(* Title: ZF/UNITY/UNITY.thy
ID: $Id: UNITY.thy,v 1.7 2005/06/17 14:15:11 haftmann Exp $
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
*)
header {*The Basic UNITY Theory*}
theory UNITY imports State begin
text{*The basic UNITY theory (revised version, based upon the "co" operator)
From Misra, "A Logic for Concurrent Programming", 1994.
This ZF theory was ported from its HOL equivalent.*}
consts
"constrains" :: "[i, i] => i" (infixl "co" 60)
op_unless :: "[i, i] => i" (infixl "unless" 60)
constdefs
program :: i
"program == {<init, acts, allowed>:
Pow(state) * Pow(Pow(state*state)) * Pow(Pow(state*state)).
id(state) ∈ acts & id(state) ∈ allowed}"
mk_program :: "[i,i,i]=>i"
--{* The definition yields a program thanks to the coercions
init ∩ state, acts ∩ Pow(state*state), etc. *}
"mk_program(init, acts, allowed) ==
<init ∩ state, cons(id(state), acts ∩ Pow(state*state)),
cons(id(state), allowed ∩ Pow(state*state))>"
SKIP :: i
"SKIP == mk_program(state, 0, Pow(state*state))"
(* Coercion from anything to program *)
programify :: "i=>i"
"programify(F) == if F ∈ program then F else SKIP"
RawInit :: "i=>i"
"RawInit(F) == fst(F)"
Init :: "i=>i"
"Init(F) == RawInit(programify(F))"
RawActs :: "i=>i"
"RawActs(F) == cons(id(state), fst(snd(F)))"
Acts :: "i=>i"
"Acts(F) == RawActs(programify(F))"
RawAllowedActs :: "i=>i"
"RawAllowedActs(F) == cons(id(state), snd(snd(F)))"
AllowedActs :: "i=>i"
"AllowedActs(F) == RawAllowedActs(programify(F))"
Allowed :: "i =>i"
"Allowed(F) == {G ∈ program. Acts(G) ⊆ AllowedActs(F)}"
initially :: "i=>i"
"initially(A) == {F ∈ program. Init(F)⊆A}"
stable :: "i=>i"
"stable(A) == A co A"
strongest_rhs :: "[i, i] => i"
"strongest_rhs(F, A) == Inter({B ∈ Pow(state). F ∈ A co B})"
invariant :: "i => i"
"invariant(A) == initially(A) ∩ stable(A)"
(* meta-function composition *)
metacomp :: "[i=>i, i=>i] => (i=>i)" (infixl "comp" 65)
"f comp g == %x. f(g(x))"
pg_compl :: "i=>i"
"pg_compl(X)== program - X"
defs
constrains_def:
"A co B == {F ∈ program. (∀act ∈ Acts(F). act``A⊆B) & st_set(A)}"
--{* the condition @{term "st_set(A)"} makes the definition slightly
stronger than the HOL one *}
unless_def: "A unless B == (A - B) co (A Un B)"
text{*SKIP*}
lemma SKIP_in_program [iff,TC]: "SKIP ∈ program"
by (force simp add: SKIP_def program_def mk_program_def)
subsection{*The function @{term programify}, the coercion from anything to
program*}
lemma programify_program [simp]: "F ∈ program ==> programify(F)=F"
by (force simp add: programify_def)
lemma programify_in_program [iff,TC]: "programify(F) ∈ program"
by (force simp add: programify_def)
text{*Collapsing rules: to remove programify from expressions*}
lemma programify_idem [simp]: "programify(programify(F))=programify(F)"
by (force simp add: programify_def)
lemma Init_programify [simp]: "Init(programify(F)) = Init(F)"
by (simp add: Init_def)
lemma Acts_programify [simp]: "Acts(programify(F)) = Acts(F)"
by (simp add: Acts_def)
