(* Title: ZF/Induct/Tree_Forest.thy
ID: $Id: Tree_Forest.thy,v 1.8 2005/06/17 14:15:11 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header {* Trees and forests, a mutually recursive type definition *}
theory Tree_Forest imports Main begin
subsection {* Datatype definition *}
consts
tree :: "i => i"
forest :: "i => i"
tree_forest :: "i => i"
datatype "tree(A)" = Tcons ("a ∈ A", "f ∈ forest(A)")
and "forest(A)" = Fnil | Fcons ("t ∈ tree(A)", "f ∈ forest(A)")
declare tree_forest.intros [simp, TC]
lemma tree_def: "tree(A) == Part(tree_forest(A), Inl)"
by (simp only: tree_forest.defs)
lemma forest_def: "forest(A) == Part(tree_forest(A), Inr)"
by (simp only: tree_forest.defs)
text {*
\medskip @{term "tree_forest(A)"} as the union of @{term "tree(A)"}
and @{term "forest(A)"}.
*}
lemma tree_subset_TF: "tree(A) ⊆ tree_forest(A)"
apply (unfold tree_forest.defs)
apply (rule Part_subset)
done
lemma treeI [TC]: "x ∈ tree(A) ==> x ∈ tree_forest(A)"
by (rule tree_subset_TF [THEN subsetD])
lemma forest_subset_TF: "forest(A) ⊆ tree_forest(A)"
apply (unfold tree_forest.defs)
apply (rule Part_subset)
done
lemma treeI' [TC]: "x ∈ forest(A) ==> x ∈ tree_forest(A)"
by (rule forest_subset_TF [THEN subsetD])
lemma TF_equals_Un: "tree(A) ∪ forest(A) = tree_forest(A)"
apply (insert tree_subset_TF forest_subset_TF)
apply (auto intro!: equalityI tree_forest.intros elim: tree_forest.cases)
done
lemma
notes rews = tree_forest.con_defs tree_def forest_def
shows
tree_forest_unfold: "tree_forest(A) =
(A × forest(A)) + ({0} + tree(A) × forest(A))"
-- {* NOT useful, but interesting \dots *}
apply (unfold tree_def forest_def)
apply (fast intro!: tree_forest.intros [unfolded rews, THEN PartD1]
elim: tree_forest.cases [unfolded rews])
done
lemma tree_forest_unfold':
"tree_forest(A) =
A × Part(tree_forest(A), λw. Inr(w)) +
{0} + Part(tree_forest(A), λw. Inl(w)) * Part(tree_forest(A), λw. Inr(w))"
by (rule tree_forest_unfold [unfolded tree_def forest_def])
lemma tree_unfold: "tree(A) = {Inl(x). x ∈ A × forest(A)}"
apply (unfold tree_def forest_def)
apply (rule Part_Inl [THEN subst])
apply (rule tree_forest_unfold' [THEN subst_context])
done
lemma forest_unfold: "forest(A) = {Inr(x). x ∈ {0} + tree(A)*forest(A)}"
apply (unfold tree_def forest_def)
apply (rule Part_Inr [THEN subst])
apply (rule tree_forest_unfold' [THEN subst_context])
done
text {*
\medskip Type checking for recursor: Not needed; possibly interesting?
