(* Title: ZF/Induct/Primrec.thy
ID: $Id: Primrec.thy,v 1.5 2005/06/17 14:15:11 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header {* Primitive Recursive Functions: the inductive definition *}
theory Primrec imports Main begin
text {*
Proof adopted from \cite{szasz}.
See also \cite[page 250, exercise 11]{mendelson}.
*}
subsection {* Basic definitions *}
constdefs
SC :: "i"
"SC == λl ∈ list(nat). list_case(0, λx xs. succ(x), l)"
CONST :: "i=>i"
"CONST(k) == λl ∈ list(nat). k"
PROJ :: "i=>i"
"PROJ(i) == λl ∈ list(nat). list_case(0, λx xs. x, drop(i,l))"
COMP :: "[i,i]=>i"
"COMP(g,fs) == λl ∈ list(nat). g ` List.map(λf. f`l, fs)"
PREC :: "[i,i]=>i"
"PREC(f,g) ==
λl ∈ list(nat). list_case(0,
λx xs. rec(x, f`xs, λy r. g ` Cons(r, Cons(y, xs))), l)"
-- {* Note that @{text g} is applied first to @{term "PREC(f,g)`y"} and then to @{text y}! *}
consts
ACK :: "i=>i"
primrec
"ACK(0) = SC"
"ACK(succ(i)) = PREC (CONST (ACK(i) ` [1]), COMP(ACK(i), [PROJ(0)]))"
syntax
ack :: "[i,i]=>i"
translations
"ack(x,y)" == "ACK(x) ` [y]"
text {*
\medskip Useful special cases of evaluation.
*}
lemma SC: "[| x ∈ nat; l ∈ list(nat) |] ==> SC ` (Cons(x,l)) = succ(x)"
by (simp add: SC_def)
lemma CONST: "l ∈ list(nat) ==> CONST(k) ` l = k"
by (simp add: CONST_def)
lemma PROJ_0: "[| x ∈ nat; l ∈ list(nat) |] ==> PROJ(0) ` (Cons(x,l)) = x"
by (simp add: PROJ_def)
lemma COMP_1: "l ∈ list(nat) ==> COMP(g,[f]) ` l = g` [f`l]"
by (simp add: COMP_def)
lemma PREC_0: "l ∈ list(nat) ==> PREC(f,g) ` (Cons(0,l)) = f`l"
by (simp add: PREC_def)
lemma PREC_succ:
"[| x ∈ nat; l ∈ list(nat) |]
==> PREC(f,g) ` (Cons(succ(x),l)) =
g ` Cons(PREC(f,g)`(Cons(x,l)), Cons(x,l))"
by (simp add: PREC_def)
subsection {* Inductive definition of the PR functions *}
consts
prim_rec :: i
inductive
domains prim_rec ⊆ "list(nat)->nat"
intros
"SC ∈ prim_rec"
"k ∈ nat ==> CONST(k) ∈ prim_rec"
"i ∈ nat ==> PROJ(i) ∈ prim_rec"
"[| g ∈ prim_rec; fs∈list(prim_rec) |] ==> COMP(g,fs) ∈ prim_rec"
"[| f ∈ prim_rec; g ∈ prim_rec |] ==> PREC(f,g) ∈ prim_rec"
monos list_mono
con_defs SC_def CONST_def PROJ_def COMP_def PREC_def
type_intros nat_typechecks list.intros
lam_type list_case_type drop_type List.map_type
apply_type rec_type
lemma prim_rec_into_fun [TC]: "c ∈ prim_rec ==> c ∈ list(nat) -> nat"
by (erule subsetD [OF prim_rec.dom_subset])
lemmas [TC] = apply_type [OF prim_rec_into_fun]
declare prim_rec.intros [TC]
declare nat_into_Ord [TC]
declare rec_type [TC]
lemma ACK_in_prim_rec [TC]: "i ∈ nat ==> ACK(i) ∈ prim_rec"
by (induct_tac i) simp_all
lemma ack_type [TC]: "[| i ∈ nat; j ∈ nat |] ==> ack(i,j) ∈ nat"
by auto
subsection {* Ackermann's function cases *}
lemma ack_0: "j ∈ nat ==> ack(0,j) = succ(j)"
-- {* PROPERTY A 1 *}
by (simp add: SC)
lemma ack_succ_0: "ack(succ(i), 0) = ack(i,1)"
-- {* PROPERTY A 2 *}
by (simp add: CONST PREC_0)
