(* ID: $Id: Constrains.thy,v 1.6 2005/06/02 11:17:06 paulson Exp $
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
*)
header{*Weak Safety Properties*}
theory Constrains
imports UNITY
begin
consts traces :: "[i, i] => i"
(* Initial states and program => (final state, reversed trace to it)...
the domain may also be state*list(state) *)
inductive
domains
"traces(init, acts)" <=
"(init Un (UN act:acts. field(act)))*list(UN act:acts. field(act))"
intros
(*Initial trace is empty*)
Init: "s: init ==> <s,[]> : traces(init,acts)"
Acts: "[| act:acts; <s,evs> : traces(init,acts); <s,s'>: act |]
==> <s', Cons(s,evs)> : traces(init, acts)"
type_intros list.intros UnI1 UnI2 UN_I fieldI2 fieldI1
consts reachable :: "i=>i"
inductive
domains
"reachable(F)" <= "Init(F) Un (UN act:Acts(F). field(act))"
intros
Init: "s:Init(F) ==> s:reachable(F)"
Acts: "[| act: Acts(F); s:reachable(F); <s,s'>: act |]
==> s':reachable(F)"
type_intros UnI1 UnI2 fieldI2 UN_I
consts
Constrains :: "[i,i] => i" (infixl "Co" 60)
op_Unless :: "[i, i] => i" (infixl "Unless" 60)
defs
Constrains_def:
"A Co B == {F:program. F:(reachable(F) Int A) co B}"
Unless_def:
"A Unless B == (A-B) Co (A Un B)"
constdefs
Stable :: "i => i"
"Stable(A) == A Co A"
(*Always is the weak form of "invariant"*)
Always :: "i => i"
"Always(A) == initially(A) Int Stable(A)"
(*** traces and reachable ***)
lemma reachable_type: "reachable(F) <= state"
apply (cut_tac F = F in Init_type)
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = F in reachable.dom_subset, blast)
done
lemma st_set_reachable: "st_set(reachable(F))"
apply (unfold st_set_def)
apply (rule reachable_type)
done
declare st_set_reachable [iff]
lemma reachable_Int_state: "reachable(F) Int state = reachable(F)"
by (cut_tac reachable_type, auto)
declare reachable_Int_state [iff]
lemma state_Int_reachable: "state Int reachable(F) = reachable(F)"
by (cut_tac reachable_type, auto)
declare state_Int_reachable [iff]
lemma reachable_equiv_traces:
"F ∈ program ==> reachable(F)={s ∈ state. ∃evs. <s,evs>:traces(Init(F), Acts(F))}"
apply (rule equalityI, safe)
apply (blast dest: reachable_type [THEN subsetD])
apply (erule_tac [2] traces.induct)
apply (erule reachable.induct)
apply (blast intro: reachable.intros traces.intros)+
done
lemma Init_into_reachable: "Init(F) <= reachable(F)"
by (blast intro: reachable.intros)
lemma stable_reachable: "[| F ∈ program; G ∈ program;
Acts(G) <= Acts(F) |] ==> G ∈ stable(reachable(F))"
apply (blast intro: stableI constrainsI st_setI
reachable_type [THEN subsetD] reachable.intros)
done
declare stable_reachable [intro!]
