(* Title: ZF/UNITY/ClientImpl.thy
ID: $Id: ClientImpl.thy,v 1.9 2005/06/17 14:15:11 haftmann Exp $
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2002 University of Cambridge
Distributed Resource Management System: Client Implementation
*)
theory ClientImpl imports AllocBase Guar begin
consts
ask :: i (* input history: tokens requested *)
giv :: i (* output history: tokens granted *)
rel :: i (* input history: tokens released *)
tok :: i (* the number of available tokens *)
translations
"ask" == "Var(Nil)"
"giv" == "Var([0])"
"rel" == "Var([1])"
"tok" == "Var([2])"
axioms
type_assumes:
"type_of(ask) = list(tokbag) & type_of(giv) = list(tokbag) &
type_of(rel) = list(tokbag) & type_of(tok) = nat"
default_val_assumes:
"default_val(ask) = Nil & default_val(giv) = Nil &
default_val(rel) = Nil & default_val(tok) = 0"
(*Array indexing is translated to list indexing as A[n] == nth(n-1,A). *)
constdefs
(** Release some client_tokens **)
client_rel_act ::i
"client_rel_act ==
{<s,t> ∈ state*state.
∃nrel ∈ nat. nrel = length(s`rel) &
t = s(rel:=(s`rel)@[nth(nrel, s`giv)]) &
nrel < length(s`giv) &
nth(nrel, s`ask) ≤ nth(nrel, s`giv)}"
(** Choose a new token requirement **)
(** Including t=s suppresses fairness, allowing the non-trivial part
of the action to be ignored **)
client_tok_act :: i
"client_tok_act == {<s,t> ∈ state*state. t=s |
t = s(tok:=succ(s`tok mod NbT))}"
client_ask_act :: i
"client_ask_act == {<s,t> ∈ state*state. t=s | (t=s(ask:=s`ask@[s`tok]))}"
client_prog :: i
"client_prog ==
mk_program({s ∈ state. s`tok ≤ NbT & s`giv = Nil &
s`ask = Nil & s`rel = Nil},
{client_rel_act, client_tok_act, client_ask_act},
\<Union>G ∈ preserves(lift(rel)) Int
preserves(lift(ask)) Int
preserves(lift(tok)). Acts(G))"
declare type_assumes [simp] default_val_assumes [simp]
(* This part should be automated *)
lemma ask_value_type [simp,TC]: "s ∈ state ==> s`ask ∈ list(nat)"
apply (unfold state_def)
apply (drule_tac a = ask in apply_type, auto)
done
lemma giv_value_type [simp,TC]: "s ∈ state ==> s`giv ∈ list(nat)"
apply (unfold state_def)
apply (drule_tac a = giv in apply_type, auto)
done
lemma rel_value_type [simp,TC]: "s ∈ state ==> s`rel ∈ list(nat)"
apply (unfold state_def)
apply (drule_tac a = rel in apply_type, auto)
done
lemma tok_value_type [simp,TC]: "s ∈ state ==> s`tok ∈ nat"
apply (unfold state_def)
apply (drule_tac a = tok in apply_type, auto)
done
(** The Client Program **)
lemma client_type [simp,TC]: "client_prog ∈ program"
apply (unfold client_prog_def)
apply (simp (no_asm))
done
declare client_prog_def [THEN def_prg_Init, simp]
declare client_prog_def [THEN def_prg_AllowedActs, simp]
ML
{*
program_defs_ref := [thm"client_prog_def"]
*}
declare client_rel_act_def [THEN def_act_simp, simp]
declare client_tok_act_def [THEN def_act_simp, simp]
declare client_ask_act_def [THEN def_act_simp, simp]
lemma client_prog_ok_iff:
"∀G ∈ program. (client_prog ok G) <->
(G ∈ preserves(lift(rel)) & G ∈ preserves(lift(ask)) &
G ∈ preserves(lift(tok)) & client_prog ∈ Allowed(G))"
by (auto simp add: ok_iff_Allowed client_prog_def [THEN def_prg_Allowed])
lemma client_prog_preserves:
"client_prog:(\<Inter>x ∈ var-{ask, rel, tok}. preserves(lift(x)))"
apply (rule Inter_var_DiffI, force)
apply (rule ballI)
apply (rule preservesI, safety, auto)
done
lemma preserves_lift_imp_stable:
"G ∈ preserves(lift(ff)) ==> G ∈ stable({s ∈ state. P(s`ff)})";
apply (drule preserves_imp_stable)
apply (simp add: lift_def)
done
lemma preserves_imp_prefix:
"G ∈ preserves(lift(ff))
==> G ∈ stable({s ∈ state. 〈k, s`ff〉 ∈ prefix(nat)})";
by (erule preserves_lift_imp_stable)
(*Safety property 1: ask, rel are increasing: (24) *)
lemma client_prog_Increasing_ask_rel:
"client_prog: program guarantees Incr(lift(ask)) Int Incr(lift(rel))"
apply (unfold guar_def)
apply (auto intro!: increasing_imp_Increasing
simp add: client_prog_ok_iff increasing_def preserves_imp_prefix)
apply (safety, force, force)+
done
declare nth_append [simp] append_one_prefix [simp]
lemma NbT_pos2: "0<NbT"
apply (cut_tac NbT_pos)
apply (rule Ord_0_lt, auto)
done
(*Safety property 2: the client never requests too many tokens.