lemma ack_succ_succ:
"[| i∈nat; j∈nat |] ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))"
-- {* PROPERTY A 3 *}
by (simp add: CONST PREC_succ COMP_1 PROJ_0)
lemmas [simp] = ack_0 ack_succ_0 ack_succ_succ ack_type
and [simp del] = ACK.simps
lemma lt_ack2 [rule_format]: "i ∈ nat ==> ∀j ∈ nat. j < ack(i,j)"
-- {* PROPERTY A 4 *}
apply (induct_tac i)
apply simp
apply (rule ballI)
apply (induct_tac j)
apply (erule_tac [2] succ_leI [THEN lt_trans1])
apply (rule nat_0I [THEN nat_0_le, THEN lt_trans])
apply auto
done
lemma ack_lt_ack_succ2: "[|i∈nat; j∈nat|] ==> ack(i,j) < ack(i, succ(j))"
-- {* PROPERTY A 5-, the single-step lemma *}
by (induct_tac i) (simp_all add: lt_ack2)
lemma ack_lt_mono2: "[| j<k; i ∈ nat; k ∈ nat |] ==> ack(i,j) < ack(i,k)"
-- {* PROPERTY A 5, monotonicity for @{text "<"} *}
apply (frule lt_nat_in_nat, assumption)
apply (erule succ_lt_induct)
apply assumption
apply (rule_tac [2] lt_trans)
apply (auto intro: ack_lt_ack_succ2)
done
lemma ack_le_mono2: "[|j≤k; i∈nat; k∈nat|] ==> ack(i,j) ≤ ack(i,k)"
-- {* PROPERTY A 5', monotonicity for @{text ≤} *}
apply (rule_tac f = "λj. ack (i,j) " in Ord_lt_mono_imp_le_mono)
apply (assumption | rule ack_lt_mono2 ack_type [THEN nat_into_Ord])+
done
lemma ack2_le_ack1:
"[| i∈nat; j∈nat |] ==> ack(i, succ(j)) ≤ ack(succ(i), j)"
-- {* PROPERTY A 6 *}
apply (induct_tac j)
apply simp_all
apply (rule ack_le_mono2)
apply (rule lt_ack2 [THEN succ_leI, THEN le_trans])
apply auto
done
lemma ack_lt_ack_succ1: "[| i ∈ nat; j ∈ nat |] ==> ack(i,j) < ack(succ(i),j)"
-- {* PROPERTY A 7-, the single-step lemma *}
apply (rule ack_lt_mono2 [THEN lt_trans2])
apply (rule_tac [4] ack2_le_ack1)
apply auto
done
lemma ack_lt_mono1: "[| i<j; j ∈ nat; k ∈ nat |] ==> ack(i,k) < ack(j,k)"
-- {* PROPERTY A 7, monotonicity for @{text "<"} *}
apply (frule lt_nat_in_nat, assumption)
apply (erule succ_lt_induct)
apply assumption
apply (rule_tac [2] lt_trans)
apply (auto intro: ack_lt_ack_succ1)
done
lemma ack_le_mono1: "[| i≤j; j ∈ nat; k ∈ nat |] ==> ack(i,k) ≤ ack(j,k)"
-- {* PROPERTY A 7', monotonicity for @{text ≤} *}
apply (rule_tac f = "λj. ack (j,k) " in Ord_lt_mono_imp_le_mono)
apply (assumption | rule ack_lt_mono1 ack_type [THEN nat_into_Ord])+
done
lemma ack_1: "j ∈ nat ==> ack(1,j) = succ(succ(j))"
-- {* PROPERTY A 8 *}
by (induct_tac j) simp_all
lemma ack_2: "j ∈ nat ==> ack(succ(1),j) = succ(succ(succ(j#+j)))"
-- {* PROPERTY A 9 *}
by (induct_tac j) (simp_all add: ack_1)
lemma ack_nest_bound:
"[| i1 ∈ nat; i2 ∈ nat; j ∈ nat |]
==> ack(i1, ack(i2,j)) < ack(succ(succ(i1#+i2)), j)"
-- {* PROPERTY A 10 *}
apply (rule lt_trans2 [OF _ ack2_le_ack1])
apply simp
apply (rule add_le_self [THEN ack_le_mono1, THEN lt_trans1])
apply auto
apply (force intro: add_le_self2 [THEN ack_lt_mono1, THEN ack_lt_mono2])
done
lemma ack_add_bound:
"[| i1 ∈ nat; i2 ∈ nat; j ∈ nat |]
