold refl_def, blast)
lemma equiv_comp_eq:
"equiv(A,r) ==> converse(r) O r = r"
apply (unfold equiv_def)
apply (blast del: subsetI intro!: sym_trans_comp_subset refl_comp_subset)
done
(*second half*)
lemma comp_equivI:
"[| converse(r) O r = r; domain(r) = A |] ==> equiv(A,r)"
apply (unfold equiv_def refl_def sym_def trans_def)
apply (erule equalityE)
apply (subgoal_tac "ALL x y. <x,y> : r --> <y,x> : r", blast+)
done
(** Equivalence classes **)
(*Lemma for the next result*)
lemma equiv_class_subset:
"[| sym(r); trans(r); <a,b>: r |] ==> r``{a} <= r``{b}"
by (unfold trans_def sym_def, blast)
lemma equiv_class_eq:
"[| equiv(A,r); <a,b>: r |] ==> r``{a} = r``{b}"
apply (unfold equiv_def)
apply (safe del: subsetI intro!: equalityI equiv_class_subset)
apply (unfold sym_def, blast)
done
lemma equiv_class_self:
"[| equiv(A,r); a: A |] ==> a: r``{a}"
by (unfold equiv_def refl_def, blast)
(*Lemma for the next result*)
lemma subset_equiv_class:
"[| equiv(A,r); r``{b} <= r``{a}; b: A |] ==> <a,b>: r"
by (unfold equiv_def refl_def, blast)
lemma eq_equiv_class: "[| r``{a} = r``{b}; equiv(A,r); b: A |] ==> <a,b>: r"
by (assumption | rule equalityD2 subset_equiv_class)+
(*thus r``{a} = r``{b} as well*)
lemma equiv_class_nondisjoint:
"[| equiv(A,r); x: (r``{a} Int r``{b}) |] ==> <a,b>: r"
by (unfold equiv_def trans_def sym_def, blast)
lemma equiv_type: "equiv(A,r) ==> r <= A*A"
by (unfold equiv_def, blast)
lemma equiv_class_eq_iff:
"equiv(A,r) ==> <x,y>: r <-> r``{x} = r``{y} & x:A & y:A"
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
lemma eq_equiv_class_iff:
"[| equiv(A,r); x: A; y: A |] ==> r``{x} = r``{y} <-> <x,y>: r"
by (blast intro: eq_equiv_class equiv_class_eq dest: equiv_type)
(*** Quotients ***)
(** Introduction/elimination rules -- needed? **)
lemma quotientI [TC]: "x:A ==> r``{x}: A//r"
apply (unfold quotient_def)
apply (erule RepFunI)
done
lemma quotientE:
"[| X: A//r; !!x. [| X = r``{x}; x:A |] ==> P |] ==> P"
by (unfold quotient_def, blast)
lemma Union_quotient:
"equiv(A,r) ==> Union(A//r) = A"
by (unfold equiv_def refl_def quotient_def, blast)
lemma quotient_disj:
"[| equiv(A,r); X: A//r; Y: A//r |] ==> X=Y | (X Int Y <= 0)"
apply (unfold quotient_def)
apply (safe intro!: equiv_class_eq, assumption)
apply (unfold equiv_def trans_def sym_def, blast)
done
subsection{*Defining Unary Operations upon Equivalence Classes*}
(** Could have a locale with the premises equiv(A,r) and congruent(r,b)
**)
(*Conversion rule*)
lemma UN_equiv_class:
"[| equiv(A,r); b respects r; a: A |] ==> (UN x:r``{a}. b(x)) = b(a)"
apply (subgoal_tac "∀x ∈ r``{a}. b(x) = b(a)")
apply simp
apply (blast intro: equiv_class_self)
apply (unfold equiv_def sym_def congruent_def, blast)
done
(*type checking of UN x:r``{a}. b(x) *)
lemma UN_equiv_class_type:
"[| equiv(A,r); b respects r; X: A//r; !!x. x : A ==> b(x) : B |]
==> (UN x:X. b(x)) : B"
apply (unfold quotient_def, safe)
apply (simp (no_asm_simp) add: UN_equiv_class)
done
(*Sufficient conditions for injectiveness. Could weaken premises!