declare stable_reachable [simp]
(*The set of all reachable states is an invariant...*)
lemma invariant_reachable:
"F ∈ program ==> F ∈ invariant(reachable(F))"
apply (unfold invariant_def initially_def)
apply (blast intro: reachable_type [THEN subsetD] reachable.intros)
done
(*...in fact the strongest invariant!*)
lemma invariant_includes_reachable: "F ∈ invariant(A) ==> reachable(F) <= A"
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = F in Init_type)
apply (cut_tac F = F in reachable_type)
apply (simp (no_asm_use) add: stable_def constrains_def invariant_def initially_def)
apply (rule subsetI)
apply (erule reachable.induct)
apply (blast intro: reachable.intros)+
done
(*** Co ***)
lemma constrains_reachable_Int: "F ∈ B co B'==>F:(reachable(F) Int B) co (reachable(F) Int B')"
apply (frule constrains_type [THEN subsetD])
apply (frule stable_reachable [OF _ _ subset_refl])
apply (simp_all add: stable_def constrains_Int)
done
(*Resembles the previous definition of Constrains*)
lemma Constrains_eq_constrains:
"A Co B = {F ∈ program. F:(reachable(F) Int A) co (reachable(F) Int B)}"
apply (unfold Constrains_def)
apply (blast dest: constrains_reachable_Int constrains_type [THEN subsetD]
intro: constrains_weaken)
done
lemmas Constrains_def2 = Constrains_eq_constrains [THEN eq_reflection]
lemma constrains_imp_Constrains: "F ∈ A co A' ==> F ∈ A Co A'"
apply (unfold Constrains_def)
apply (blast intro: constrains_weaken_L dest: constrainsD2)
done
lemma ConstrainsI:
"[|!!act s s'. [| act ∈ Acts(F); <s,s'>:act; s ∈ A |] ==> s':A';
F ∈ program|]
==> F ∈ A Co A'"
apply (auto simp add: Constrains_def constrains_def st_set_def)
apply (blast dest: reachable_type [THEN subsetD])
done
lemma Constrains_type:
"A Co B <= program"
apply (unfold Constrains_def, blast)
done
lemma Constrains_empty: "F ∈ 0 Co B <-> F ∈ program"
by (auto dest: Constrains_type [THEN subsetD]
intro: constrains_imp_Constrains)
declare Constrains_empty [iff]
lemma Constrains_state: "F ∈ A Co state <-> F ∈ program"
apply (unfold Constrains_def)
apply (auto dest: Constrains_type [THEN subsetD] intro: constrains_imp_Constrains)
done
declare Constrains_state [iff]
lemma Constrains_weaken_R:
"[| F ∈ A Co A'; A'<=B' |] ==> F ∈ A Co B'"
apply (unfold Constrains_def2)
apply (blast intro: constrains_weaken_R)
done
lemma Constrains_weaken_L:
"[| F ∈ A Co A'; B<=A |] ==> F ∈ B Co A'"
apply (unfold Constrains_def2)
apply (blast intro: constrains_weaken_L st_set_subset)
done
lemma Constrains_weaken:
"[| F ∈ A Co A'; B<=A; A'<=B' |] ==> F ∈ B Co B'"
apply (unfold Constrains_def2)
apply (blast intro: constrains_weaken st_set_subset)
done
(** Union **)
lemma Constrains_Un:
"[| F ∈ A Co A'; F ∈ B Co B' |] ==> F ∈ (A Un B) Co (A' Un B')"
apply (unfold Constrains_def2, auto)
apply (simp add: Int_Un_distrib)
apply (blast intro: constrains_Un)
done
lemma Constrains_UN:
"[|(!!i. i ∈ I==>F ∈ A(i) Co A'(i)); F ∈ program|]
==> F:(\<Union>i ∈ I. A(i)) Co (\<Union>i ∈ I. A'(i))"
by (auto intro: constrains_UN simp del: UN_simps
simp add: Constrains_def2 Int_UN_distrib)