*}
lemma TF_rec_type:
"[| z ∈ tree_forest(A);
!!x f r. [| x ∈ A; f ∈ forest(A); r ∈ C(f)
|] ==> b(x,f,r) ∈ C(Tcons(x,f));
c ∈ C(Fnil);
!!t f r1 r2. [| t ∈ tree(A); f ∈ forest(A); r1 ∈ C(t); r2 ∈ C(f)
|] ==> d(t,f,r1,r2) ∈ C(Fcons(t,f))
|] ==> tree_forest_rec(b,c,d,z) ∈ C(z)"
by (induct_tac z) simp_all
lemma tree_forest_rec_type:
"[| !!x f r. [| x ∈ A; f ∈ forest(A); r ∈ D(f)
|] ==> b(x,f,r) ∈ C(Tcons(x,f));
c ∈ D(Fnil);
!!t f r1 r2. [| t ∈ tree(A); f ∈ forest(A); r1 ∈ C(t); r2 ∈ D(f)
|] ==> d(t,f,r1,r2) ∈ D(Fcons(t,f))
|] ==> (∀t ∈ tree(A). tree_forest_rec(b,c,d,t) ∈ C(t)) ∧
(∀f ∈ forest(A). tree_forest_rec(b,c,d,f) ∈ D(f))"
-- {* Mutually recursive version. *}
apply (unfold Ball_def)
apply (rule tree_forest.mutual_induct)
apply simp_all
done
subsection {* Operations *}
consts
map :: "[i => i, i] => i"
size :: "i => i"
preorder :: "i => i"
list_of_TF :: "i => i"
of_list :: "i => i"
reflect :: "i => i"
primrec
"list_of_TF (Tcons(x,f)) = [Tcons(x,f)]"
"list_of_TF (Fnil) = []"
"list_of_TF (Fcons(t,tf)) = Cons (t, list_of_TF(tf))"
primrec
"of_list([]) = Fnil"
"of_list(Cons(t,l)) = Fcons(t, of_list(l))"
primrec
"map (h, Tcons(x,f)) = Tcons(h(x), map(h,f))"
"map (h, Fnil) = Fnil"
"map (h, Fcons(t,tf)) = Fcons (map(h, t), map(h, tf))"
primrec
"size (Tcons(x,f)) = succ(size(f))"
"size (Fnil) = 0"
"size (Fcons(t,tf)) = size(t) #+ size(tf)"
primrec
"preorder (Tcons(x,f)) = Cons(x, preorder(f))"
"preorder (Fnil) = Nil"
"preorder (Fcons(t,tf)) = preorder(t) @ preorder(tf)"
primrec
"reflect (Tcons(x,f)) = Tcons(x, reflect(f))"
"reflect (Fnil) = Fnil"
"reflect (Fcons(t,tf)) =
of_list (list_of_TF (reflect(tf)) @ Cons(reflect(t), Nil))"
text {*
\medskip @{text list_of_TF} and @{text of_list}.
*}
lemma list_of_TF_type [TC]:
"z ∈ tree_forest(A) ==> list_of_TF(z) ∈ list(tree(A))"
apply (erule tree_forest.induct)
apply simp_all
done
lemma of_list_type [TC]: "l ∈ list(tree(A)) ==> of_list(l) ∈ forest(A)"
apply (erule list.induct)
apply simp_all
done
text {*
\medskip @{text map}.
*}
lemma
assumes h_type: "!!x. x ∈ A ==> h(x): B"
shows map_tree_type: "t ∈ tree(A) ==> map(h,t) ∈ tree(B)"
and map_forest_type: "f ∈ forest(A) ==> map(h,f) ∈ forest(B)"
apply (induct rule: tree_forest.mutual_induct)
apply (insert h_type)
apply simp_all
done
text {*
\medskip @{text size}.
*}
lemma size_type [TC]: "z ∈ tree_forest(A) ==> size(z) ∈ nat"
apply (erule tree_forest.induct)
apply simp_all
done
text {*
\medskip @{text preorder}.
*}
lemma preorder_type [TC]: "z ∈ tree_forest(A) ==> preorder(z) ∈ list(A)"
apply (erule tree_forest.induct)
apply simp_all
done
text {*
\medskip Theorems about @{text list_of_TF} and @{text of_list}.
*}
lemma forest_induct:
"[| f ∈ forest(A);
R(Fnil);
!!t f. [| t ∈ tree(A); f ∈ forest(A); R(f) |] ==> R(Fcons(t,f))
|] ==> R(f)"
-- {* Essentially the same as list induction. *}
apply (erule tree_forest.mutual_induct
[THEN conjunct2, THEN spec, THEN [2] rev_mp])
apply (rule TrueI)
apply simp
apply simp
done
lemma forest_iso: "f ∈ forest(A) ==> of_list(list_of_TF(f)) = f"
apply (erule forest_induct)
apply simp_all
done
lemma tree_list_iso: "ts: list(tree(A)) ==> list_of_TF(of_list(ts)) = ts"
apply (erule list.induct)
apply simp_all
done
text {*
\medskip Theorems about @{text map}.
*}
lemma map_ident: "z ∈ tree_forest(A) ==> map(λu. u, z) = z"
apply (erule tree_forest.induct)
apply simp_all
done
lemma map_compose:
"z ∈ tree_forest(A) ==> map(h, map(j,z)) = map(λu. h(j(u)), z)"
apply (erule tree_forest.induct)
apply simp_all
done
text {*
\medskip Theorems about @{text size}.
*}
lemma size_map: "z ∈ tree_forest(A) ==> size(map(h,z)) = size(z)"
apply (erule tree_forest.induct)
apply simp_all
done
lemma size_length: "z ∈ tree_forest(A) ==> size(z) = length(preorder(z))"
apply (erule tree_forest.induct)
apply (simp_all add: length_app)
done
text {*
\medskip Theorems about @{text preorder}.