major premise could be an inclusion; bcong could be !!y. y:A ==> b(y):B
*)
lemma UN_equiv_class_inject:
"[| equiv(A,r); b respects r;
(UN x:X. b(x))=(UN y:Y. b(y)); X: A//r; Y: A//r;
!!x y. [| x:A; y:A; b(x)=b(y) |] ==> <x,y>:r |]
==> X=Y"
apply (unfold quotient_def, safe)
apply (rule equiv_class_eq, assumption)
apply (simp add: UN_equiv_class [of A r b])
done
subsection{*Defining Binary Operations upon Equivalence Classes*}
lemma congruent2_implies_congruent:
"[| equiv(A,r1); congruent2(r1,r2,b); a: A |] ==> congruent(r2,b(a))"
by (unfold congruent_def congruent2_def equiv_def refl_def, blast)
lemma congruent2_implies_congruent_UN:
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a: A2 |] ==>
congruent(r1, %x1. \<Union>x2 ∈ r2``{a}. b(x1,x2))"
apply (unfold congruent_def, safe)
apply (frule equiv_type [THEN subsetD], assumption)
apply clarify
apply (simp add: UN_equiv_class congruent2_implies_congruent)
apply (unfold congruent2_def equiv_def refl_def, blast)
done
lemma UN_equiv_class2:
"[| equiv(A1,r1); equiv(A2,r2); congruent2(r1,r2,b); a1: A1; a2: A2 |]
==> (\<Union>x1 ∈ r1``{a1}. \<Union>x2 ∈ r2``{a2}. b(x1,x2)) = b(a1,a2)"
by (simp add: UN_equiv_class congruent2_implies_congruent
congruent2_implies_congruent_UN)
(*type checking*)
lemma UN_equiv_class_type2:
"[| equiv(A,r); b respects2 r;
X1: A//r; X2: A//r;
!!x1 x2. [| x1: A; x2: A |] ==> b(x1,x2) : B
|] ==> (UN x1:X1. UN x2:X2. b(x1,x2)) : B"
apply (unfold quotient_def, safe)
apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
congruent2_implies_congruent quotientI)
done
(*Suggested by John Harrison -- the two subproofs may be MUCH simpler
than the direct proof*)
lemma congruent2I:
"[| equiv(A1,r1); equiv(A2,r2);
!! y z w. [| w ∈ A2; <y,z> ∈ r1 |] ==> b(y,w) = b(z,w);
!! y z w. [| w ∈ A1; <y,z> ∈ r2 |] ==> b(w,y) = b(w,z)
|] ==> congruent2(r1,r2,b)"
apply (unfold congruent2_def equiv_def refl_def, safe)
apply (blast intro: trans)
done
lemma congruent2_commuteI:
assumes equivA: "equiv(A,r)"
and commute: "!! y z. [| y: A; z: A |] ==> b(y,z) = b(z,y)"
and congt: "!! y z w. [| w: A; <y,z>: r |] ==> b(w,y) = b(w,z)"
shows "b respects2 r"
apply (insert equivA [THEN equiv_type, THEN subsetD])
apply (rule congruent2I [OF equivA equivA])
apply (rule commute [THEN trans])
apply (rule_tac [3] commute [THEN trans, symmetric])
apply (rule_tac [5] sym)
apply (blast intro: congt)+
done
(*Obsolete?*)
lemma congruent_commuteI:
"[| equiv(A,r); Z: A//r;
!!w. [| w: A |] ==> congruent(r, %z. b(w,z));
!!x y. [| x: A; y: A |] ==> b(y,x) = b(x,y)
|] ==> congruent(r, %w. UN z: Z. b(w,z))"
apply (simp (no_asm) add: congruent_def)
apply (safe elim!: quotientE)
apply (frule equiv_type [THEN subsetD], assumption)
apply (simp add: UN_equiv_class [of A r])
apply (simp add: congruent_def)
done
ML
{*
val sym_trans_comp_subset = thm "sym_trans_comp_subset";
val refl_comp_subset = thm "refl_comp_subset";
val equiv_comp_eq = thm "equiv_comp_eq";
val comp_equivI = thm "comp_equivI";
val equiv_class_subset = thm "equiv_class_subset";
val equiv_class_eq = thm "equiv_class_eq";
val equiv_class_self = thm "equiv_class_self";
val subset_equiv_class = thm "subset_equiv_class";
val eq_equiv_class = thm "eq_equiv_class";
val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
val equiv_type = thm "equiv_type";
val equiv_class_eq_iff = thm "equiv_class_eq_iff";
val eq_equiv_class_iff = thm "eq_equiv_class_iff";
val quotientI = thm "quotientI";
val quotientE = thm "quotientE";
val Union_quotient = thm "Union_quotient";
val quotient_disj = thm "quotient_disj";
