Up to index of Isabelle/ZF/UNITY
theory Monotonicity(* Title: ZF/UNITY/Monotonicity.thy
ID: $Id ∈ Monotonicity.thy,v 1.1 2003/05/28 16:13:42 paulson Exp $
Author: Sidi O Ehmety, Cambridge University Computer Laboratory
Copyright 2002 University of Cambridge
Monotonicity of an operator (meta-function) with respect to arbitrary set relations.
*)
header{*Monotonicity of an Operator WRT a Relation*}
theory Monotonicity imports GenPrefix MultisetSum begin
constdefs
mono1 :: "[i, i, i, i, i=>i] => o"
"mono1(A, r, B, s, f) ==
(∀x ∈ A. ∀y ∈ A. <x,y> ∈ r --> <f(x), f(y)> ∈ s) & (∀x ∈ A. f(x) ∈ B)"
(* monotonicity of a 2-place meta-function f *)
mono2 :: "[i, i, i, i, i, i, [i,i]=>i] => o"
"mono2(A, r, B, s, C, t, f) ==
(∀x ∈ A. ∀y ∈ A. ∀u ∈ B. ∀v ∈ B.
<x,y> ∈ r & <u,v> ∈ s --> <f(x,u), f(y,v)> ∈ t) &
(∀x ∈ A. ∀y ∈ B. f(x,y) ∈ C)"
(* Internalized relations on sets and multisets *)
SetLe :: "i =>i"
"SetLe(A) == {<x,y> ∈ Pow(A)*Pow(A). x <= y}"
MultLe :: "[i,i] =>i"
"MultLe(A, r) == multirel(A, r - id(A)) Un id(Mult(A))"
lemma mono1D:
"[| mono1(A, r, B, s, f); <x, y> ∈ r; x ∈ A; y ∈ A |] ==> <f(x), f(y)> ∈ s"
by (unfold mono1_def, auto)
lemma mono2D:
"[| mono2(A, r, B, s, C, t, f);
<x, y> ∈ r; <u,v> ∈ s; x ∈ A; y ∈ A; u ∈ B; v ∈ B |]
==> <f(x, u), f(y,v)> ∈ t"
by (unfold mono2_def, auto)
(** Monotonicity of take **)
lemma take_mono_left_lemma:
"[| i le j; xs ∈ list(A); i ∈ nat; j ∈ nat |]
==> <take(i, xs), take(j, xs)> ∈ prefix(A)"
apply (case_tac "length (xs) le i")
apply (subgoal_tac "length (xs) le j")
apply (simp)
apply (blast intro: le_trans)
apply (drule not_lt_imp_le, auto)
apply (case_tac "length (xs) le j")
apply (auto simp add: take_prefix)
apply (drule not_lt_imp_le, auto)
apply (drule_tac m = i in less_imp_succ_add, auto)
apply (subgoal_tac "i #+ k le length (xs) ")
apply (simp add: take_add prefix_iff take_type drop_type)
apply (blast intro: leI)
done
lemma take_mono_left:
"[| i le j; xs ∈ list(A); j ∈ nat |]
==> <take(i, xs), take(j, xs)> ∈ prefix(A)"
by (blast intro: Nat.le_in_nat take_mono_left_lemma)
lemma take_mono_right:
"[| <xs,ys> ∈ prefix(A); i ∈ nat |]
==> <take(i, xs), take(i, ys)> ∈ prefix(A)"
by (auto simp add: prefix_iff)
lemma take_mono:
"[| i le j; <xs, ys> ∈ prefix(A); j ∈ nat |]
==> <take(i, xs), take(j, ys)> ∈ prefix(A)"
apply (rule_tac b = "take (j, xs) " in prefix_trans)
apply (auto dest: prefix_type [THEN subsetD] intro: take_mono_left take_mono_right)
done
lemma mono_take [iff]:
"mono2(nat, Le, list(A), prefix(A), list(A), prefix(A), take)"