*}
lemma preorder_map:
"z ∈ tree_forest(A) ==> preorder(map(h,z)) = List.map(h, preorder(z))"
apply (erule tree_forest.induct)
apply (simp_all add: map_app_distrib)
done
end
lemma tree_def:
tree(A) == Part(tree_forest(A), Inl)
lemma forest_def:
forest(A) == Part(tree_forest(A), Inr)
lemma tree_subset_TF:
tree(A) ⊆ tree_forest(A)
lemma treeI:
x ∈ tree(A) ==> x ∈ tree_forest(A)
lemma forest_subset_TF:
forest(A) ⊆ tree_forest(A)
lemma treeI':
x ∈ forest(A) ==> x ∈ tree_forest(A)
lemma TF_equals_Un:
tree(A) ∪ forest(A) = tree_forest(A)
lemma tree_forest_unfold:
tree_forest(A) = A × forest(A) + {0} + tree(A) × forest(A)
lemma tree_forest_unfold':
tree_forest(A) = A × Part(tree_forest(A), %w. Inr(w)) + {0} + Part(tree_forest(A), %w. Inl(w)) × Part(tree_forest(A), %w. Inr(w))
lemma tree_unfold:
tree(A) = {Inl(x) . x ∈ A × forest(A)}
lemma forest_unfold:
forest(A) = {Inr(x) . x ∈ {0} + tree(A) × forest(A)}
lemma TF_rec_type:
[| z ∈ tree_forest(A); !!x f r. [| x ∈ A; f ∈ forest(A); r ∈ C(f) |] ==> b(x, f, r) ∈ C(Tcons(x, f)); c ∈ C(Fnil); !!t f r1 r2. [| t ∈ tree(A); f ∈ forest(A); r1 ∈ C(t); r2 ∈ C(f) |] ==> d(t, f, r1, r2) ∈ C(Fcons(t, f)) |] ==> tree_forest_rec(b, c, d, z) ∈ C(z)
lemma tree_forest_rec_type:
[| !!x f r. [| x ∈ A; f ∈ forest(A); r ∈ D(f) |] ==> b(x, f, r) ∈ C(Tcons(x, f)); c ∈ D(Fnil); !!t f r1 r2. [| t ∈ tree(A); f ∈ forest(A); r1 ∈ C(t); r2 ∈ D(f) |] ==> d(t, f, r1, r2) ∈ D(Fcons(t, f)) |] ==> (∀t∈tree(A). tree_forest_rec(b, c, d, t) ∈ C(t)) ∧ (∀f∈forest(A). tree_forest_rec(b, c, d, f) ∈ D(f))
lemma list_of_TF_type:
z ∈ tree_forest(A) ==> list_of_TF(z) ∈ list(tree(A))
lemma of_list_type:
l ∈ list(tree(A)) ==> of_list(l) ∈ forest(A)
lemma map_tree_type:
[| !!x. x ∈ A ==> h(x) ∈ B; t ∈ tree(A) |] ==> Tree_Forest.map(h, t) ∈ tree(B)
and map_forest_type:
[| !!x. x ∈ A ==> h(x) ∈ B; f ∈ forest(A) |] ==> Tree_Forest.map(h, f) ∈ forest(B)
lemma size_type:
z ∈ tree_forest(A) ==> size(z) ∈ nat
lemma preorder_type:
z ∈ tree_forest(A) ==> preorder(z) ∈ list(A)
lemma forest_induct:
[| f ∈ forest(A); R(Fnil); !!t f. [| t ∈ tree(A); f ∈ forest(A); R(f) |] ==> R(Fcons(t, f)) |] ==> R(f)
lemma forest_iso:
f ∈ forest(A) ==> of_list(list_of_TF(f)) = f
lemma tree_list_iso:
ts ∈ list(tree(A)) ==> list_of_TF(of_list(ts)) = ts
lemma map_ident:
z ∈ tree_forest(A) ==> Tree_Forest.map(%u. u, z) = z
lemma map_compose:
z ∈ tree_forest(A) ==> Tree_Forest.map(h, Tree_Forest.map(j, z)) = Tree_Forest.map(%u. h(j(u)), z)
lemma size_map:
z ∈ tree_forest(A) ==> size(Tree_Forest.map(h, z)) = size(z)
lemma size_length:
z ∈ tree_forest(A) ==> size(z) = length(preorder(z))
lemma preorder_map:
z ∈ tree_forest(A) ==> preorder(Tree_Forest.map(h, z)) = List.map(h, preorder(z))