val UN_equiv_class = thm "UN_equiv_class";
val UN_equiv_class_type = thm "UN_equiv_class_type";
val UN_equiv_class_inject = thm "UN_equiv_class_inject";
val congruent2_implies_congruent = thm "congruent2_implies_congruent";
val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
val congruent_commuteI = thm "congruent_commuteI";
val UN_equiv_class2 = thm "UN_equiv_class2";
val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
val congruent2I = thm "congruent2I";
val congruent2_commuteI = thm "congruent2_commuteI";
val congruent_commuteI = thm "congruent_commuteI";
*}
end
lemma sym_trans_comp_subset:
[| sym(r); trans(r) |] ==> converse(r) O r ⊆ r
lemma refl_comp_subset:
[| refl(A, r); r ⊆ A × A |] ==> r ⊆ converse(r) O r
lemma equiv_comp_eq:
equiv(A, r) ==> converse(r) O r = r
lemma comp_equivI:
[| converse(r) O r = r; domain(r) = A |] ==> equiv(A, r)
lemma equiv_class_subset:
[| sym(r); trans(r); 〈a, b〉 ∈ r |] ==> r `` {a} ⊆ r `` {b}
lemma equiv_class_eq:
[| equiv(A, r); 〈a, b〉 ∈ r |] ==> r `` {a} = r `` {b}
lemma equiv_class_self:
[| equiv(A, r); a ∈ A |] ==> a ∈ r `` {a}
lemma subset_equiv_class:
[| equiv(A, r); r `` {b} ⊆ r `` {a}; b ∈ A |] ==> 〈a, b〉 ∈ r
lemma eq_equiv_class:
[| r `` {a} = r `` {b}; equiv(A, r); b ∈ A |] ==> 〈a, b〉 ∈ r
lemma equiv_class_nondisjoint:
[| equiv(A, r); x ∈ r `` {a} ∩ r `` {b} |] ==> 〈a, b〉 ∈ r
lemma equiv_type:
equiv(A, r) ==> r ⊆ A × A
lemma equiv_class_eq_iff:
equiv(A, r) ==> 〈x, y〉 ∈ r <-> r `` {x} = r `` {y} ∧ x ∈ A ∧ y ∈ A
lemma eq_equiv_class_iff:
[| equiv(A, r); x ∈ A; y ∈ A |] ==> r `` {x} = r `` {y} <-> 〈x, y〉 ∈ r
lemma quotientI:
x ∈ A ==> r `` {x} ∈ A // r
lemma quotientE:
[| X ∈ A // r; !!x. [| X = r `` {x}; x ∈ A |] ==> P |] ==> P
lemma Union_quotient:
equiv(A, r) ==> \<Union>A // r = A
lemma quotient_disj:
[| equiv(A, r); X ∈ A // r; Y ∈ A // r |] ==> X = Y ∨ X ∩ Y ⊆ 0
lemma UN_equiv_class:
[| equiv(A, r); b respects r; a ∈ A |] ==> (\<Union>x∈r `` {a}. b(x)) = b(a)
lemma UN_equiv_class_type:
[| equiv(A, r); b respects r; X ∈ A // r; !!x. x ∈ A ==> b(x) ∈ B |] ==> (\<Union>x∈X. b(x)) ∈ B
lemma UN_equiv_class_inject:
[| equiv(A, r); b respects r; (\<Union>x∈X. b(x)) = (\<Union>y∈Y. b(y)); X ∈ A // r; Y ∈ A // r; !!x y. [| x ∈ A; y ∈ A; b(x) = b(y) |] ==> 〈x, y〉 ∈ r |] ==> X = Y
lemma congruent2_implies_congruent:
[| equiv(A, r1.0); congruent2(r1.0, r2.0, b); a ∈ A |] ==> b(a) respects r2.0
lemma congruent2_implies_congruent_UN:
[| equiv(A1.0, r1.0); equiv(A2.0, r2.0); congruent2(r1.0, r2.0, b); a ∈ A2.0 |] ==> (%x1. \<Union>x2∈r2.0 `` {a}. b(x1, x2)) respects r1.0
lemma UN_equiv_class2:
[| equiv(A1.0, r1.0); equiv(A2.0, r2.0); congruent2(r1.0, r2.0, b); a1.0 ∈ A1.0; a2.0 ∈ A2.0 |] ==> (\<Union>x1∈r1.0 `` {a1.0}. \<Union>x2∈r2.0 `` {a2.0}. b(x1, x2)) = b(a1.0, a2.0)
lemma UN_equiv_class_type2:
[| equiv(A, r); congruent2(r, r, b); X1.0 ∈ A // r; X2.0 ∈ A // r; !!x1 x2. [| x1 ∈ A; x2 ∈ A |] ==> b(x1, x2) ∈ B |] ==> (\<Union>x1∈X1.0. \<Union>x2∈X2.0. b(x1, x2)) ∈ B
lemma congruent2I:
[| equiv(A1.0, r1.0); equiv(A2.0, r2.0); !!y z w. [| w ∈ A2.0; 〈y, z〉 ∈ r1.0 |] ==> b(y, w) = b(z, w); !!y z w. [| w ∈ A1.0; 〈y, z〉 ∈ r2.0 |] ==> b(w, y) = b(w, z) |] ==> congruent2(r1.0, r2.0, b)
lemma congruent2_commuteI:
[| equiv(A, r); !!y z. [| y ∈ A; z ∈ A |] ==> b(y, z) = b(z, y); !!y z w. [| w ∈ A; 〈y, z〉 ∈ r |] ==> b(w, y) = b(w, z) |] ==> congruent2(r, r, b)
lemma congruent_commuteI:
[| equiv(A, r); Z ∈ A // r; !!w. w ∈ A ==> (%z. b(w, z)) respects r; !!x y. [| x ∈ A; y ∈ A |] ==> b(y, x) = b(x, y) |] ==> (%w. \<Union>z∈Z. b(w, z)) respects r