(* ID: $Id: GenPrefix.thy,v 1.4 2005/03/28 14:19:57 paulson Exp $
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2001 University of Cambridge
<xs,ys>:gen_prefix(r)
if ys = xs' @ zs where length(xs) = length(xs')
and corresponding elements of xs, xs' are pairwise related by r
Based on Lex/Prefix
*)
header{*Charpentier's Generalized Prefix Relation*}
theory GenPrefix
imports Main
begin
constdefs (*really belongs in ZF/Trancl*)
part_order :: "[i, i] => o"
"part_order(A, r) == refl(A,r) & trans[A](r) & antisym(r)"
consts
gen_prefix :: "[i, i] => i"
inductive
(* Parameter A is the domain of zs's elements *)
domains "gen_prefix(A, r)" <= "list(A)*list(A)"
intros
Nil: "<[],[]>:gen_prefix(A, r)"
prepend: "[| <xs,ys>:gen_prefix(A, r); <x,y>:r; x:A; y:A |]
==> <Cons(x,xs), Cons(y,ys)>: gen_prefix(A, r)"
append: "[| <xs,ys>:gen_prefix(A, r); zs:list(A) |]
==> <xs, ys@zs>:gen_prefix(A, r)"
type_intros app_type list.Nil list.Cons
constdefs
prefix :: "i=>i"
"prefix(A) == gen_prefix(A, id(A))"
strict_prefix :: "i=>i"
"strict_prefix(A) == prefix(A) - id(list(A))"
syntax
(* less or equal and greater or equal over prefixes *)
pfixLe :: "[i, i] => o" (infixl "pfixLe" 50)
pfixGe :: "[i, i] => o" (infixl "pfixGe" 50)
translations
"xs pfixLe ys" == "<xs, ys>:gen_prefix(nat, Le)"
"xs pfixGe ys" == "<xs, ys>:gen_prefix(nat, Ge)"
lemma reflD:
"[| refl(A, r); x ∈ A |] ==> <x,x>:r"
apply (unfold refl_def, auto)
done
(*** preliminary lemmas ***)
lemma Nil_gen_prefix: "xs ∈ list(A) ==> <[], xs> ∈ gen_prefix(A, r)"
by (drule gen_prefix.append [OF gen_prefix.Nil], simp)
declare Nil_gen_prefix [simp]
lemma gen_prefix_length_le: "<xs,ys> ∈ gen_prefix(A, r) ==> length(xs) ≤ length(ys)"
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "ys ∈ list (A) ")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
intro: le_trans simp add: length_app)
done
lemma Cons_gen_prefix_aux:
"[| <xs', ys'> ∈ gen_prefix(A, r) |]
==> (∀x xs. x ∈ A --> xs'= Cons(x,xs) -->
(∃y ys. y ∈ A & ys' = Cons(y,ys) &
<x,y>:r & <xs, ys> ∈ gen_prefix(A, r)))"
apply (erule gen_prefix.induct)
prefer 3 apply (force intro: gen_prefix.append, auto)
done
lemma Cons_gen_prefixE:
"[| <Cons(x,xs), zs> ∈ gen_prefix(A, r);
!!y ys. [|zs = Cons(y, ys); y ∈ A; x ∈ A; <x,y>:r;
<xs,ys> ∈ gen_prefix(A, r) |] ==> P |] ==> P"
apply (frule gen_prefix.dom_subset [THEN subsetD], auto)
apply (blast dest: Cons_gen_prefix_aux)
done
declare Cons_gen_prefixE [elim!]
lemma Cons_gen_prefix_Cons:
"(<Cons(x,xs),Cons(y,ys)> ∈ gen_prefix(A, r))
<-> (x ∈ A & y ∈ A & <x,y>:r & <xs,ys> ∈ gen_prefix(A, r))"
apply (auto intro: gen_prefix.prepend)
done
declare Cons_gen_prefix_Cons [iff]
(** Monotonicity of gen_prefix **)
lemma gen_prefix_mono2: "r<=s ==> gen_prefix(A, r) <= gen_prefix(A, s)"
apply clarify
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (erule rev_mp)
apply (erule gen_prefix.induct)
apply (auto intro: gen_prefix.append)
done
lemma gen_prefix_mono1: "A<=B ==>gen_prefix(A, r) <= gen_prefix(B, r)"
apply clarify
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (erule rev_mp)
apply (erule_tac P = "y ∈ list (A) " in rev_mp)
apply (erule_tac P = "xa ∈ list (A) " in rev_mp)
apply (erule gen_prefix.induct)
apply (simp (no_asm_simp))
apply clarify
apply (erule ConsE)+
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
intro: gen_prefix.append list_mono [THEN subsetD])
done
lemma gen_prefix_mono: "[| A <= B; r <= s |] ==> gen_prefix(A, r) <= gen_prefix(B, s)"
apply (rule subset_trans)
apply (rule gen_prefix_mono1)
apply (rule_tac [2] gen_prefix_mono2, auto)
done
(*** gen_prefix order ***)
(* reflexivity *)
lemma refl_gen_prefix: "refl(A, r) ==> refl(list(A), gen_prefix(A, r))"
apply (unfold refl_def, auto)
apply (induct_tac "x", auto)
done
declare refl_gen_prefix [THEN reflD, simp]
(* Transitivity *)
(* A lemma for proving gen_prefix_trans_comp *)
lemma append_gen_prefix [rule_format (no_asm)]: "xs ∈ list(A) ==>
∀zs. <xs @ ys, zs> ∈ gen_prefix(A, r) --> <xs, zs>: gen_prefix(A, r)"
apply (erule list.induct)