(** Intersection **)
lemma Constrains_Int:
"[| F ∈ A Co A'; F ∈ B Co B'|]==> F:(A Int B) Co (A' Int B')"
apply (unfold Constrains_def)
apply (subgoal_tac "reachable (F) Int (A Int B) = (reachable (F) Int A) Int (reachable (F) Int B) ")
apply (auto intro: constrains_Int)
done
lemma Constrains_INT:
"[| (!!i. i ∈ I ==>F ∈ A(i) Co A'(i)); F ∈ program |]
==> F:(\<Inter>i ∈ I. A(i)) Co (\<Inter>i ∈ I. A'(i))"
apply (simp (no_asm_simp) del: INT_simps add: Constrains_def INT_extend_simps)
apply (rule constrains_INT)
apply (auto simp add: Constrains_def)
done
lemma Constrains_imp_subset: "F ∈ A Co A' ==> reachable(F) Int A <= A'"
apply (unfold Constrains_def)
apply (blast dest: constrains_imp_subset)
done
lemma Constrains_trans:
"[| F ∈ A Co B; F ∈ B Co C |] ==> F ∈ A Co C"
apply (unfold Constrains_def2)
apply (blast intro: constrains_trans constrains_weaken)
done
lemma Constrains_cancel:
"[| F ∈ A Co (A' Un B); F ∈ B Co B' |] ==> F ∈ A Co (A' Un B')"
apply (unfold Constrains_def2)
apply (simp (no_asm_use) add: Int_Un_distrib)
apply (blast intro: constrains_cancel)
done
(*** Stable ***)
(* Useful because there's no Stable_weaken. [Tanja Vos] *)
lemma stable_imp_Stable:
"F ∈ stable(A) ==> F ∈ Stable(A)"
apply (unfold stable_def Stable_def)
apply (erule constrains_imp_Constrains)
done
lemma Stable_eq: "[| F ∈ Stable(A); A = B |] ==> F ∈ Stable(B)"
by blast
lemma Stable_eq_stable:
"F ∈ Stable(A) <-> (F ∈ stable(reachable(F) Int A))"
apply (auto dest: constrainsD2 simp add: Stable_def stable_def Constrains_def2)
done
lemma StableI: "F ∈ A Co A ==> F ∈ Stable(A)"
by (unfold Stable_def, assumption)
lemma StableD: "F ∈ Stable(A) ==> F ∈ A Co A"
by (unfold Stable_def, assumption)
lemma Stable_Un:
"[| F ∈ Stable(A); F ∈ Stable(A') |] ==> F ∈ Stable(A Un A')"
apply (unfold Stable_def)
apply (blast intro: Constrains_Un)
done
lemma Stable_Int:
"[| F ∈ Stable(A); F ∈ Stable(A') |] ==> F ∈ Stable (A Int A')"
apply (unfold Stable_def)
apply (blast intro: Constrains_Int)
done
lemma Stable_Constrains_Un:
"[| F ∈ Stable(C); F ∈ A Co (C Un A') |]
==> F ∈ (C Un A) Co (C Un A')"
apply (unfold Stable_def)
apply (blast intro: Constrains_Un [THEN Constrains_weaken_R])
done
lemma Stable_Constrains_Int:
"[| F ∈ Stable(C); F ∈ (C Int A) Co A' |]
==> F ∈ (C Int A) Co (C Int A')"
apply (unfold Stable_def)
apply (blast intro: Constrains_Int [THEN Constrains_weaken])
done
lemma Stable_UN:
"[| (!!i. i ∈ I ==> F ∈ Stable(A(i))); F ∈ program |]
==> F ∈ Stable (\<Union>i ∈ I. A(i))"
apply (simp add: Stable_def)
apply (blast intro: Constrains_UN)
done
lemma Stable_INT:
"[|(!!i. i ∈ I ==> F ∈ Stable(A(i))); F ∈ program |]
==> F ∈ Stable (\<Inter>i ∈ I. A(i))"
apply (simp add: Stable_def)
apply (blast intro: Constrains_INT)
done
lemma Stable_reachable: "F ∈ program ==>F ∈ Stable (reachable(F))"
apply (simp (no_asm_simp) add: Stable_eq_stable Int_absorb)
done
lemma Stable_type: "Stable(A) <= program"
apply (unfold Stable_def)
apply (rule Constrains_type)
done
(*** The Elimination Theorem. The "free" m has become universally quantified!