==> ack(i1,j) #+ ack(i2,j) < ack(succ(succ(succ(succ(i1#+i2)))), j)"
-- {* PROPERTY A 11 *}
apply (rule_tac j = "ack (succ (1), ack (i1 #+ i2, j))" in lt_trans)
apply (simp add: ack_2)
apply (rule_tac [2] ack_nest_bound [THEN lt_trans2])
apply (rule add_le_mono [THEN leI, THEN leI])
apply (auto intro: add_le_self add_le_self2 ack_le_mono1)
done
lemma ack_add_bound2:
"[| i < ack(k,j); j ∈ nat; k ∈ nat |]
==> i#+j < ack(succ(succ(succ(succ(k)))), j)"
-- {* PROPERTY A 12. *}
-- {* Article uses existential quantifier but the ALF proof used @{term "k#+#4"}. *}
-- {* Quantified version must be nested @{text "∃k'. ∀i,j …"}. *}
apply (rule_tac j = "ack (k,j) #+ ack (0,j) " in lt_trans)
apply (rule_tac [2] ack_add_bound [THEN lt_trans2])
apply (rule add_lt_mono)
apply auto
done
subsection {* Main result *}
declare list_add_type [simp]
lemma SC_case: "l ∈ list(nat) ==> SC ` l < ack(1, list_add(l))"
apply (unfold SC_def)
apply (erule list.cases)
apply (simp add: succ_iff)
apply (simp add: ack_1 add_le_self)
done
lemma lt_ack1: "[| i ∈ nat; j ∈ nat |] ==> i < ack(i,j)"
-- {* PROPERTY A 4'? Extra lemma needed for @{text CONST} case, constant functions. *}
apply (induct_tac i)
apply (simp add: nat_0_le)
apply (erule lt_trans1 [OF succ_leI ack_lt_ack_succ1])
apply auto
done
lemma CONST_case:
"[| l ∈ list(nat); k ∈ nat |] ==> CONST(k) ` l < ack(k, list_add(l))"
by (simp add: CONST_def lt_ack1)
lemma PROJ_case [rule_format]:
"l ∈ list(nat) ==> ∀i ∈ nat. PROJ(i) ` l < ack(0, list_add(l))"
apply (unfold PROJ_def)
apply simp
apply (erule list.induct)
apply (simp add: nat_0_le)
apply simp
apply (rule ballI)
apply (erule_tac n = i in natE)
apply (simp add: add_le_self)
apply simp
apply (erule bspec [THEN lt_trans2])
apply (rule_tac [2] add_le_self2 [THEN succ_leI])
apply auto
done
text {*
\medskip @{text COMP} case.
*}
lemma COMP_map_lemma:
"fs ∈ list({f ∈ prim_rec. ∃kf ∈ nat. ∀l ∈ list(nat). f`l < ack(kf, list_add(l))})
==> ∃k ∈ nat. ∀l ∈ list(nat).
list_add(map(λf. f ` l, fs)) < ack(k, list_add(l))"
apply (erule list.induct)
apply (rule_tac x = 0 in bexI)
apply (simp_all add: lt_ack1 nat_0_le)
apply clarify
apply (rule ballI [THEN bexI])
apply (rule add_lt_mono [THEN lt_trans])
apply (rule_tac [5] ack_add_bound)
apply blast
apply auto
done
lemma COMP_case:
"[| kg∈nat;
∀l ∈ list(nat). g`l < ack(kg, list_add(l));
fs ∈ list({f ∈ prim_rec .
∃kf ∈ nat. ∀l ∈ list(nat).
f`l < ack(kf, list_add(l))}) |]
==> ∃k ∈ nat. ∀l ∈ list(nat). COMP(g,fs)`l < ack(k, list_add(l))"
apply (simp add: COMP_def)
apply (frule list_CollectD)
apply (erule COMP_map_lemma [THEN bexE])
apply (rule ballI [THEN bexI])
apply (erule bspec [THEN lt_trans])
apply (rule_tac [2] lt_trans)
apply (rule_tac [3] ack_nest_bound)
apply (erule_tac [2] bspec [THEN ack_lt_mono2])
apply auto
done
text {*
\medskip @{text PREC} case.