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
done
(* Lemma proving transitivity and more*)
lemma gen_prefix_trans_comp [rule_format (no_asm)]:
"<x, y>: gen_prefix(A, r) ==>
(∀z ∈ list(A). <y,z> ∈ gen_prefix(A, s)--><x, z> ∈ gen_prefix(A, s O r))"
apply (erule gen_prefix.induct)
apply (auto elim: ConsE simp add: Nil_gen_prefix)
apply (subgoal_tac "ys ∈ list (A) ")
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac xs = ys and r = s in append_gen_prefix, auto)
done
lemma trans_comp_subset: "trans(r) ==> r O r <= r"
by (auto dest: transD)
lemma trans_gen_prefix: "trans(r) ==> trans(gen_prefix(A,r))"
apply (simp (no_asm) add: trans_def)
apply clarify
apply (rule trans_comp_subset [THEN gen_prefix_mono2, THEN subsetD], assumption)
apply (rule gen_prefix_trans_comp)
apply (auto dest: gen_prefix.dom_subset [THEN subsetD])
done
lemma trans_on_gen_prefix:
"trans(r) ==> trans[list(A)](gen_prefix(A, r))"
apply (drule_tac A = A in trans_gen_prefix)
apply (unfold trans_def trans_on_def, blast)
done
lemma prefix_gen_prefix_trans:
"[| <x,y> ∈ prefix(A); <y, z> ∈ gen_prefix(A, r); r<=A*A |]
==> <x, z> ∈ gen_prefix(A, r)"
apply (unfold prefix_def)
apply (rule_tac P = "%r. <x,z> ∈ gen_prefix (A, r) " in right_comp_id [THEN subst])
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
done
lemma gen_prefix_prefix_trans:
"[| <x,y> ∈ gen_prefix(A,r); <y, z> ∈ prefix(A); r<=A*A |]
==> <x, z> ∈ gen_prefix(A, r)"
apply (unfold prefix_def)
apply (rule_tac P = "%r. <x,z> ∈ gen_prefix (A, r) " in left_comp_id [THEN subst])
apply (blast dest: gen_prefix_trans_comp gen_prefix.dom_subset [THEN subsetD])+
done
(** Antisymmetry **)
lemma nat_le_lemma [rule_format]: "n ∈ nat ==> ∀b ∈ nat. n #+ b ≤ n --> b = 0"
by (induct_tac "n", auto)
lemma antisym_gen_prefix: "antisym(r) ==> antisym(gen_prefix(A, r))"
apply (simp (no_asm) add: antisym_def)
apply (rule impI [THEN allI, THEN allI])
apply (erule gen_prefix.induct, blast)
apply (simp add: antisym_def, blast)
txt{*append case is hardest*}
apply clarify
apply (subgoal_tac "length (zs) = 0")
apply (subgoal_tac "ys ∈ list (A) ")
prefer 2 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac psi = "<ys @ zs, xs> ∈ gen_prefix (A,r) " in asm_rl)
apply simp
apply (subgoal_tac "length (ys @ zs) = length (ys) #+ length (zs) &ys ∈ list (A) &xs ∈ list (A) ")
prefer 2 apply (blast intro: length_app dest: gen_prefix.dom_subset [THEN subsetD])
apply (drule gen_prefix_length_le)+
apply clarify
apply simp
apply (drule_tac j = "length (xs) " in le_trans)
apply blast
apply (auto intro: nat_le_lemma)
done
(*** recursion equations ***)
lemma gen_prefix_Nil: "xs ∈ list(A) ==> <xs, []> ∈ gen_prefix(A,r) <-> (xs = [])"
by (induct_tac "xs", auto)
declare gen_prefix_Nil [simp]
lemma same_gen_prefix_gen_prefix:
"[| refl(A, r); xs ∈ list(A) |] ==>
<xs@ys, xs@zs>: gen_prefix(A, r) <-> <ys,zs> ∈ gen_prefix(A, r)"
apply (unfold refl_def)
apply (induct_tac "xs")
apply (simp_all (no_asm_simp))
done
declare same_gen_prefix_gen_prefix [simp]
lemma gen_prefix_Cons: "[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>
<xs, Cons(y,ys)> ∈ gen_prefix(A,r) <->
(xs=[] | (∃z zs. xs=Cons(z,zs) & z ∈ A & <z,y>:r & <zs,ys> ∈ gen_prefix(A,r)))"
apply (induct_tac "xs", auto)
done
lemma gen_prefix_take_append: "[| refl(A,r); <xs,ys> ∈ gen_prefix(A, r); zs ∈ list(A) |]
==> <xs@zs, take(length(xs), ys) @ zs> ∈ gen_prefix(A, r)"
apply (erule gen_prefix.induct)
apply (simp (no_asm_simp))
apply (frule_tac [!] gen_prefix.dom_subset [THEN subsetD], auto)
apply (frule gen_prefix_length_le)
apply (subgoal_tac "take (length (xs), ys) ∈ list (A) ")
apply (simp_all (no_asm_simp) add: diff_is_0_iff [THEN iffD2] take_type)
done
lemma gen_prefix_append_both: "[| refl(A, r); <xs,ys> ∈ gen_prefix(A,r);
length(xs) = length(ys); zs ∈ list(A) |]
==> <xs@zs, ys @ zs> ∈ gen_prefix(A, r)"
apply (drule_tac zs = zs in gen_prefix_take_append, assumption+)
apply (subgoal_tac "take (length (xs), ys) =ys")
apply (auto intro!: take_all dest: gen_prefix.dom_subset [THEN subsetD])