Should the premise be !!m instead of ∀m ? Would make it harder to use
in forward proof. ***)
lemma Elimination:
"[| ∀m ∈ M. F ∈ ({s ∈ A. x(s) = m}) Co (B(m)); F ∈ program |]
==> F ∈ ({s ∈ A. x(s):M}) Co (\<Union>m ∈ M. B(m))"
apply (unfold Constrains_def, auto)
apply (rule_tac A1 = "reachable (F) Int A"
in UNITY.elimination [THEN constrains_weaken_L])
apply (auto intro: constrains_weaken_L)
done
(* As above, but for the special case of A=state *)
lemma Elimination2:
"[| ∀m ∈ M. F ∈ {s ∈ state. x(s) = m} Co B(m); F ∈ program |]
==> F ∈ {s ∈ state. x(s):M} Co (\<Union>m ∈ M. B(m))"
apply (blast intro: Elimination)
done
(** Unless **)
lemma Unless_type: "A Unless B <=program"
apply (unfold Unless_def)
apply (rule Constrains_type)
done
(*** Specialized laws for handling Always ***)
(** Natural deduction rules for "Always A" **)
lemma AlwaysI:
"[| Init(F)<=A; F ∈ Stable(A) |] ==> F ∈ Always(A)"
apply (unfold Always_def initially_def)
apply (frule Stable_type [THEN subsetD], auto)
done
lemma AlwaysD: "F ∈ Always(A) ==> Init(F)<=A & F ∈ Stable(A)"
by (simp add: Always_def initially_def)
lemmas AlwaysE = AlwaysD [THEN conjE, standard]
lemmas Always_imp_Stable = AlwaysD [THEN conjunct2, standard]
(*The set of all reachable states is Always*)
lemma Always_includes_reachable: "F ∈ Always(A) ==> reachable(F) <= A"
apply (simp (no_asm_use) add: Stable_def Constrains_def constrains_def Always_def initially_def)
apply (rule subsetI)
apply (erule reachable.induct)
apply (blast intro: reachable.intros)+
done
lemma invariant_imp_Always:
"F ∈ invariant(A) ==> F ∈ Always(A)"
apply (unfold Always_def invariant_def Stable_def stable_def)
apply (blast intro: constrains_imp_Constrains)
done
lemmas Always_reachable = invariant_reachable [THEN invariant_imp_Always, standard]
lemma Always_eq_invariant_reachable: "Always(A) = {F ∈ program. F ∈ invariant(reachable(F) Int A)}"
apply (simp (no_asm) add: Always_def invariant_def Stable_def Constrains_def2 stable_def initially_def)
apply (rule equalityI, auto)
apply (blast intro: reachable.intros reachable_type)
done
(*the RHS is the traditional definition of the "always" operator*)
lemma Always_eq_includes_reachable: "Always(A) = {F ∈ program. reachable(F) <= A}"
apply (rule equalityI, safe)
apply (auto dest: invariant_includes_reachable
simp add: subset_Int_iff invariant_reachable Always_eq_invariant_reachable)
done
lemma Always_type: "Always(A) <= program"
by (unfold Always_def initially_def, auto)
lemma Always_state_eq: "Always(state) = program"
apply (rule equalityI)
apply (auto dest: Always_type [THEN subsetD] reachable_type [THEN subsetD]
simp add: Always_eq_includes_reachable)
done
declare Always_state_eq [simp]
lemma state_AlwaysI: "F ∈ program ==> F ∈ Always(state)"
by (auto dest: reachable_type [THEN subsetD]
simp add: Always_eq_includes_reachable)
lemma Always_eq_UN_invariant: "st_set(A) ==> Always(A) = (\<Union>I ∈ Pow(A). invariant(I))"
apply (simp (no_asm) add: Always_eq_includes_reachable)
apply (rule equalityI, auto)
apply (blast intro: invariantI rev_subsetD [OF _ Init_into_reachable]