With no Substitution Axiom, we must prove the two invariants simultaneously. *)
lemma ask_Bounded_lemma:
"[| client_prog ok G; G ∈ program |]
==> client_prog \<squnion> G ∈
Always({s ∈ state. s`tok ≤ NbT} Int
{s ∈ state. ∀elt ∈ set_of_list(s`ask). elt ≤ NbT})"
apply (rotate_tac -1)
apply (auto simp add: client_prog_ok_iff)
apply (rule invariantI [THEN stable_Join_Always2], force)
prefer 2
apply (fast intro: stable_Int preserves_lift_imp_stable, safety)
apply (auto dest: ActsD)
apply (cut_tac NbT_pos)
apply (rule NbT_pos2 [THEN mod_less_divisor])
apply (auto dest: ActsD preserves_imp_eq simp add: set_of_list_append)
done
(* Export version, with no mention of tok in the postcondition, but
unfortunately tok must be declared local.*)
lemma client_prog_ask_Bounded:
"client_prog ∈ program guarantees
Always({s ∈ state. ∀elt ∈ set_of_list(s`ask). elt ≤ NbT})"
apply (rule guaranteesI)
apply (erule ask_Bounded_lemma [THEN Always_weaken], auto)
done
(*** Towards proving the liveness property ***)
lemma client_prog_stable_rel_le_giv:
"client_prog ∈ stable({s ∈ state. <s`rel, s`giv> ∈ prefix(nat)})"
by (safety, auto)
lemma client_prog_Join_Stable_rel_le_giv:
"[| client_prog \<squnion> G ∈ Incr(lift(giv)); G ∈ preserves(lift(rel)) |]
==> client_prog \<squnion> G ∈ Stable({s ∈ state. <s`rel, s`giv> ∈ prefix(nat)})"
apply (rule client_prog_stable_rel_le_giv [THEN Increasing_preserves_Stable])
apply (auto simp add: lift_def)
done
lemma client_prog_Join_Always_rel_le_giv:
"[| client_prog \<squnion> G ∈ Incr(lift(giv)); G ∈ preserves(lift(rel)) |]
==> client_prog \<squnion> G ∈ Always({s ∈ state. <s`rel, s`giv> ∈ prefix(nat)})"
by (force intro!: AlwaysI client_prog_Join_Stable_rel_le_giv)
lemma def_act_eq:
"A == {<s, t> ∈ state*state. P(s, t)} ==> A={<s, t> ∈ state*state. P(s, t)}"
by auto
lemma act_subset: "A={<s,t> ∈ state*state. P(s, t)} ==> A<=state*state"
by auto
lemma transient_lemma:
"client_prog ∈
transient({s ∈ state. s`rel = k & <k, h> ∈ strict_prefix(nat)
& <h, s`giv> ∈ prefix(nat) & h pfixGe s`ask})"
apply (rule_tac act = client_rel_act in transientI)
apply (simp (no_asm) add: client_prog_def [THEN def_prg_Acts])
apply (simp (no_asm) add: client_rel_act_def [THEN def_act_eq, THEN act_subset])
apply (auto simp add: client_prog_def [THEN def_prg_Acts] domain_def)
apply (rule ReplaceI)
apply (rule_tac x = "x (rel:= x`rel @ [nth (length (x`rel), x`giv) ]) " in exI)
apply (auto intro!: state_update_type app_type length_type nth_type, auto)
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
apply (blast intro: lt_trans2 prefix_length_le strict_prefix_length_lt)
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
apply (subgoal_tac "h ∈ list(nat)")
apply (simp_all (no_asm_simp) add: prefix_type [THEN subsetD, THEN SigmaD1])
apply (auto simp add: prefix_def Ge_def)
apply (drule strict_prefix_length_lt)
apply (drule_tac x = "length (x`rel) " in spec)
apply auto
apply (simp (no_asm_use) add: gen_prefix_iff_nth)
apply (auto simp add: id_def lam_def)
done
lemma strict_prefix_is_prefix:
"<xs, ys> ∈ strict_prefix(A) <-> <xs, ys> ∈ prefix(A) & xs≠ys"
apply (unfold strict_prefix_def id_def lam_def)
apply (auto dest: prefix_type [THEN subsetD])
done
lemma induct_lemma:
"[| client_prog \<squnion> G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |]
==> client_prog \<squnion> G ∈
{s ∈ state. s`rel = k & <k,h> ∈ strict_prefix(nat)