done
(*NOT suitable for rewriting since [y] has the form y#ys*)
lemma append_cons_conv: "xs ∈ list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys"
by (auto simp add: app_assoc)
lemma append_one_gen_prefix_lemma [rule_format]:
"[| <xs,ys> ∈ gen_prefix(A, r); refl(A, r) |]
==> length(xs) < length(ys) -->
<xs @ [nth(length(xs), ys)], ys> ∈ gen_prefix(A, r)"
apply (erule gen_prefix.induct, blast)
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (simp_all add: length_type)
(* Append case is hardest *)
apply (frule gen_prefix_length_le [THEN le_iff [THEN iffD1]])
apply (frule gen_prefix.dom_subset [THEN subsetD], clarify)
apply (subgoal_tac "length (xs) :nat&length (ys) :nat &length (zs) :nat")
prefer 2 apply (blast intro: length_type, clarify)
apply (simp_all add: nth_append length_type length_app)
apply (rule conjI)
apply (blast intro: gen_prefix.append)
apply (erule_tac V = "length (xs) < length (ys) -->?u" in thin_rl)
apply (erule_tac a = zs in list.cases, auto)
apply (rule_tac P1 = "%x. <?u (x), ?v>:?w" in nat_diff_split [THEN iffD2])
apply auto
apply (simplesubst append_cons_conv)
apply (rule_tac [2] gen_prefix.append)
apply (auto elim: ConsE simp add: gen_prefix_append_both)
done
lemma append_one_gen_prefix: "[| <xs,ys>: gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |]
==> <xs @ [nth(length(xs), ys)], ys> ∈ gen_prefix(A, r)"
apply (blast intro: append_one_gen_prefix_lemma)
done
(** Proving the equivalence with Charpentier's definition **)
lemma gen_prefix_imp_nth_lemma [rule_format]: "xs ∈ list(A) ==>
∀ys ∈ list(A). ∀i ∈ nat. i < length(xs)
--> <xs, ys>: gen_prefix(A, r) --> <nth(i, xs), nth(i, ys)>:r"
apply (induct_tac "xs", simp, clarify)
apply simp
apply (erule natE, auto)
done
lemma gen_prefix_imp_nth: "[| <xs,ys> ∈ gen_prefix(A,r); i < length(xs)|]
==> <nth(i, xs), nth(i, ys)>:r"
apply (cut_tac A = A in gen_prefix.dom_subset)
apply (rule gen_prefix_imp_nth_lemma)
apply (auto simp add: lt_nat_in_nat)
done
lemma nth_imp_gen_prefix [rule_format]: "xs ∈ list(A) ==>
∀ys ∈ list(A). length(xs) ≤ length(ys)
--> (∀i. i < length(xs) --> <nth(i, xs), nth(i,ys)>:r)
--> <xs, ys> ∈ gen_prefix(A, r)"
apply (induct_tac "xs")
apply (simp_all (no_asm_simp))
apply clarify
apply (erule_tac a = ys in list.cases, simp)
apply (force intro!: nat_0_le simp add: lt_nat_in_nat)
done
lemma gen_prefix_iff_nth: "(<xs,ys> ∈ gen_prefix(A,r)) <->
(xs ∈ list(A) & ys ∈ list(A) & length(xs) ≤ length(ys) &
(∀i. i < length(xs) --> <nth(i,xs), nth(i, ys)>: r))"
apply (rule iffI)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (frule gen_prefix_length_le, auto)
apply (rule_tac [2] nth_imp_gen_prefix)
apply (drule gen_prefix_imp_nth)
apply (auto simp add: lt_nat_in_nat)
done
(** prefix is a partial order: **)
lemma refl_prefix: "refl(list(A), prefix(A))"
apply (unfold prefix_def)
apply (rule refl_gen_prefix)
apply (auto simp add: refl_def)
done
declare refl_prefix [THEN reflD, simp]
lemma trans_prefix: "trans(prefix(A))"
apply (unfold prefix_def)
apply (rule trans_gen_prefix)
apply (auto simp add: trans_def)
done
lemmas prefix_trans = trans_prefix [THEN transD, standard]
lemma trans_on_prefix: "trans[list(A)](prefix(A))"
apply (unfold prefix_def)
apply (rule trans_on_gen_prefix)
apply (auto simp add: trans_def)
done
lemmas prefix_trans_on = trans_on_prefix [THEN trans_onD, standard]
(* Monotonicity of "set" operator WRT prefix *)
lemma set_of_list_prefix_mono:
"<xs,ys> ∈ prefix(A) ==> set_of_list(xs) <= set_of_list(ys)"
apply (unfold prefix_def)
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "xs ∈ list (A) &ys ∈ list (A) ")
prefer 4 apply (blast dest: gen_prefix.dom_subset [THEN subsetD])
apply (auto simp add: set_of_list_append)
done
(** recursion equations **)
lemma Nil_prefix: "xs ∈ list(A) ==> <[],xs> ∈ prefix(A)"
apply (unfold prefix_def)
apply (simp (no_asm_simp) add: Nil_gen_prefix)
done
declare Nil_prefix [simp]
lemma prefix_Nil: "<xs, []> ∈ prefix(A) <-> (xs = [])"