rev_subsetD [OF _ invariant_includes_reachable]
dest: invariant_type [THEN subsetD])+
done
lemma Always_weaken: "[| F ∈ Always(A); A <= B |] ==> F ∈ Always(B)"
by (auto simp add: Always_eq_includes_reachable)
(*** "Co" rules involving Always ***)
lemmas Int_absorb2 = subset_Int_iff [unfolded iff_def, THEN conjunct1, THEN mp]
lemma Always_Constrains_pre: "F ∈ Always(I) ==> (F:(I Int A) Co A') <-> (F ∈ A Co A')"
apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_def Int_assoc [symmetric])
done
lemma Always_Constrains_post: "F ∈ Always(I) ==> (F ∈ A Co (I Int A')) <->(F ∈ A Co A')"
apply (simp (no_asm_simp) add: Always_includes_reachable [THEN Int_absorb2] Constrains_eq_constrains Int_assoc [symmetric])
done
lemma Always_ConstrainsI: "[| F ∈ Always(I); F ∈ (I Int A) Co A' |] ==> F ∈ A Co A'"
by (blast intro: Always_Constrains_pre [THEN iffD1])
(* [| F ∈ Always(I); F ∈ A Co A' |] ==> F ∈ A Co (I Int A') *)
lemmas Always_ConstrainsD = Always_Constrains_post [THEN iffD2, standard]
(*The analogous proof of Always_LeadsTo_weaken doesn't terminate*)
lemma Always_Constrains_weaken:
"[|F ∈ Always(C); F ∈ A Co A'; C Int B<=A; C Int A'<=B'|]==>F ∈ B Co B'"
apply (rule Always_ConstrainsI)
apply (drule_tac [2] Always_ConstrainsD, simp_all)
apply (blast intro: Constrains_weaken)
done
(** Conjoining Always properties **)
lemma Always_Int_distrib: "Always(A Int B) = Always(A) Int Always(B)"
by (auto simp add: Always_eq_includes_reachable)
(* the premise i ∈ I is need since \<Inter>is formally not defined for I=0 *)
lemma Always_INT_distrib: "i ∈ I==>Always(\<Inter>i ∈ I. A(i)) = (\<Inter>i ∈ I. Always(A(i)))"
apply (rule equalityI)
apply (auto simp add: Inter_iff Always_eq_includes_reachable)
done
lemma Always_Int_I: "[| F ∈ Always(A); F ∈ Always(B) |] ==> F ∈ Always(A Int B)"
apply (simp (no_asm_simp) add: Always_Int_distrib)
done
(*Allows a kind of "implication introduction"*)
lemma Always_Diff_Un_eq: "[| F ∈ Always(A) |] ==> (F ∈ Always(C-A Un B)) <-> (F ∈ Always(B))"
by (auto simp add: Always_eq_includes_reachable)
(*Delete the nearest invariance assumption (which will be the second one
used by Always_Int_I) *)
lemmas Always_thin = thin_rl [of "F ∈ Always(A)", standard]
ML
{*
val reachable_type = thm "reachable_type";
val st_set_reachable = thm "st_set_reachable";
val reachable_Int_state = thm "reachable_Int_state";
val state_Int_reachable = thm "state_Int_reachable";
val reachable_equiv_traces = thm "reachable_equiv_traces";
val Init_into_reachable = thm "Init_into_reachable";
val stable_reachable = thm "stable_reachable";
val invariant_reachable = thm "invariant_reachable";
val invariant_includes_reachable = thm "invariant_includes_reachable";
val constrains_reachable_Int = thm "constrains_reachable_Int";
val Constrains_eq_constrains = thm "Constrains_eq_constrains";
val Constrains_def2 = thm "Constrains_def2";
val constrains_imp_Constrains = thm "constrains_imp_Constrains";
val ConstrainsI = thm "ConstrainsI";
val Constrains_type = thm "Constrains_type";
val Constrains_empty = thm "Constrains_empty";