& <h, s`giv> ∈ prefix(nat) & h pfixGe s`ask}
LeadsTo {s ∈ state. <k, s`rel> ∈ strict_prefix(nat)
& <s`rel, s`giv> ∈ prefix(nat) &
<h, s`giv> ∈ prefix(nat) &
h pfixGe s`ask}"
apply (rule single_LeadsTo_I)
prefer 2 apply simp
apply (frule client_prog_Increasing_ask_rel [THEN guaranteesD])
apply (rotate_tac [3] 2)
apply (auto simp add: client_prog_ok_iff)
apply (rule transient_lemma [THEN Join_transient_I1, THEN transient_imp_leadsTo, THEN leadsTo_imp_LeadsTo, THEN PSP_Stable, THEN LeadsTo_weaken])
apply (rule Stable_Int [THEN Stable_Int, THEN Stable_Int])
apply (erule_tac f = "lift (giv) " and a = "s`giv" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule_tac f = "lift (ask) " and a = "s`ask" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule_tac f = "lift (rel) " and a = "s`rel" in Increasing_imp_Stable)
apply (simp (no_asm_simp))
apply (erule client_prog_Join_Stable_rel_le_giv, blast, simp_all)
prefer 2
apply (blast intro: sym strict_prefix_is_prefix [THEN iffD2] prefix_trans prefix_imp_pfixGe pfixGe_trans)
apply (auto intro: strict_prefix_is_prefix [THEN iffD1, THEN conjunct1]
prefix_trans)
done
lemma rel_progress_lemma:
"[| client_prog \<squnion> G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |]
==> client_prog \<squnion> G ∈
{s ∈ state. <s`rel, h> ∈ strict_prefix(nat)
& <h, s`giv> ∈ prefix(nat) & h pfixGe s`ask}
LeadsTo {s ∈ state. <h, s`rel> ∈ prefix(nat)}"
apply (rule_tac f = "λx ∈ state. length(h) #- length(x`rel)"
in LessThan_induct)
apply (auto simp add: vimage_def)
prefer 2 apply (force simp add: lam_def)
apply (rule single_LeadsTo_I)
prefer 2 apply simp
apply (subgoal_tac "h ∈ list(nat)")
prefer 2 apply (blast dest: prefix_type [THEN subsetD])
apply (rule induct_lemma [THEN LeadsTo_weaken])
apply (simp add: length_type lam_def)
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
dest: common_prefix_linear prefix_type [THEN subsetD])
apply (erule swap)
apply (rule imageI)
apply (force dest!: simp add: lam_def)
apply (simp add: length_type lam_def, clarify)
apply (drule strict_prefix_length_lt)+
apply (drule less_imp_succ_add, simp)+
apply clarify
apply simp
apply (erule diff_le_self [THEN ltD])
done
lemma progress_lemma:
"[| client_prog \<squnion> G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |]
==> client_prog \<squnion> G
∈ {s ∈ state. <h, s`giv> ∈ prefix(nat) & h pfixGe s`ask}
LeadsTo {s ∈ state. <h, s`rel> ∈ prefix(nat)}"
apply (rule client_prog_Join_Always_rel_le_giv [THEN Always_LeadsToI],
assumption)
apply (force simp add: client_prog_ok_iff)
apply (rule LeadsTo_weaken_L)
apply (rule LeadsTo_Un [OF rel_progress_lemma
subset_refl [THEN subset_imp_LeadsTo]])
apply (auto intro: strict_prefix_is_prefix [THEN iffD2]
dest: common_prefix_linear prefix_type [THEN subsetD])
done
(*Progress property: all tokens that are given will be released*)
lemma client_prog_progress:
"client_prog ∈ Incr(lift(giv)) guarantees
(\<Inter>h ∈ list(nat). {s ∈ state. <h, s`giv> ∈ prefix(nat) &
h pfixGe s`ask} LeadsTo {s ∈ state. <h, s`rel> ∈ prefix(nat)})"
apply (rule guaranteesI)
apply (blast intro: progress_lemma, auto)
done
lemma client_prog_Allowed:
"Allowed(client_prog) =
preserves(lift(rel)) Int preserves(lift(ask)) Int preserves(lift(tok))"
apply (cut_tac v = "lift (ask)" in preserves_type)
apply (auto simp add: Allowed_def client_prog_def [THEN def_prg_Allowed]