apply (unfold prefix_def, auto)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (drule_tac psi = "<xs, []> ∈ gen_prefix (A, id (A))" in asm_rl)
apply (simp add: gen_prefix_Nil)
done
declare prefix_Nil [iff]
lemma Cons_prefix_Cons:
"<Cons(x,xs), Cons(y,ys)> ∈ prefix(A) <-> (x=y & <xs,ys> ∈ prefix(A) & y ∈ A)"
apply (unfold prefix_def, auto)
done
declare Cons_prefix_Cons [iff]
lemma same_prefix_prefix:
"xs ∈ list(A)==> <xs@ys,xs@zs> ∈ prefix(A) <-> (<ys,zs> ∈ prefix(A))"
apply (unfold prefix_def)
apply (subgoal_tac "refl (A,id (A))")
apply (simp (no_asm_simp))
apply (auto simp add: refl_def)
done
declare same_prefix_prefix [simp]
lemma same_prefix_prefix_Nil: "xs ∈ list(A) ==> <xs@ys,xs> ∈ prefix(A) <-> (<ys,[]> ∈ prefix(A))"
apply (rule_tac P = "%x. <?u, x>:?v <-> ?w (x) " in app_right_Nil [THEN subst])
apply (rule_tac [2] same_prefix_prefix, auto)
done
declare same_prefix_prefix_Nil [simp]
lemma prefix_appendI:
"[| <xs,ys> ∈ prefix(A); zs ∈ list(A) |] ==> <xs,ys@zs> ∈ prefix(A)"
apply (unfold prefix_def)
apply (erule gen_prefix.append, assumption)
done
declare prefix_appendI [simp]
lemma prefix_Cons:
"[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>
<xs,Cons(y,ys)> ∈ prefix(A) <->
(xs=[] | (∃zs. xs=Cons(y,zs) & <zs,ys> ∈ prefix(A)))"
apply (unfold prefix_def)
apply (auto simp add: gen_prefix_Cons)
done
lemma append_one_prefix:
"[| <xs,ys> ∈ prefix(A); length(xs) < length(ys) |]
==> <xs @ [nth(length(xs),ys)], ys> ∈ prefix(A)"
apply (unfold prefix_def)
apply (subgoal_tac "refl (A, id (A))")
apply (simp (no_asm_simp) add: append_one_gen_prefix)
apply (auto simp add: refl_def)
done
lemma prefix_length_le:
"<xs,ys> ∈ prefix(A) ==> length(xs) ≤ length(ys)"
apply (unfold prefix_def)
apply (blast dest: gen_prefix_length_le)
done
lemma prefix_type: "prefix(A)<=list(A)*list(A)"
apply (unfold prefix_def)
apply (blast intro!: gen_prefix.dom_subset)
done
lemma strict_prefix_type:
"strict_prefix(A) <= list(A)*list(A)"
apply (unfold strict_prefix_def)
apply (blast intro!: prefix_type [THEN subsetD])
done
lemma strict_prefix_length_lt_aux:
"<xs,ys> ∈ prefix(A) ==> xs≠ys --> length(xs) < length(ys)"
apply (unfold prefix_def)
apply (erule gen_prefix.induct, clarify)
apply (subgoal_tac [!] "ys ∈ list(A) & xs ∈ list(A)")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD]
simp add: length_type)
apply (subgoal_tac "length (zs) =0")
apply (drule_tac [2] not_lt_imp_le)
apply (rule_tac [5] j = "length (ys) " in lt_trans2)
apply auto
done
lemma strict_prefix_length_lt:
"<xs,ys>:strict_prefix(A) ==> length(xs) < length(ys)"
apply (unfold strict_prefix_def)
apply (rule strict_prefix_length_lt_aux [THEN mp])
apply (auto dest: prefix_type [THEN subsetD])
done
(*Equivalence to the definition used in Lex/Prefix.thy*)
lemma prefix_iff:
"<xs,zs> ∈ prefix(A) <-> (∃ys ∈ list(A). zs = xs@ys) & xs ∈ list(A)"
apply (unfold prefix_def)
apply (auto simp add: gen_prefix_iff_nth lt_nat_in_nat nth_append nth_type app_type length_app)
apply (subgoal_tac "drop (length (xs), zs) ∈ list (A) ")
apply (rule_tac x = "drop (length (xs), zs) " in bexI)
apply safe
prefer 2 apply (simp add: length_type drop_type)
apply (rule nth_equalityI)
apply (simp_all (no_asm_simp) add: nth_append app_type drop_type length_app length_drop)
apply (rule nat_diff_split [THEN iffD2], simp_all, clarify)
apply (drule_tac i = "length (zs) " in leI)
apply (force simp add: le_subset_iff, safe)
apply (subgoal_tac "length (xs) #+ (i #- length (xs)) = i")
apply (subst nth_drop)
apply (simp_all (no_asm_simp) add: leI split add: nat_diff_split)
done
lemma prefix_snoc:
"[|xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==>
<xs, ys@[y]> ∈ prefix(A) <-> (xs = ys@[y] | <xs,ys> ∈ prefix(A))"
apply (simp (no_asm) add: prefix_iff)
apply (rule iffI, clarify)
apply (erule_tac xs = ysa in rev_list_elim, simp)
apply (simp add: app_type app_assoc [symmetric])
apply (auto simp add: app_assoc app_type)
done
declare prefix_snoc [simp]
lemma prefix_append_iff [rule_format]: "zs ∈ list(A) ==> ∀xs ∈ list(A). ∀ys ∈ list(A).
