(* Title: ZF/Resid/Redex.thy
ID: $Id: Redex.thy,v 1.16 2005/06/17 14:15:11 haftmann Exp $
Author: Ole Rasmussen
Copyright 1995 University of Cambridge
Logic Image: ZF
*)
theory Redex imports Main begin
consts
redexes :: i
datatype
"redexes" = Var ("n ∈ nat")
| Fun ("t ∈ redexes")
| App ("b ∈ bool","f ∈ redexes", "a ∈ redexes")
consts
Ssub :: "i"
Scomp :: "i"
Sreg :: "i"
union_aux :: "i=>i"
regular :: "i=>o"
(*syntax??*)
un :: "[i,i]=>i" (infixl 70)
"<==" :: "[i,i]=>o" (infixl 70)
"~" :: "[i,i]=>o" (infixl 70)
translations
"a<==b" == "<a,b> ∈ Ssub"
"a ~ b" == "<a,b> ∈ Scomp"
"regular(a)" == "a ∈ Sreg"
primrec (*explicit lambda is required because both arguments of "un" vary*)
"union_aux(Var(n)) =
(λt ∈ redexes. redexes_case(%j. Var(n), %x. 0, %b x y.0, t))"
"union_aux(Fun(u)) =
(λt ∈ redexes. redexes_case(%j. 0, %y. Fun(union_aux(u)`y),
%b y z. 0, t))"
"union_aux(App(b,f,a)) =
(λt ∈ redexes.
redexes_case(%j. 0, %y. 0,
%c z u. App(b or c, union_aux(f)`z, union_aux(a)`u), t))"
defs
union_def: "u un v == union_aux(u)`v"
syntax (xsymbols)
"op un" :: "[i,i]=>i" (infixl "\<squnion>" 70)
"op <==" :: "[i,i]=>o" (infixl "\<Longleftarrow>" 70)
"op ~" :: "[i,i]=>o" (infixl "∼" 70)
inductive
domains "Ssub" <= "redexes*redexes"
intros
Sub_Var: "n ∈ nat ==> Var(n)<== Var(n)"
Sub_Fun: "[|u<== v|]==> Fun(u)<== Fun(v)"
Sub_App1: "[|u1<== v1; u2<== v2; b ∈ bool|]==>
App(0,u1,u2)<== App(b,v1,v2)"
Sub_App2: "[|u1<== v1; u2<== v2|]==> App(1,u1,u2)<== App(1,v1,v2)"
type_intros redexes.intros bool_typechecks
inductive
domains "Scomp" <= "redexes*redexes"
intros
Comp_Var: "n ∈ nat ==> Var(n) ~ Var(n)"
Comp_Fun: "[|u ~ v|]==> Fun(u) ~ Fun(v)"
Comp_App: "[|u1 ~ v1; u2 ~ v2; b1 ∈ bool; b2 ∈ bool|]
==> App(b1,u1,u2) ~ App(b2,v1,v2)"
type_intros redexes.intros bool_typechecks
inductive
domains "Sreg" <= redexes
intros
Reg_Var: "n ∈ nat ==> regular(Var(n))"
Reg_Fun: "[|regular(u)|]==> regular(Fun(u))"
Reg_App1: "[|regular(Fun(u)); regular(v) |]==>regular(App(1,Fun(u),v))"
Reg_App2: "[|regular(u); regular(v) |]==>regular(App(0,u,v))"
type_intros redexes.intros bool_typechecks
declare redexes.intros [simp]
(* ------------------------------------------------------------------------- *)
(* Specialisation of comp-rules *)
(* ------------------------------------------------------------------------- *)
lemmas compD1 [simp] = Scomp.dom_subset [THEN subsetD, THEN SigmaD1]
lemmas compD2 [simp] = Scomp.dom_subset [THEN subsetD, THEN SigmaD2]
lemmas regD [simp] = Sreg.dom_subset [THEN subsetD]
(* ------------------------------------------------------------------------- *)
(* Equality rules for union *)
(* ------------------------------------------------------------------------- *)
lemma union_Var [simp]: "n ∈ nat ==> Var(n) un Var(n)=Var(n)"
by (simp add: union_def)
lemma union_Fun [simp]: "v ∈ redexes ==> Fun(u) un Fun(v) = Fun(u un v)"
by (simp add: union_def)
lemma union_App [simp]:
"[|b2 ∈ bool; u2 ∈ redexes; v2 ∈ redexes|]
==> App(b1,u1,v1) un App(b2,u2,v2)=App(b1 or b2,u1 un u2,v1 un v2)"
by (simp add: union_def)
lemma or_1_right [simp]: "a or 1 = 1"
by (simp add: or_def cond_def)
lemma or_0_right [simp]: "a ∈ bool ==> a or 0 = a"
by (simp add: or_def cond_def bool_def, auto)
declare Ssub.intros [simp]
declare bool_typechecks [simp]