lemma AllowedActs_programify [simp]:
"AllowedActs(programify(F)) = AllowedActs(F)"
by (simp add: AllowedActs_def)
subsection{*The Inspectors for Programs*}
lemma id_in_RawActs: "F ∈ program ==>id(state) ∈ RawActs(F)"
by (auto simp add: program_def RawActs_def)
lemma id_in_Acts [iff,TC]: "id(state) ∈ Acts(F)"
by (simp add: id_in_RawActs Acts_def)
lemma id_in_RawAllowedActs: "F ∈ program ==>id(state) ∈ RawAllowedActs(F)"
by (auto simp add: program_def RawAllowedActs_def)
lemma id_in_AllowedActs [iff,TC]: "id(state) ∈ AllowedActs(F)"
by (simp add: id_in_RawAllowedActs AllowedActs_def)
lemma cons_id_Acts [simp]: "cons(id(state), Acts(F)) = Acts(F)"
by (simp add: cons_absorb)
lemma cons_id_AllowedActs [simp]:
"cons(id(state), AllowedActs(F)) = AllowedActs(F)"
by (simp add: cons_absorb)
subsection{*Types of the Inspectors*}
lemma RawInit_type: "F ∈ program ==> RawInit(F)⊆state"
by (auto simp add: program_def RawInit_def)
lemma RawActs_type: "F ∈ program ==> RawActs(F)⊆Pow(state*state)"
by (auto simp add: program_def RawActs_def)
lemma RawAllowedActs_type:
"F ∈ program ==> RawAllowedActs(F)⊆Pow(state*state)"
by (auto simp add: program_def RawAllowedActs_def)
lemma Init_type: "Init(F)⊆state"
by (simp add: RawInit_type Init_def)
lemmas InitD = Init_type [THEN subsetD, standard]
lemma st_set_Init [iff]: "st_set(Init(F))"
apply (unfold st_set_def)
apply (rule Init_type)
done
lemma Acts_type: "Acts(F)⊆Pow(state*state)"
by (simp add: RawActs_type Acts_def)
lemma AllowedActs_type: "AllowedActs(F) ⊆ Pow(state*state)"
by (simp add: RawAllowedActs_type AllowedActs_def)
text{*Needed in Behaviors*}
lemma ActsD: "[| act ∈ Acts(F); <s,s'> ∈ act |] ==> s ∈ state & s' ∈ state"
by (blast dest: Acts_type [THEN subsetD])
lemma AllowedActsD:
"[| act ∈ AllowedActs(F); <s,s'> ∈ act |] ==> s ∈ state & s' ∈ state"
by (blast dest: AllowedActs_type [THEN subsetD])
subsection{*Simplification rules involving @{term state}, @{term Init},
@{term Acts}, and @{term AllowedActs}*}
text{*But are they really needed?*}
lemma state_subset_is_Init_iff [iff]: "state ⊆ Init(F) <-> Init(F)=state"
by (cut_tac F = F in Init_type, auto)
lemma Pow_state_times_state_is_subset_Acts_iff [iff]:
"Pow(state*state) ⊆ Acts(F) <-> Acts(F)=Pow(state*state)"
by (cut_tac F = F in Acts_type, auto)
lemma Pow_state_times_state_is_subset_AllowedActs_iff [iff]:
"Pow(state*state) ⊆ AllowedActs(F) <-> AllowedActs(F)=Pow(state*state)"
by (cut_tac F = F in AllowedActs_type, auto)
subsubsection{*Eliminating @{text "∩ state"} from expressions*}
lemma Init_Int_state [simp]: "Init(F) ∩ state = Init(F)"
by (cut_tac F = F in Init_type, blast)
lemma state_Int_Init [simp]: "state ∩ Init(F) = Init(F)"
by (cut_tac F = F in Init_type, blast)
lemma Acts_Int_Pow_state_times_state [simp]:
"Acts(F) ∩ Pow(state*state) = Acts(F)"
by (cut_tac F = F in Acts_type, blast)
lemma state_times_state_Int_Acts [simp]:
"Pow(state*state) ∩ Acts(F) = Acts(F)"
by (cut_tac F = F in Acts_type, blast)