(<xs, ys@zs> ∈ prefix(A)) <->
(<xs,ys> ∈ prefix(A) | (∃us. xs = ys@us & <us,zs> ∈ prefix(A)))"
apply (erule list_append_induct, force, clarify)
apply (rule iffI)
apply (simp add: add: app_assoc [symmetric])
apply (erule disjE)
apply (rule disjI2)
apply (rule_tac x = "y @ [x]" in exI)
apply (simp add: add: app_assoc [symmetric], force+)
done
(*Although the prefix ordering is not linear, the prefixes of a list
are linearly ordered.*)
lemma common_prefix_linear_lemma [rule_format]: "[| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A) |]
==> <xs, zs> ∈ prefix(A) --> <ys,zs> ∈ prefix(A)
--><xs,ys> ∈ prefix(A) | <ys,xs> ∈ prefix(A)"
apply (erule list_append_induct, auto)
done
lemma common_prefix_linear: "[|<xs, zs> ∈ prefix(A); <ys,zs> ∈ prefix(A) |]
==> <xs,ys> ∈ prefix(A) | <ys,xs> ∈ prefix(A)"
apply (cut_tac prefix_type)
apply (blast del: disjCI intro: common_prefix_linear_lemma)
done
(*** pfixLe, pfixGe ∈ properties inherited from the translations ***)
(** pfixLe **)
lemma refl_Le: "refl(nat,Le)"
apply (unfold refl_def, auto)
done
declare refl_Le [simp]
lemma antisym_Le: "antisym(Le)"
apply (unfold antisym_def)
apply (auto intro: le_anti_sym)
done
declare antisym_Le [simp]
lemma trans_on_Le: "trans[nat](Le)"
apply (unfold trans_on_def, auto)
apply (blast intro: le_trans)
done
declare trans_on_Le [simp]
lemma trans_Le: "trans(Le)"
apply (unfold trans_def, auto)
apply (blast intro: le_trans)
done
declare trans_Le [simp]
lemma part_order_Le: "part_order(nat,Le)"
by (unfold part_order_def, auto)
declare part_order_Le [simp]
lemma pfixLe_refl: "x ∈ list(nat) ==> x pfixLe x"
by (blast intro: refl_gen_prefix [THEN reflD] refl_Le)
declare pfixLe_refl [simp]
lemma pfixLe_trans: "[| x pfixLe y; y pfixLe z |] ==> x pfixLe z"
by (blast intro: trans_gen_prefix [THEN transD] trans_Le)
lemma pfixLe_antisym: "[| x pfixLe y; y pfixLe x |] ==> x = y"
by (blast intro: antisym_gen_prefix [THEN antisymE] antisym_Le)
lemma prefix_imp_pfixLe:
"<xs,ys>:prefix(nat)==> xs pfixLe ys"
apply (unfold prefix_def)
apply (rule gen_prefix_mono [THEN subsetD], auto)
done
lemma refl_Ge: "refl(nat, Ge)"
by (unfold refl_def Ge_def, auto)
declare refl_Ge [iff]
lemma antisym_Ge: "antisym(Ge)"
apply (unfold antisym_def Ge_def)
apply (auto intro: le_anti_sym)
done
declare antisym_Ge [iff]
lemma trans_Ge: "trans(Ge)"
apply (unfold trans_def Ge_def)
apply (auto intro: le_trans)
done
declare trans_Ge [iff]
lemma pfixGe_refl: "x ∈ list(nat) ==> x pfixGe x"
by (blast intro: refl_gen_prefix [THEN reflD])
declare pfixGe_refl [simp]
lemma pfixGe_trans: "[| x pfixGe y; y pfixGe z |] ==> x pfixGe z"
by (blast intro: trans_gen_prefix [THEN transD])
lemma pfixGe_antisym: "[| x pfixGe y; y pfixGe x |] ==> x = y"
by (blast intro: antisym_gen_prefix [THEN antisymE])
lemma prefix_imp_pfixGe:
"<xs,ys>:prefix(nat) ==> xs pfixGe ys"
apply (unfold prefix_def Ge_def)
apply (rule gen_prefix_mono [THEN subsetD], auto)
done
(* Added by Sidi ∈ prefix and take *)
lemma prefix_imp_take:
"<xs, ys> ∈ prefix(A) ==> xs = take(length(xs), ys)"
apply (unfold prefix_def)
apply (erule gen_prefix.induct)
apply (subgoal_tac [3] "length (xs) :nat")
apply (auto dest: gen_prefix.dom_subset [THEN subsetD] simp add: length_type)
