(* Title: HOL/UNITY/State.thy
ID: $Id: State.thy,v 1.7 2005/06/17 14:15:11 haftmann Exp $
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
Formalizes UNITY-program states using dependent types so that:
- variables are typed.
- the state space is uniform, common to all defined programs.
- variables can be quantified over.
*)
header{*UNITY Program States*}
theory State imports Main begin
consts var :: i
datatype var = Var("i ∈ list(nat)")
type_intros nat_subset_univ [THEN list_subset_univ, THEN subsetD]
consts
type_of :: "i=>i"
default_val :: "i=>i"
constdefs
state :: i
"state == Π x ∈ var. cons(default_val(x), type_of(x))"
st0 :: i
"st0 == λx ∈ var. default_val(x)"
st_set :: "i=>o"
(* To prevent typing conditions like `A<=state' from
being used in combination with the rules `constrains_weaken', etc. *)
"st_set(A) == A<=state"
st_compl :: "i=>i"
"st_compl(A) == state-A"
lemma st0_in_state [simp,TC]: "st0 ∈ state"
by (simp add: state_def st0_def)
lemma st_set_Collect [iff]: "st_set({x ∈ state. P(x)})"
by (simp add: st_set_def, auto)
lemma st_set_0 [iff]: "st_set(0)"
by (simp add: st_set_def)
lemma st_set_state [iff]: "st_set(state)"
by (simp add: st_set_def)
(* Union *)
lemma st_set_Un_iff [iff]: "st_set(A Un B) <-> st_set(A) & st_set(B)"
by (simp add: st_set_def, auto)
lemma st_set_Union_iff [iff]: "st_set(Union(S)) <-> (∀A ∈ S. st_set(A))"
by (simp add: st_set_def, auto)
(* Intersection *)
lemma st_set_Int [intro!]: "st_set(A) | st_set(B) ==> st_set(A Int B)"
by (simp add: st_set_def, auto)
lemma st_set_Inter [intro!]:
"(S=0) | (∃A ∈ S. st_set(A)) ==> st_set(Inter(S))"
apply (simp add: st_set_def Inter_def, auto)
done
(* Diff *)
lemma st_set_DiffI [intro!]: "st_set(A) ==> st_set(A - B)"
by (simp add: st_set_def, auto)
lemma Collect_Int_state [simp]: "Collect(state,P) Int state = Collect(state,P)"
by auto
lemma state_Int_Collect [simp]: "state Int Collect(state,P) = Collect(state,P)"
by auto
(* Introduction and destruction rules for st_set *)
lemma st_setI: "A <= state ==> st_set(A)"
by (simp add: st_set_def)
lemma st_setD: "st_set(A) ==> A<=state"
by (simp add: st_set_def)
lemma st_set_subset: "[| st_set(A); B<=A |] ==> st_set(B)"
by (simp add: st_set_def, auto)
lemma state_update_type:
"[| s ∈ state; x ∈ var; y ∈ type_of(x) |] ==> s(x:=y):state"
apply (simp add: state_def)
apply (blast intro: update_type)
done
lemma st_set_compl [simp]: "st_set(st_compl(A))"
by (simp add: st_compl_def, auto)
lemma st_compl_iff [simp]: "x ∈ st_compl(A) <-> x ∈ state & x ∉ A"
by (simp add: st_compl_def)
lemma st_compl_Collect [simp]:
"st_compl({s ∈ state. P(s)}) = {s ∈ state. ~P(s)}"
by (simp add: st_compl_def, auto)
(*For using "disjunction" (union over an index set) to eliminate a variable.*)
lemma UN_conj_eq:
"∀d∈D. f(d) ∈ A ==> (\<Union>k∈A. {d∈D. P(d) & f(d) = k}) = {d∈D. P(d)}"
by blast
ML
{*
val st_set_def = thm "st_set_def";
val state_def = thm "state_def";
val st0_in_state = thm "st0_in_state";
val st_set_Collect = thm "st_set_Collect";
val st_set_0 = thm "st_set_0";
val st_set_state = thm "st_set_state";
val st_set_Un_iff = thm "st_set_Un_iff";
val st_set_Union_iff = thm "st_set_Union_iff";
val st_set_Int = thm "st_set_Int";
val st_set_Inter = thm "st_set_Inter";
val st_set_DiffI = thm "st_set_DiffI";
val Collect_Int_state = thm "Collect_Int_state";
val state_Int_Collect = thm "state_Int_Collect";
val st_setI = thm "st_setI";
val st_setD = thm "st_setD";
val st_set_subset = thm "st_set_subset";
val state_update_type = thm "state_update_type";
val st_set_compl = thm "st_set_compl";
val st_compl_iff = thm "st_compl_iff";
val st_compl_Collect = thm "st_compl_Collect";
*}
end
lemma st0_in_state:
st0 ∈ state
lemma st_set_Collect:
st_set({x ∈ state . P(x)})
lemma st_set_0:
st_set(0)
lemma st_set_state:
st_set(state)
lemma st_set_Un_iff:
st_set(A ∪ B) <-> st_set(A) ∧ st_set(B)
lemma st_set_Union_iff:
st_set(\<Union>S) <-> (∀A∈S. st_set(A))
lemma st_set_Int:
st_set(A) ∨ st_set(B) ==> st_set(A ∩ B)
lemma st_set_Inter:
S = 0 ∨ (∃A∈S. st_set(A)) ==> st_set(\<Inter>S)
lemma st_set_DiffI:
st_set(A) ==> st_set(A - B)
lemma Collect_Int_state:
Collect(state, P) ∩ state = Collect(state, P)
lemma state_Int_Collect:
state ∩ Collect(state, P) = Collect(state, P)
lemma st_setI:
A ⊆ state ==> st_set(A)
lemma st_setD:
st_set(A) ==> A ⊆ state
lemma st_set_subset:
[| st_set(A); B ⊆ A |] ==> st_set(B)
lemma state_update_type:
[| s ∈ state; x ∈ var; y ∈ type_of(x) |] ==> s(x := y) ∈ state
lemma st_set_compl:
st_set(st_compl(A))
lemma st_compl_iff:
x ∈ st_compl(A) <-> x ∈ state ∧ x ∉ A
lemma st_compl_Collect:
st_compl({s ∈ state . P(s)}) = {s ∈ state . ¬ P(s)}
lemma UN_conj_eq:
∀d∈D. f(d) ∈ A ==> (\<Union>k∈A. {d ∈ D . P(d) ∧ f(d) = k}) = {d ∈ D . P(d)}