lemma AllowedActs_Int_Pow_state_times_state [simp]:
"AllowedActs(F) ∩ Pow(state*state) = AllowedActs(F)"
by (cut_tac F = F in AllowedActs_type, blast)
lemma state_times_state_Int_AllowedActs [simp]:
"Pow(state*state) ∩ AllowedActs(F) = AllowedActs(F)"
by (cut_tac F = F in AllowedActs_type, blast)
subsubsection{*The Operator @{term mk_program}*}
lemma mk_program_in_program [iff,TC]:
"mk_program(init, acts, allowed) ∈ program"
by (auto simp add: mk_program_def program_def)
lemma RawInit_eq [simp]:
"RawInit(mk_program(init, acts, allowed)) = init ∩ state"
by (auto simp add: mk_program_def RawInit_def)
lemma RawActs_eq [simp]:
"RawActs(mk_program(init, acts, allowed)) =
cons(id(state), acts ∩ Pow(state*state))"
by (auto simp add: mk_program_def RawActs_def)
lemma RawAllowedActs_eq [simp]:
"RawAllowedActs(mk_program(init, acts, allowed)) =
cons(id(state), allowed ∩ Pow(state*state))"
by (auto simp add: mk_program_def RawAllowedActs_def)
lemma Init_eq [simp]: "Init(mk_program(init, acts, allowed)) = init ∩ state"
by (simp add: Init_def)
lemma Acts_eq [simp]:
"Acts(mk_program(init, acts, allowed)) =
cons(id(state), acts ∩ Pow(state*state))"
by (simp add: Acts_def)
lemma AllowedActs_eq [simp]:
"AllowedActs(mk_program(init, acts, allowed))=
cons(id(state), allowed ∩ Pow(state*state))"
by (simp add: AllowedActs_def)
text{*Init, Acts, and AlowedActs of SKIP *}
lemma RawInit_SKIP [simp]: "RawInit(SKIP) = state"
by (simp add: SKIP_def)
lemma RawAllowedActs_SKIP [simp]: "RawAllowedActs(SKIP) = Pow(state*state)"
by (force simp add: SKIP_def)
lemma RawActs_SKIP [simp]: "RawActs(SKIP) = {id(state)}"
by (force simp add: SKIP_def)
lemma Init_SKIP [simp]: "Init(SKIP) = state"
by (force simp add: SKIP_def)
lemma Acts_SKIP [simp]: "Acts(SKIP) = {id(state)}"
by (force simp add: SKIP_def)
lemma AllowedActs_SKIP [simp]: "AllowedActs(SKIP) = Pow(state*state)"
by (force simp add: SKIP_def)
text{*Equality of UNITY programs*}
lemma raw_surjective_mk_program:
"F ∈ program ==> mk_program(RawInit(F), RawActs(F), RawAllowedActs(F))=F"
apply (auto simp add: program_def mk_program_def RawInit_def RawActs_def
RawAllowedActs_def, blast+)
done
lemma surjective_mk_program [simp]:
"mk_program(Init(F), Acts(F), AllowedActs(F)) = programify(F)"
by (auto simp add: raw_surjective_mk_program Init_def Acts_def AllowedActs_def)
lemma program_equalityI:
"[|Init(F) = Init(G); Acts(F) = Acts(G);
AllowedActs(F) = AllowedActs(G); F ∈ program; G ∈ program |] ==> F = G"
apply (subgoal_tac "programify(F) = programify(G)")
apply simp
apply (simp only: surjective_mk_program [symmetric])
done
lemma program_equalityE:
"[|F = G;
[|Init(F) = Init(G); Acts(F) = Acts(G); AllowedActs(F) = AllowedActs(G) |]
==> P |]
==> P"
by force
lemma program_equality_iff:
"[| F ∈ program; G ∈ program |] ==>(F=G) <->
(Init(F) = Init(G) & Acts(F) = Acts(G) & AllowedActs(F) = AllowedActs(G))"
by (blast intro: program_equalityI program_equalityE)