cons_Int_distrib safety_prop_Acts_iff)
done
end
lemma ask_value_type:
s ∈ state ==> s ` ask ∈ list(nat)
lemma giv_value_type:
s ∈ state ==> s ` giv ∈ list(nat)
lemma rel_value_type:
s ∈ state ==> s ` rel ∈ list(nat)
lemma tok_value_type:
s ∈ state ==> s ` tok ∈ nat
lemma client_type:
client_prog ∈ program
lemma client_prog_ok_iff:
∀G∈program. client_prog ok G <-> G ∈ preserves(lift(rel)) ∧ G ∈ preserves(lift(ask)) ∧ G ∈ preserves(lift(tok)) ∧ client_prog ∈ Allowed(G)
lemma client_prog_preserves:
client_prog ∈ (\<Inter>x∈var - {ask, rel, tok}. preserves(lift(x)))
lemma preserves_lift_imp_stable:
G ∈ preserves(lift(ff)) ==> G ∈ stable({s ∈ state . P(s ` ff)})
lemma preserves_imp_prefix:
G ∈ preserves(lift(ff)) ==> G ∈ stable({s ∈ state . 〈k, s ` ff〉 ∈ prefix(nat)})
lemma client_prog_Increasing_ask_rel:
client_prog ∈ program guarantees Incr(lift(ask)) ∩ Incr(lift(rel))
lemma NbT_pos2:
0 < NbT
lemma ask_Bounded_lemma:
[| client_prog ok G; G ∈ program |] ==> client_prog Join G ∈ Always ({s ∈ state . s ` tok ≤ NbT} ∩ {s ∈ state . ∀elt∈set_of_list(s ` ask). elt ≤ NbT})
lemma client_prog_ask_Bounded:
client_prog ∈
program guarantees Always({s ∈ state . ∀elt∈set_of_list(s ` ask). elt ≤ NbT})
lemma client_prog_stable_rel_le_giv:
client_prog ∈ stable({s ∈ state . 〈s ` rel, s ` giv〉 ∈ prefix(nat)})
lemma client_prog_Join_Stable_rel_le_giv:
[| client_prog Join G ∈ Incr(lift(giv)); G ∈ preserves(lift(rel)) |] ==> client_prog Join G ∈ Stable({s ∈ state . 〈s ` rel, s ` giv〉 ∈ prefix(nat)})
lemma client_prog_Join_Always_rel_le_giv:
[| client_prog Join G ∈ Incr(lift(giv)); G ∈ preserves(lift(rel)) |] ==> client_prog Join G ∈ Always({s ∈ state . 〈s ` rel, s ` giv〉 ∈ prefix(nat)})
lemma def_act_eq:
A == {〈s,t〉 ∈ state × state . P(s, t)} ==> A = {〈s,t〉 ∈ state × state . P(s, t)}
lemma act_subset:
A = {〈s,t〉 ∈ state × state . P(s, t)} ==> A ⊆ state × state
lemma transient_lemma:
client_prog ∈
transient
({s ∈ state .
s ` rel = k ∧
〈k, h〉 ∈ strict_prefix(nat) ∧ 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask})
lemma strict_prefix_is_prefix:
〈xs, ys〉 ∈ strict_prefix(A) <-> 〈xs, ys〉 ∈ prefix(A) ∧ xs ≠ ys
lemma induct_lemma:
[| client_prog Join G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |] ==> client_prog Join G ∈ {s ∈ state . s ` rel = k ∧ 〈k, h〉 ∈ strict_prefix(nat) ∧ 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask} LeadsTo {s ∈ state . 〈k, s ` rel〉 ∈ strict_prefix(nat) ∧ 〈s ` rel, s ` giv〉 ∈ prefix(nat) ∧ 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask}
lemma rel_progress_lemma:
[| client_prog Join G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |] ==> client_prog Join G ∈ {s ∈ state . 〈s ` rel, h〉 ∈ strict_prefix(nat) ∧ 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask} LeadsTo {s ∈ state . 〈h, s ` rel〉 ∈ prefix(nat)}
lemma progress_lemma:
[| client_prog Join G ∈ Incr(lift(giv)); client_prog ok G; G ∈ program |] ==> client_prog Join G ∈ {s ∈ state . 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask} LeadsTo {s ∈ state . 〈h, s ` rel〉 ∈ prefix(nat)}
lemma client_prog_progress:
client_prog ∈ Incr(lift(giv)) guarantees (\<Inter>h∈list(nat). {s ∈ state . 〈h, s ` giv〉 ∈ prefix(nat) ∧ h pfixGe s ` ask} LeadsTo {s ∈ state . 〈h, s ` rel〉 ∈ prefix(nat)})
lemma client_prog_Allowed:
Allowed(client_prog) = preserves(lift(rel)) ∩ preserves(lift(ask)) ∩ preserves(lift(tok))