*}
lemma PREC_case_lemma:
"[| ∀l ∈ list(nat). f`l #+ list_add(l) < ack(kf, list_add(l));
∀l ∈ list(nat). g`l #+ list_add(l) < ack(kg, list_add(l));
f ∈ prim_rec; kf∈nat;
g ∈ prim_rec; kg∈nat;
l ∈ list(nat) |]
==> PREC(f,g)`l #+ list_add(l) < ack(succ(kf#+kg), list_add(l))"
apply (unfold PREC_def)
apply (erule list.cases)
apply (simp add: lt_trans [OF nat_le_refl lt_ack2])
apply simp
apply (erule ssubst) -- {* get rid of the needless assumption *}
apply (induct_tac a)
apply simp_all
txt {* base case *}
apply (rule lt_trans, erule bspec, assumption)
apply (simp add: add_le_self [THEN ack_lt_mono1])
txt {* ind step *}
apply (rule succ_leI [THEN lt_trans1])
apply (rule_tac j = "g ` ?ll #+ ?mm" in lt_trans1)
apply (erule_tac [2] bspec)
apply (rule nat_le_refl [THEN add_le_mono])
apply typecheck
apply (simp add: add_le_self2)
txt {* final part of the simplification *}
apply simp
apply (rule add_le_self2 [THEN ack_le_mono1, THEN lt_trans1])
apply (erule_tac [4] ack_lt_mono2)
apply auto
done
lemma PREC_case:
"[| f ∈ prim_rec; kf∈nat;
g ∈ prim_rec; kg∈nat;
∀l ∈ list(nat). f`l < ack(kf, list_add(l));
∀l ∈ list(nat). g`l < ack(kg, list_add(l)) |]
==> ∃k ∈ nat. ∀l ∈ list(nat). PREC(f,g)`l< ack(k, list_add(l))"
apply (rule ballI [THEN bexI])
apply (rule lt_trans1 [OF add_le_self PREC_case_lemma])
apply typecheck
apply (blast intro: ack_add_bound2 list_add_type)+
done
lemma ack_bounds_prim_rec:
"f ∈ prim_rec ==> ∃k ∈ nat. ∀l ∈ list(nat). f`l < ack(k, list_add(l))"
apply (erule prim_rec.induct)
apply (auto intro: SC_case CONST_case PROJ_case COMP_case PREC_case)
done
theorem ack_not_prim_rec:
"(λl ∈ list(nat). list_case(0, λx xs. ack(x,x), l)) ∉ prim_rec"
apply (rule notI)
apply (drule ack_bounds_prim_rec)
apply force
done
end
lemma SC:
[| x ∈ nat; l ∈ list(nat) |] ==> SC ` Cons(x, l) = succ(x)
lemma CONST:
l ∈ list(nat) ==> CONST(k) ` l = k
lemma PROJ_0:
[| x ∈ nat; l ∈ list(nat) |] ==> PROJ(0) ` Cons(x, l) = x
lemma COMP_1:
l ∈ list(nat) ==> COMP(g, [f]) ` l = g ` [f ` l]
lemma PREC_0:
l ∈ list(nat) ==> PREC(f, g) ` Cons(0, l) = f ` l
lemma PREC_succ:
[| x ∈ nat; l ∈ list(nat) |] ==> PREC(f, g) ` Cons(succ(x), l) = g ` Cons(PREC(f, g) ` Cons(x, l), Cons(x, l))
lemma prim_rec_into_fun:
c ∈ prim_rec ==> c ∈ list(nat) -> nat
lemmas
[| f ∈ prim_rec; a ∈ list(nat) |] ==> f ` a ∈ nat
lemmas
[| f ∈ prim_rec; a ∈ list(nat) |] ==> f ` a ∈ nat
lemma ACK_in_prim_rec:
i ∈ nat ==> ACK(i) ∈ prim_rec
lemma ack_type:
[| i ∈ nat; j ∈ nat |] ==> ack(i, j) ∈ nat
lemma ack_0:
j ∈ nat ==> ack(0, j) = succ(j)
lemma ack_succ_0:
ack(succ(i), 0) = ack(i, 1)
lemma ack_succ_succ:
[| i ∈ nat; j ∈ nat |] ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))
lemmas
j ∈ nat ==> ack(0, j) = succ(j)
ack(succ(i), 0) = ack(i, 1)
[| i ∈ nat; j ∈ nat |] ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))