apply (unfold mono2_def Le_def, auto)
apply (blast intro: take_mono)
done
(** Monotonicity of length **)
lemmas length_mono = prefix_length_le
lemma mono_length [iff]:
"mono1(list(A), prefix(A), nat, Le, length)"
apply (unfold mono1_def)
apply (auto dest: prefix_length_le simp add: Le_def)
done
(** Monotonicity of Un **)
lemma mono_Un [iff]:
"mono2(Pow(A), SetLe(A), Pow(A), SetLe(A), Pow(A), SetLe(A), op Un)"
by (unfold mono2_def SetLe_def, auto)
(* Monotonicity of multiset union *)
lemma mono_munion [iff]:
"mono2(Mult(A), MultLe(A,r), Mult(A), MultLe(A, r), Mult(A), MultLe(A, r), munion)"
apply (unfold mono2_def MultLe_def)
apply (auto simp add: Mult_iff_multiset)
apply (blast intro: munion_multirel_mono munion_multirel_mono1 munion_multirel_mono2 multiset_into_Mult)+
done
lemma mono_succ [iff]: "mono1(nat, Le, nat, Le, succ)"
by (unfold mono1_def Le_def, auto)
ML{*
val mono1D = thm "mono1D";
val mono2D = thm "mono2D";
val take_mono_left_lemma = thm "take_mono_left_lemma";
val take_mono_left = thm "take_mono_left";
val take_mono_right = thm "take_mono_right";
val take_mono = thm "take_mono";
val mono_take = thm "mono_take";
val length_mono = thm "length_mono";
val mono_length = thm "mono_length";
val mono_Un = thm "mono_Un";
val mono_munion = thm "mono_munion";
val mono_succ = thm "mono_succ";
*}
end
lemma mono1D:
[| mono1(A, r, B, s, f); 〈x, y〉 ∈ r; x ∈ A; y ∈ A |] ==> 〈f(x), f(y)〉 ∈ s
lemma mono2D:
[| mono2(A, r, B, s, C, t, f); 〈x, y〉 ∈ r; 〈u, v〉 ∈ s; x ∈ A; y ∈ A; u ∈ B; v ∈ B |] ==> 〈f(x, u), f(y, v)〉 ∈ t
lemma take_mono_left_lemma:
[| i ≤ j; xs ∈ list(A); i ∈ nat; j ∈ nat |] ==> 〈take(i, xs), take(j, xs)〉 ∈ prefix(A)
lemma take_mono_left:
[| i ≤ j; xs ∈ list(A); j ∈ nat |] ==> 〈take(i, xs), take(j, xs)〉 ∈ prefix(A)
lemma take_mono_right:
[| 〈xs, ys〉 ∈ prefix(A); i ∈ nat |] ==> 〈take(i, xs), take(i, ys)〉 ∈ prefix(A)
lemma take_mono:
[| i ≤ j; 〈xs, ys〉 ∈ prefix(A); j ∈ nat |] ==> 〈take(i, xs), take(j, ys)〉 ∈ prefix(A)
lemma mono_take:
mono2(nat, Le, list(A), prefix(A), list(A), prefix(A), take)
lemmas length_mono:
〈xs, ys〉 ∈ prefix(A) ==> length(xs) ≤ length(ys)
lemmas length_mono:
〈xs, ys〉 ∈ prefix(A) ==> length(xs) ≤ length(ys)
lemma mono_length:
mono1(list(A), prefix(A), nat, Le, length)
lemma mono_Un:
mono2(Pow(A), SetLe(A), Pow(A), SetLe(A), Pow(A), SetLe(A), op ∪)
lemma mono_munion:
mono2(A -||> nat - {0}, MultLe(A, r), A -||> nat - {0}, MultLe(A, r), A -||> nat - {0}, MultLe(A, r), op +#)
lemma mono_succ:
mono1(nat, Le, nat, Le, succ)