apply (frule gen_prefix.dom_subset [THEN subsetD])
apply (frule gen_prefix_length_le)
apply (auto simp add: take_append)
apply (subgoal_tac "length (xs) #- length (ys) =0")
apply (simp_all (no_asm_simp) add: diff_is_0_iff)
done
lemma prefix_length_equal: "[|<xs,ys> ∈ prefix(A); length(xs)=length(ys)|] ==> xs = ys"
apply (cut_tac A = A in prefix_type)
apply (drule subsetD, auto)
apply (drule prefix_imp_take)
apply (erule trans, simp)
done
lemma prefix_length_le_equal: "[|<xs,ys> ∈ prefix(A); length(ys) ≤ length(xs)|] ==> xs = ys"
by (blast intro: prefix_length_equal le_anti_sym prefix_length_le)
lemma take_prefix [rule_format]: "xs ∈ list(A) ==> ∀n ∈ nat. <take(n, xs), xs> ∈ prefix(A)"
apply (unfold prefix_def)
apply (erule list.induct, simp, clarify)
apply (erule natE, auto)
done
lemma prefix_take_iff: "<xs,ys> ∈ prefix(A) <-> (xs=take(length(xs), ys) & xs ∈ list(A) & ys ∈ list(A))"
apply (rule iffI)
apply (frule prefix_type [THEN subsetD])
apply (blast intro: prefix_imp_take, clarify)
apply (erule ssubst)
apply (blast intro: take_prefix length_type)
done
lemma prefix_imp_nth: "[| <xs,ys> ∈ prefix(A); i < length(xs)|] ==> nth(i,xs) = nth(i,ys)"
by (auto dest!: gen_prefix_imp_nth simp add: prefix_def)
lemma nth_imp_prefix:
"[|xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys);
!!i. i < length(xs) ==> nth(i, xs) = nth(i,ys)|]
==> <xs,ys> ∈ prefix(A)"
apply (auto simp add: prefix_def nth_imp_gen_prefix)
apply (auto intro!: nth_imp_gen_prefix simp add: prefix_def)
apply (blast intro: nth_type lt_trans2)
done
lemma length_le_prefix_imp_prefix: "[|length(xs) ≤ length(ys);
<xs,zs> ∈ prefix(A); <ys,zs> ∈ prefix(A)|] ==> <xs,ys> ∈ prefix(A)"
apply (cut_tac A = A in prefix_type)
apply (rule nth_imp_prefix, blast, blast)
apply assumption
apply (rule_tac b = "nth (i,zs)" in trans)
apply (blast intro: prefix_imp_nth)
apply (blast intro: sym prefix_imp_nth prefix_length_le lt_trans2)
done
end
lemma reflD:
[| refl(A, r); x ∈ A |] ==> 〈x, x〉 ∈ r
lemma Nil_gen_prefix:
xs ∈ list(A) ==> 〈[], xs〉 ∈ gen_prefix(A, r)
lemma gen_prefix_length_le:
〈xs, ys〉 ∈ gen_prefix(A, r) ==> length(xs) ≤ length(ys)
lemma Cons_gen_prefix_aux:
〈xs', ys'〉 ∈ gen_prefix(A, r) ==> ∀x xs. x ∈ A --> xs' = Cons(x, xs) --> (∃y ys. y ∈ A ∧ ys' = Cons(y, ys) ∧ 〈x, y〉 ∈ r ∧ 〈xs, ys〉 ∈ gen_prefix(A, r))
lemma Cons_gen_prefixE:
[| 〈Cons(x, xs), zs〉 ∈ gen_prefix(A, r); !!y ys. [| zs = Cons(y, ys); y ∈ A; x ∈ A; 〈x, y〉 ∈ r; 〈xs, ys〉 ∈ gen_prefix(A, r) |] ==> P |] ==> P
lemma Cons_gen_prefix_Cons:
〈Cons(x, xs), Cons(y, ys)〉 ∈ gen_prefix(A, r) <-> x ∈ A ∧ y ∈ A ∧ 〈x, y〉 ∈ r ∧ 〈xs, ys〉 ∈ gen_prefix(A, r)
lemma gen_prefix_mono2:
r ⊆ s ==> gen_prefix(A, r) ⊆ gen_prefix(A, s)
lemma gen_prefix_mono1:
A ⊆ B ==> gen_prefix(A, r) ⊆ gen_prefix(B, r)
lemma gen_prefix_mono:
[| A ⊆ B; r ⊆ s |] ==> gen_prefix(A, r) ⊆ gen_prefix(B, s)
lemma refl_gen_prefix:
refl(A, r) ==> refl(list(A), gen_prefix(A, r))
lemma append_gen_prefix:
[| xs ∈ list(A); 〈xs @ ys, zs〉 ∈ gen_prefix(A, r) |] ==> 〈xs, zs〉 ∈ gen_prefix(A, r)
lemma gen_prefix_trans_comp:
[| 〈x, y〉 ∈ gen_prefix(A, r); z ∈ list(A); 〈y, z〉 ∈ gen_prefix(A, s) |] ==> 〈x, z〉 ∈ gen_prefix(A, s O r)