val Constrains_state = thm "Constrains_state";
val Constrains_weaken_R = thm "Constrains_weaken_R";
val Constrains_weaken_L = thm "Constrains_weaken_L";
val Constrains_weaken = thm "Constrains_weaken";
val Constrains_Un = thm "Constrains_Un";
val Constrains_UN = thm "Constrains_UN";
val Constrains_Int = thm "Constrains_Int";
val Constrains_INT = thm "Constrains_INT";
val Constrains_imp_subset = thm "Constrains_imp_subset";
val Constrains_trans = thm "Constrains_trans";
val Constrains_cancel = thm "Constrains_cancel";
val stable_imp_Stable = thm "stable_imp_Stable";
val Stable_eq = thm "Stable_eq";
val Stable_eq_stable = thm "Stable_eq_stable";
val StableI = thm "StableI";
val StableD = thm "StableD";
val Stable_Un = thm "Stable_Un";
val Stable_Int = thm "Stable_Int";
val Stable_Constrains_Un = thm "Stable_Constrains_Un";
val Stable_Constrains_Int = thm "Stable_Constrains_Int";
val Stable_UN = thm "Stable_UN";
val Stable_INT = thm "Stable_INT";
val Stable_reachable = thm "Stable_reachable";
val Stable_type = thm "Stable_type";
val Elimination = thm "Elimination";
val Elimination2 = thm "Elimination2";
val Unless_type = thm "Unless_type";
val AlwaysI = thm "AlwaysI";
val AlwaysD = thm "AlwaysD";
val AlwaysE = thm "AlwaysE";
val Always_imp_Stable = thm "Always_imp_Stable";
val Always_includes_reachable = thm "Always_includes_reachable";
val invariant_imp_Always = thm "invariant_imp_Always";
val Always_reachable = thm "Always_reachable";
val Always_eq_invariant_reachable = thm "Always_eq_invariant_reachable";
val Always_eq_includes_reachable = thm "Always_eq_includes_reachable";
val Always_type = thm "Always_type";
val Always_state_eq = thm "Always_state_eq";
val state_AlwaysI = thm "state_AlwaysI";
val Always_eq_UN_invariant = thm "Always_eq_UN_invariant";
val Always_weaken = thm "Always_weaken";
val Int_absorb2 = thm "Int_absorb2";
val Always_Constrains_pre = thm "Always_Constrains_pre";
val Always_Constrains_post = thm "Always_Constrains_post";
val Always_ConstrainsI = thm "Always_ConstrainsI";
val Always_ConstrainsD = thm "Always_ConstrainsD";
val Always_Constrains_weaken = thm "Always_Constrains_weaken";
val Always_Int_distrib = thm "Always_Int_distrib";
val Always_INT_distrib = thm "Always_INT_distrib";
val Always_Int_I = thm "Always_Int_I";
val Always_Diff_Un_eq = thm "Always_Diff_Un_eq";
val Always_thin = thm "Always_thin";
(*Combines two invariance ASSUMPTIONS into one. USEFUL??*)
val Always_Int_tac = dtac Always_Int_I THEN' assume_tac THEN' etac Always_thin;
(*Combines a list of invariance THEOREMS into one.*)
val Always_Int_rule = foldr1 (fn (th1,th2) => [th1,th2] MRS Always_Int_I);
(*To allow expansion of the program's definition when appropriate*)
val program_defs_ref = ref ([]: thm list);
(*proves "co" properties when the program is specified*)
fun gen_constrains_tac(cs,ss) i =
SELECT_GOAL
(EVERY [REPEAT (Always_Int_tac 1),
REPEAT (etac Always_ConstrainsI 1
ORELSE
resolve_tac [StableI, stableI,
constrains_imp_Constrains] 1),
rtac constrainsI 1,
(* Three subgoals *)
rewrite_goal_tac [st_set_def] 3,
REPEAT (Force_tac 2),