[| i ∈ nat; j ∈ nat |] ==> ack(i, j) ∈ nat
and
ACK(0) = SC
ACK(succ(i)) = PREC(CONST(ack(i, 1)), COMP(ACK(i), [PROJ(0)]))
lemmas
j ∈ nat ==> ack(0, j) = succ(j)
ack(succ(i), 0) = ack(i, 1)
[| i ∈ nat; j ∈ nat |] ==> ack(succ(i), succ(j)) = ack(i, ack(succ(i), j))
[| i ∈ nat; j ∈ nat |] ==> ack(i, j) ∈ nat
and
ACK(0) = SC
ACK(succ(i)) = PREC(CONST(ack(i, 1)), COMP(ACK(i), [PROJ(0)]))
lemma lt_ack2:
[| i ∈ nat; j ∈ nat |] ==> j < ack(i, j)
lemma ack_lt_ack_succ2:
[| i ∈ nat; j ∈ nat |] ==> ack(i, j) < ack(i, succ(j))
lemma ack_lt_mono2:
[| j < k; i ∈ nat; k ∈ nat |] ==> ack(i, j) < ack(i, k)
lemma ack_le_mono2:
[| j ≤ k; i ∈ nat; k ∈ nat |] ==> ack(i, j) ≤ ack(i, k)
lemma ack2_le_ack1:
[| i ∈ nat; j ∈ nat |] ==> ack(i, succ(j)) ≤ ack(succ(i), j)
lemma ack_lt_ack_succ1:
[| i ∈ nat; j ∈ nat |] ==> ack(i, j) < ack(succ(i), j)
lemma ack_lt_mono1:
[| i < j; j ∈ nat; k ∈ nat |] ==> ack(i, k) < ack(j, k)
lemma ack_le_mono1:
[| i ≤ j; j ∈ nat; k ∈ nat |] ==> ack(i, k) ≤ ack(j, k)
lemma ack_1:
j ∈ nat ==> ack(1, j) = succ(succ(j))
lemma ack_2:
j ∈ nat ==> ack(2, j) = succ(succ(succ(j #+ j)))
lemma ack_nest_bound:
[| i1.0 ∈ nat; i2.0 ∈ nat; j ∈ nat |] ==> ack(i1.0, ack(i2.0, j)) < ack(succ(succ(i1.0 #+ i2.0)), j)
lemma ack_add_bound:
[| i1.0 ∈ nat; i2.0 ∈ nat; j ∈ nat |] ==> ack(i1.0, j) #+ ack(i2.0, j) < ack(succ(succ(succ(succ(i1.0 #+ i2.0)))), j)
lemma ack_add_bound2:
[| i < ack(k, j); j ∈ nat; k ∈ nat |] ==> i #+ j < ack(succ(succ(succ(succ(k)))), j)
lemma SC_case:
l ∈ list(nat) ==> SC ` l < ack(1, list_add(l))
lemma lt_ack1:
[| i ∈ nat; j ∈ nat |] ==> i < ack(i, j)
lemma CONST_case:
[| l ∈ list(nat); k ∈ nat |] ==> CONST(k) ` l < ack(k, list_add(l))
lemma PROJ_case:
[| l ∈ list(nat); i ∈ nat |] ==> PROJ(i) ` l < ack(0, list_add(l))
lemma COMP_map_lemma:
fs ∈ list({f ∈ prim_rec . ∃kf∈nat. ∀l∈list(nat). f ` l < ack(kf, list_add(l))}) ==> ∃k∈nat. ∀l∈list(nat). list_add(map(%f. f ` l, fs)) < ack(k, list_add(l))
lemma COMP_case:
[| kg ∈ nat; ∀l∈list(nat). g ` l < ack(kg, list_add(l)); fs ∈ list({f ∈ prim_rec . ∃kf∈nat. ∀l∈list(nat). f ` l < ack(kf, list_add(l))}) |] ==> ∃k∈nat. ∀l∈list(nat). COMP(g, fs) ` l < ack(k, list_add(l))
lemma PREC_case_lemma:
[| ∀l∈list(nat). f ` l #+ list_add(l) < ack(kf, list_add(l)); ∀l∈list(nat). g ` l #+ list_add(l) < ack(kg, list_add(l)); f ∈ prim_rec; kf ∈ nat; g ∈ prim_rec; kg ∈ nat; l ∈ list(nat) |] ==> PREC(f, g) ` l #+ list_add(l) < ack(succ(kf #+ kg), list_add(l))
lemma PREC_case:
[| f ∈ prim_rec; kf ∈ nat; g ∈ prim_rec; kg ∈ nat; ∀l∈list(nat). f ` l < ack(kf, list_add(l)); ∀l∈list(nat). g ` l < ack(kg, list_add(l)) |] ==> ∃k∈nat. ∀l∈list(nat). PREC(f, g) ` l < ack(k, list_add(l))
lemma ack_bounds_prim_rec:
f ∈ prim_rec ==> ∃k∈nat. ∀l∈list(nat). f ` l < ack(k, list_add(l))
theorem ack_not_prim_rec:
(λl∈list(nat). list_case(0, %x xs. ack(x, x), l)) ∉ prim_rec