declare Sreg.intros [simp]
declare Scomp.intros [simp]
declare Scomp.intros [intro]
inductive_cases [elim!]:
"regular(App(b,f,a))"
"regular(Fun(b))"
"regular(Var(b))"
"Fun(u) ~ Fun(t)"
"u ~ Fun(t)"
"u ~ Var(n)"
"u ~ App(b,t,a)"
"Fun(t) ~ v"
"App(b,f,a) ~ v"
"Var(n) ~ u"
(* ------------------------------------------------------------------------- *)
(* comp proofs *)
(* ------------------------------------------------------------------------- *)
lemma comp_refl [simp]: "u ∈ redexes ==> u ~ u"
by (erule redexes.induct, blast+)
lemma comp_sym: "u ~ v ==> v ~ u"
by (erule Scomp.induct, blast+)
lemma comp_sym_iff: "u ~ v <-> v ~ u"
by (blast intro: comp_sym)
lemma comp_trans [rule_format]: "u ~ v ==> ∀w. v ~ w-->u ~ w"
by (erule Scomp.induct, blast+)
(* ------------------------------------------------------------------------- *)
(* union proofs *)
(* ------------------------------------------------------------------------- *)
lemma union_l: "u ~ v ==> u <== (u un v)"
apply (erule Scomp.induct)
apply (erule_tac [3] boolE, simp_all)
done
lemma union_r: "u ~ v ==> v <== (u un v)"
apply (erule Scomp.induct)
apply (erule_tac [3] c = b2 in boolE, simp_all)
done
lemma union_sym: "u ~ v ==> u un v = v un u"
by (erule Scomp.induct, simp_all add: or_commute)
(* ------------------------------------------------------------------------- *)
(* regular proofs *)
(* ------------------------------------------------------------------------- *)
lemma union_preserve_regular [rule_format]:
"u ~ v ==> regular(u)-->regular(v)-->regular(u un v)"
by (erule Scomp.induct, auto)
end
lemmas compD1:
a ~ b ==> a ∈ redexes
lemmas compD1:
a ~ b ==> a ∈ redexes
lemmas compD2:
a ~ b ==> b ∈ redexes
lemmas compD2:
a ~ b ==> b ∈ redexes
lemmas regD:
regular(c) ==> c ∈ redexes
lemmas regD:
regular(c) ==> c ∈ redexes
lemma union_Var:
n ∈ nat ==> Var(n) un Var(n) = Var(n)
lemma union_Fun:
v ∈ redexes ==> Fun(u) un Fun(v) = Fun(u un v)
lemma union_App:
[| b2.0 ∈ bool; u2.0 ∈ redexes; v2.0 ∈ redexes |] ==> App(b1.0, u1.0, v1.0) un App(b2.0, u2.0, v2.0) = App(b1.0 or b2.0, u1.0 un u2.0, v1.0 un v2.0)
lemma or_1_right:
a or 1 = 1
lemma or_0_right:
a ∈ bool ==> a or 0 = a
lemmas
[| regular(App(b, f, a)); !!u. [| regular(Fun(u)); regular(a); b = 1; f = Fun(u) |] ==> Q; [| regular(f); regular(a); b = 0 |] ==> Q |] ==> Q
[| regular(Fun(b)); regular(b) ==> Q |] ==> Q
[| regular(Var(b)); b ∈ nat ==> Q |] ==> Q
[| Fun(u) ~ Fun(t); u ~ t ==> Q |] ==> Q
[| u ~ Fun(t); !!u. [| u ~ t; u = Fun(u) |] ==> Q |] ==> Q
[| u ~ Var(n); [| n ∈ nat; u = Var(n) |] ==> Q |] ==> Q
[| u ~ App(b, t, a); !!b1 u1 u2. [| u1 ~ t; u2 ~ a; b1 ∈ bool; b ∈ bool; u = App(b1, u1, u2) |] ==> Q |] ==> Q
[| Fun(t) ~ v; !!v. [| t ~ v; v = Fun(v) |] ==> Q |] ==> Q
[| App(b, f, a) ~ v; !!b2 v1 v2. [| f ~ v1; a ~ v2; b ∈ bool; b2 ∈ bool; v = App(b2, v1, v2) |] ==> Q |] ==> Q
[| Var(n) ~ u; [| n ∈ nat; u = Var(n) |] ==> Q |] ==> Q
lemma comp_refl:
u ∈ redexes ==> u ~ u
lemma comp_sym:
u ~ v ==> v ~ u
lemma comp_sym_iff:
u ~ v <-> v ~ u
lemma comp_trans:
[| u ~ v; v ~ w |] ==> u ~ w
lemma union_l:
u ~ v ==> u <== (u un v)
lemma union_r:
u ~ v ==> v <== (u un v)
lemma union_sym:
u ~ v ==> u un v = v un u
lemma union_preserve_regular:
[| u ~ v; regular(u); regular(v) |] ==> regular(u un v)