full_simp_tac (ss addsimps !program_defs_ref) 1,
ALLGOALS (clarify_tac cs),
REPEAT (FIRSTGOAL (etac disjE)),
ALLGOALS Clarify_tac,
REPEAT (FIRSTGOAL (etac disjE)),
ALLGOALS (clarify_tac cs),
ALLGOALS (asm_full_simp_tac ss),
ALLGOALS (clarify_tac cs)]) i;
fun constrains_tac st = gen_constrains_tac (claset(), simpset()) st;
(*For proving invariants*)
fun always_tac i =
rtac AlwaysI i THEN Force_tac i THEN constrains_tac i;
*}
method_setup safety = {*
Method.ctxt_args (fn ctxt =>
Method.METHOD (fn facts =>
gen_constrains_tac (local_clasimpset_of ctxt) 1)) *}
"for proving safety properties"
end
lemma reachable_type:
reachable(F) ⊆ state
lemma st_set_reachable:
st_set(reachable(F))
lemma reachable_Int_state:
reachable(F) ∩ state = reachable(F)
lemma state_Int_reachable:
state ∩ reachable(F) = reachable(F)
lemma reachable_equiv_traces:
F ∈ program ==> reachable(F) = {s ∈ state . ∃evs. 〈s, evs〉 ∈ traces(Init(F), Acts(F))}
lemma Init_into_reachable:
Init(F) ⊆ reachable(F)
lemma stable_reachable:
[| F ∈ program; G ∈ program; Acts(G) ⊆ Acts(F) |] ==> G ∈ stable(reachable(F))
lemma invariant_reachable:
F ∈ program ==> F ∈ invariant(reachable(F))
lemma invariant_includes_reachable:
F ∈ invariant(A) ==> reachable(F) ⊆ A
lemma constrains_reachable_Int:
F ∈ B co B' ==> F ∈ reachable(F) ∩ B co reachable(F) ∩ B'
lemma Constrains_eq_constrains:
A Co B = {F ∈ program . F ∈ reachable(F) ∩ A co reachable(F) ∩ B}
lemmas Constrains_def2:
A1 Co B1 == {F ∈ program . F ∈ reachable(F) ∩ A1 co reachable(F) ∩ B1}
lemmas Constrains_def2:
A1 Co B1 == {F ∈ program . F ∈ reachable(F) ∩ A1 co reachable(F) ∩ B1}
lemma constrains_imp_Constrains:
F ∈ A co A' ==> F ∈ A Co A'
lemma ConstrainsI:
[| !!act s s'. [| act ∈ Acts(F); 〈s, s'〉 ∈ act; s ∈ A |] ==> s' ∈ A'; F ∈ program |] ==> F ∈ A Co A'
lemma Constrains_type:
A Co B ⊆ program
lemma Constrains_empty:
F ∈ 0 Co B <-> F ∈ program
lemma Constrains_state:
F ∈ A Co state <-> F ∈ program
lemma Constrains_weaken_R:
[| F ∈ A Co A'; A' ⊆ B' |] ==> F ∈ A Co B'
lemma Constrains_weaken_L:
[| F ∈ A Co A'; B ⊆ A |] ==> F ∈ B Co A'
lemma Constrains_weaken:
[| F ∈ A Co A'; B ⊆ A; A' ⊆ B' |] ==> F ∈ B Co B'
lemma Constrains_Un:
[| F ∈ A Co A'; F ∈ B Co B' |] ==> F ∈ A ∪ B Co A' ∪ B'
lemma Constrains_UN:
[| !!i. i ∈ I ==> F ∈ A(i) Co A'(i); F ∈ program |] ==> F ∈ (\<Union>i∈I. A(i)) Co (\<Union>i∈I. A'(i))
lemma Constrains_Int:
[| F ∈ A Co A'; F ∈ B Co B' |] ==> F ∈ A ∩ B Co A' ∩ B'
lemma Constrains_INT:
[| !!i. i ∈ I ==> F ∈ A(i) Co A'(i); F ∈ program |] ==> F ∈ (\<Inter>i∈I. A(i)) Co (\<Inter>i∈I. A'(i))
lemma Constrains_imp_subset:
F ∈ A Co A' ==> reachable(F) ∩ A ⊆ A'
lemma Constrains_trans:
[| F ∈ A Co B; F ∈ B Co C |] ==> F ∈ A Co C
lemma Constrains_cancel:
[| F ∈ A Co A' ∪ B; F ∈ B Co B' |] ==> F ∈ A Co A' ∪ B'
lemma stable_imp_Stable:
F ∈ stable(A) ==> F ∈ Stable(A)
lemma Stable_eq:
[| F ∈ Stable(A); A = B |] ==> F ∈ Stable(B)
lemma Stable_eq_stable:
F ∈ Stable(A) <-> F ∈ stable(reachable(F) ∩ A)
lemma StableI:
F ∈ A Co A ==> F ∈ Stable(A)
lemma StableD:
F ∈ Stable(A) ==> F ∈ A Co A
lemma Stable_Un:
[| F ∈ Stable(A); F ∈ Stable(A') |] ==> F ∈ Stable(A ∪ A')
lemma Stable_Int:
[| F ∈ Stable(A); F ∈ Stable(A') |] ==> F ∈ Stable(A ∩ A')
lemma Stable_Constrains_Un:
[| F ∈ Stable(C); F ∈ A Co C ∪ A' |] ==> F ∈ C ∪ A Co C ∪ A'
lemma Stable_Constrains_Int:
[| F ∈ Stable(C); F ∈ C ∩ A Co A' |] ==> F ∈ C ∩ A Co C ∩ A'
lemma Stable_UN:
[| !!i. i ∈ I ==> F ∈ Stable(A(i)); F ∈ program |] ==> F ∈ Stable(\<Union>i∈I. A(i))
lemma Stable_INT:
[| !!i. i ∈ I ==> F ∈ Stable(A(i)); F ∈ program |] ==> F ∈ Stable(\<Inter>i∈I. A(i))
lemma Stable_reachable:
F ∈ program ==> F ∈ Stable(reachable(F))
lemma Stable_type:
Stable(A) ⊆ program
lemma Elimination:
[| ∀m∈M. F ∈ {s ∈ A . x(s) = m} Co B(m); F ∈ program |] ==> F ∈ {s ∈ A . x(s) ∈ M} Co (\<Union>m∈M. B(m))
lemma Elimination2:
[| ∀m∈M. F ∈ {s ∈ state . x(s) = m} Co B(m); F ∈ program |] ==> F ∈ {s ∈ state . x(s) ∈ M} Co (\<Union>m∈M. B(m))
lemma Unless_type:
A Unless B ⊆ program
lemma AlwaysI:
[| Init(F) ⊆ A; F ∈ Stable(A) |] ==> F ∈ Always(A)
lemma AlwaysD:
F ∈ Always(A) ==> Init(F) ⊆ A ∧ F ∈ Stable(A)
lemmas AlwaysE:
[| F ∈ Always(A); [| Init(F) ⊆ A; F ∈ Stable(A) |] ==> R |] ==> R
lemmas AlwaysE:
[| F ∈ Always(A); [| Init(F) ⊆ A; F ∈ Stable(A) |] ==> R |] ==> R
lemmas Always_imp_Stable:
F ∈ Always(A) ==> F ∈ Stable(A)
lemmas Always_imp_Stable:
F ∈ Always(A) ==> F ∈ Stable(A)
lemma Always_includes_reachable:
F ∈ Always(A) ==> reachable(F) ⊆ A
lemma invariant_imp_Always:
F ∈ invariant(A) ==> F ∈ Always(A)
lemmas Always_reachable:
F ∈ program ==> F ∈ Always(reachable(F))
lemmas Always_reachable:
F ∈ program ==> F ∈ Always(reachable(F))
lemma Always_eq_invariant_reachable:
Always(A) = {F ∈ program . F ∈ invariant(reachable(F) ∩ A)}
lemma Always_eq_includes_reachable:
Always(A) = {F ∈ program . reachable(F) ⊆ A}
lemma Always_type:
Always(A) ⊆ program
lemma Always_state_eq:
Always(state) = program
lemma state_AlwaysI:
F ∈ program ==> F ∈ Always(state)
lemma Always_eq_UN_invariant:
st_set(A) ==> Always(A) = (\<Union>I∈Pow(A). invariant(I))
lemma Always_weaken:
[| F ∈ Always(A); A ⊆ B |] ==> F ∈ Always(B)
lemmas Int_absorb2:
A2 ⊆ B2 ==> A2 ∩ B2 = A2
lemmas Int_absorb2:
A2 ⊆ B2 ==> A2 ∩ B2 = A2
lemma Always_Constrains_pre:
F ∈ Always(I) ==> F ∈ I ∩ A Co A' <-> F ∈ A Co A'
lemma Always_Constrains_post:
F ∈ Always(I) ==> F ∈ A Co I ∩ A' <-> F ∈ A Co A'
lemma Always_ConstrainsI:
[| F ∈ Always(I); F ∈ I ∩ A Co A' |] ==> F ∈ A Co A'
lemmas Always_ConstrainsD:
[| F ∈ Always(I); F ∈ A Co A' |] ==> F ∈ A Co I ∩ A'
lemmas Always_ConstrainsD:
[| F ∈ Always(I); F ∈ A Co A' |] ==> F ∈ A Co I ∩ A'
lemma Always_Constrains_weaken:
[| F ∈ Always(C); F ∈ A Co A'; C ∩ B ⊆ A; C ∩ A' ⊆ B' |] ==> F ∈ B Co B'
lemma Always_Int_distrib:
Always(A ∩ B) = Always(A) ∩ Always(B)
lemma Always_INT_distrib:
i ∈ I ==> Always(\<Inter>i∈I. A(i)) = (\<Inter>i∈I. Always(A(i)))
lemma Always_Int_I:
[| F ∈ Always(A); F ∈ Always(B) |] ==> F ∈ Always(A ∩ B)
lemma Always_Diff_Un_eq:
F ∈ Always(A) ==> F ∈ Always(C - A ∪ B) <-> F ∈ Always(B)
lemmas Always_thin:
[| F ∈ Always(A); PROP W |] ==> PROP W
lemmas Always_thin:
[| F ∈ Always(A); PROP W |] ==> PROP W