lemma trans_comp_subset:
trans(r) ==> r O r ⊆ r
lemma trans_gen_prefix:
trans(r) ==> trans(gen_prefix(A, r))
lemma trans_on_gen_prefix:
trans(r) ==> trans[list(A)](gen_prefix(A, r))
lemma prefix_gen_prefix_trans:
[| 〈x, y〉 ∈ prefix(A); 〈y, z〉 ∈ gen_prefix(A, r); r ⊆ A × A |] ==> 〈x, z〉 ∈ gen_prefix(A, r)
lemma gen_prefix_prefix_trans:
[| 〈x, y〉 ∈ gen_prefix(A, r); 〈y, z〉 ∈ prefix(A); r ⊆ A × A |] ==> 〈x, z〉 ∈ gen_prefix(A, r)
lemma nat_le_lemma:
[| n ∈ nat; b ∈ nat; n #+ b ≤ n |] ==> b = 0
lemma antisym_gen_prefix:
antisym(r) ==> antisym(gen_prefix(A, r))
lemma gen_prefix_Nil:
xs ∈ list(A) ==> 〈xs, []〉 ∈ gen_prefix(A, r) <-> xs = []
lemma same_gen_prefix_gen_prefix:
[| refl(A, r); xs ∈ list(A) |] ==> 〈xs @ ys, xs @ zs〉 ∈ gen_prefix(A, r) <-> 〈ys, zs〉 ∈ gen_prefix(A, r)
lemma gen_prefix_Cons:
[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==> 〈xs, Cons(y, ys)〉 ∈ gen_prefix(A, r) <-> xs = [] ∨ (∃z zs. xs = Cons(z, zs) ∧ z ∈ A ∧ 〈z, y〉 ∈ r ∧ 〈zs, ys〉 ∈ gen_prefix(A, r))
lemma gen_prefix_take_append:
[| refl(A, r); 〈xs, ys〉 ∈ gen_prefix(A, r); zs ∈ list(A) |] ==> 〈xs @ zs, take(length(xs), ys) @ zs〉 ∈ gen_prefix(A, r)
lemma gen_prefix_append_both:
[| refl(A, r); 〈xs, ys〉 ∈ gen_prefix(A, r); length(xs) = length(ys); zs ∈ list(A) |] ==> 〈xs @ zs, ys @ zs〉 ∈ gen_prefix(A, r)
lemma append_cons_conv:
xs ∈ list(A) ==> xs @ Cons(y, ys) = (xs @ [y]) @ ys
lemma append_one_gen_prefix_lemma:
[| 〈xs, ys〉 ∈ gen_prefix(A, r); refl(A, r); length(xs) < length(ys) |] ==> 〈xs @ [nth(length(xs), ys)], ys〉 ∈ gen_prefix(A, r)
lemma append_one_gen_prefix:
[| 〈xs, ys〉 ∈ gen_prefix(A, r); length(xs) < length(ys); refl(A, r) |] ==> 〈xs @ [nth(length(xs), ys)], ys〉 ∈ gen_prefix(A, r)
lemma gen_prefix_imp_nth_lemma:
[| xs ∈ list(A); ys ∈ list(A); i ∈ nat; i < length(xs); 〈xs, ys〉 ∈ gen_prefix(A, r) |] ==> 〈nth(i, xs), nth(i, ys)〉 ∈ r
lemma gen_prefix_imp_nth:
[| 〈xs, ys〉 ∈ gen_prefix(A, r); i < length(xs) |] ==> 〈nth(i, xs), nth(i, ys)〉 ∈ r
lemma nth_imp_gen_prefix:
[| xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys); !!i. i < length(xs) ==> 〈nth(i, xs), nth(i, ys)〉 ∈ r |] ==> 〈xs, ys〉 ∈ gen_prefix(A, r)
lemma gen_prefix_iff_nth:
〈xs, ys〉 ∈ gen_prefix(A, r) <-> xs ∈ list(A) ∧ ys ∈ list(A) ∧ length(xs) ≤ length(ys) ∧ (∀i. i < length(xs) --> 〈nth(i, xs), nth(i, ys)〉 ∈ r)
lemma refl_prefix:
refl(list(A), prefix(A))
lemma trans_prefix:
trans(prefix(A))
lemmas prefix_trans:
[| 〈a, b〉 ∈ prefix(A); 〈b, c〉 ∈ prefix(A) |] ==> 〈a, c〉 ∈ prefix(A)
lemmas prefix_trans:
[| 〈a, b〉 ∈ prefix(A); 〈b, c〉 ∈ prefix(A) |] ==> 〈a, c〉 ∈ prefix(A)
lemma trans_on_prefix:
trans[list(A)](prefix(A))
lemmas prefix_trans_on:
[| 〈a, b〉 ∈ prefix(A); 〈b, c〉 ∈ prefix(A); a ∈ list(A); b ∈ list(A); c ∈ list(A) |] ==> 〈a, c〉 ∈ prefix(A)
lemmas prefix_trans_on:
[| 〈a, b〉 ∈ prefix(A); 〈b, c〉 ∈ prefix(A); a ∈ list(A); b ∈ list(A); c ∈ list(A) |] ==> 〈a, c〉 ∈ prefix(A)
lemma set_of_list_prefix_mono:
〈xs, ys〉 ∈ prefix(A) ==> set_of_list(xs) ⊆ set_of_list(ys)
lemma Nil_prefix:
xs ∈ list(A) ==> 〈[], xs〉 ∈ prefix(A)
lemma prefix_Nil:
〈xs, []〉 ∈ prefix(A) <-> xs = []
lemma Cons_prefix_Cons:
〈Cons(x, xs), Cons(y, ys)〉 ∈ prefix(A) <-> x = y ∧ 〈xs, ys〉 ∈ prefix(A) ∧ y ∈ A
lemma same_prefix_prefix:
xs ∈ list(A) ==> 〈xs @ ys, xs @ zs〉 ∈ prefix(A) <-> 〈ys, zs〉 ∈ prefix(A)
lemma same_prefix_prefix_Nil:
xs ∈ list(A) ==> 〈xs @ ys, xs〉 ∈ prefix(A) <-> 〈ys, []〉 ∈ prefix(A)
lemma prefix_appendI:
[| 〈xs, ys〉 ∈ prefix(A); zs ∈ list(A) |] ==> 〈xs, ys @ zs〉 ∈ prefix(A)
lemma prefix_Cons:
[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==> 〈xs, Cons(y, ys)〉 ∈ prefix(A) <-> xs = [] ∨ (∃zs. xs = Cons(y, zs) ∧ 〈zs, ys〉 ∈ prefix(A))
lemma append_one_prefix:
[| 〈xs, ys〉 ∈ prefix(A); length(xs) < length(ys) |] ==> 〈xs @ [nth(length(xs), ys)], ys〉 ∈ prefix(A)
lemma prefix_length_le:
〈xs, ys〉 ∈ prefix(A) ==> length(xs) ≤ length(ys)
lemma prefix_type:
prefix(A) ⊆ list(A) × list(A)
lemma strict_prefix_type:
strict_prefix(A) ⊆ list(A) × list(A)
lemma strict_prefix_length_lt_aux:
〈xs, ys〉 ∈ prefix(A) ==> xs ≠ ys --> length(xs) < length(ys)
lemma strict_prefix_length_lt:
〈xs, ys〉 ∈ strict_prefix(A) ==> length(xs) < length(ys)
lemma prefix_iff:
〈xs, zs〉 ∈ prefix(A) <-> (∃ys∈list(A). zs = xs @ ys) ∧ xs ∈ list(A)
lemma prefix_snoc:
[| xs ∈ list(A); ys ∈ list(A); y ∈ A |] ==> 〈xs, ys @ [y]〉 ∈ prefix(A) <-> xs = ys @ [y] ∨ 〈xs, ys〉 ∈ prefix(A)
lemma prefix_append_iff:
[| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A) |] ==> 〈xs, ys @ zs〉 ∈ prefix(A) <-> 〈xs, ys〉 ∈ prefix(A) ∨ (∃us. xs = ys @ us ∧ 〈us, zs〉 ∈ prefix(A))
lemma common_prefix_linear_lemma:
[| zs ∈ list(A); xs ∈ list(A); ys ∈ list(A); 〈xs, zs〉 ∈ prefix(A); 〈ys, zs〉 ∈ prefix(A) |] ==> 〈xs, ys〉 ∈ prefix(A) ∨ 〈ys, xs〉 ∈ prefix(A)
lemma common_prefix_linear:
[| 〈xs, zs〉 ∈ prefix(A); 〈ys, zs〉 ∈ prefix(A) |] ==> 〈xs, ys〉 ∈ prefix(A) ∨ 〈ys, xs〉 ∈ prefix(A)
lemma refl_Le:
refl(nat, Le)
lemma antisym_Le:
antisym(Le)
lemma trans_on_Le:
trans[nat](Le)
lemma trans_Le:
trans(Le)
lemma part_order_Le:
part_order(nat, Le)
lemma pfixLe_refl:
x ∈ list(nat) ==> x pfixLe x
lemma pfixLe_trans:
[| x pfixLe y; y pfixLe z |] ==> x pfixLe z
lemma pfixLe_antisym:
[| x pfixLe y; y pfixLe x |] ==> x = y
lemma prefix_imp_pfixLe:
〈xs, ys〉 ∈ prefix(nat) ==> xs pfixLe ys
lemma refl_Ge:
refl(nat, Ge)
lemma antisym_Ge:
antisym(Ge)
lemma trans_Ge:
trans(Ge)
lemma pfixGe_refl:
x ∈ list(nat) ==> x pfixGe x
lemma pfixGe_trans:
[| x pfixGe y; y pfixGe z |] ==> x pfixGe z
lemma pfixGe_antisym:
[| x pfixGe y; y pfixGe x |] ==> x = y
lemma prefix_imp_pfixGe:
〈xs, ys〉 ∈ prefix(nat) ==> xs pfixGe ys
lemma prefix_imp_take:
〈xs, ys〉 ∈ prefix(A) ==> xs = take(length(xs), ys)
lemma prefix_length_equal:
[| 〈xs, ys〉 ∈ prefix(A); length(xs) = length(ys) |] ==> xs = ys
lemma prefix_length_le_equal:
[| 〈xs, ys〉 ∈ prefix(A); length(ys) ≤ length(xs) |] ==> xs = ys
lemma take_prefix:
[| xs ∈ list(A); n ∈ nat |] ==> 〈take(n, xs), xs〉 ∈ prefix(A)
lemma prefix_take_iff:
〈xs, ys〉 ∈ prefix(A) <-> xs = take(length(xs), ys) ∧ xs ∈ list(A) ∧ ys ∈ list(A)
lemma prefix_imp_nth:
[| 〈xs, ys〉 ∈ prefix(A); i < length(xs) |] ==> nth(i, xs) = nth(i, ys)
lemma nth_imp_prefix:
[| xs ∈ list(A); ys ∈ list(A); length(xs) ≤ length(ys); !!i. i < length(xs) ==> nth(i, xs) = nth(i, ys) |] ==> 〈xs, ys〉 ∈ prefix(A)
lemma length_le_prefix_imp_prefix:
[| length(xs) ≤ length(ys); 〈xs, zs〉 ∈ prefix(A); 〈ys, zs〉 ∈ prefix(A) |] ==> 〈xs, ys〉 ∈ prefix(A)