subsection{*These rules allow "lazy" definition expansion*}
lemma def_prg_Init:
"F == mk_program (init,acts,allowed) ==> Init(F) = init ∩ state"
by auto
lemma def_prg_Acts:
"F == mk_program (init,acts,allowed)
==> Acts(F) = cons(id(state), acts ∩ Pow(state*state))"
by auto
lemma def_prg_AllowedActs:
"F == mk_program (init,acts,allowed)
==> AllowedActs(F) = cons(id(state), allowed ∩ Pow(state*state))"
by auto
lemma def_prg_simps:
"[| F == mk_program (init,acts,allowed) |]
==> Init(F) = init ∩ state &
Acts(F) = cons(id(state), acts ∩ Pow(state*state)) &
AllowedActs(F) = cons(id(state), allowed ∩ Pow(state*state))"
by auto
text{*An action is expanded only if a pair of states is being tested against it*}
lemma def_act_simp:
"[| act == {<s,s'> ∈ A*B. P(s, s')} |]
==> (<s,s'> ∈ act) <-> (<s,s'> ∈ A*B & P(s, s'))"
by auto
text{*A set is expanded only if an element is being tested against it*}
lemma def_set_simp: "A == B ==> (x ∈ A) <-> (x ∈ B)"
by auto
subsection{*The Constrains Operator*}
lemma constrains_type: "A co B ⊆ program"
by (force simp add: constrains_def)
lemma constrainsI:
"[|(!!act s s'. [| act: Acts(F); <s,s'> ∈ act; s ∈ A|] ==> s' ∈ A');
F ∈ program; st_set(A) |] ==> F ∈ A co A'"
by (force simp add: constrains_def)
lemma constrainsD:
"F ∈ A co B ==> ∀act ∈ Acts(F). act``A⊆B"
by (force simp add: constrains_def)
lemma constrainsD2: "F ∈ A co B ==> F ∈ program & st_set(A)"
by (force simp add: constrains_def)
lemma constrains_empty [iff]: "F ∈ 0 co B <-> F ∈ program"
by (force simp add: constrains_def st_set_def)
lemma constrains_empty2 [iff]: "(F ∈ A co 0) <-> (A=0 & F ∈ program)"
by (force simp add: constrains_def st_set_def)
lemma constrains_state [iff]: "(F ∈ state co B) <-> (state⊆B & F ∈ program)"
apply (cut_tac F = F in Acts_type)
apply (force simp add: constrains_def st_set_def)
done
lemma constrains_state2 [iff]: "F ∈ A co state <-> (F ∈ program & st_set(A))"
apply (cut_tac F = F in Acts_type)
apply (force simp add: constrains_def st_set_def)
done
text{*monotonic in 2nd argument*}
lemma constrains_weaken_R:
"[| F ∈ A co A'; A'⊆B' |] ==> F ∈ A co B'"
apply (unfold constrains_def, blast)
done
text{*anti-monotonic in 1st argument*}
lemma constrains_weaken_L:
"[| F ∈ A co A'; B⊆A |] ==> F ∈ B co A'"
apply (unfold constrains_def st_set_def, blast)
done
lemma constrains_weaken:
"[| F ∈ A co A'; B⊆A; A'⊆B' |] ==> F ∈ B co B'"
apply (drule constrains_weaken_R)
apply (drule_tac [2] constrains_weaken_L, blast+)
done
subsection{*Constrains and Union*}
lemma constrains_Un:
"[| F ∈ A co A'; F ∈ B co B' |] ==> F ∈ (A Un B) co (A' Un B')"
by (auto simp add: constrains_def st_set_def, force)
lemma constrains_UN:
"[|!!i. i ∈ I ==> F ∈ A(i) co A'(i); F ∈ program |]
==> F ∈ (\<Union>i ∈ I. A(i)) co (\<Union>i ∈ I. A'(i))"
by (force simp add: constrains_def st_set_def)
lemma constrains_Un_distrib:
"(A Un B) co C = (A co C) ∩ (B co C)"
by (force simp add: constrains_def st_set_def)
lemma constrains_UN_distrib:
"i ∈ I ==> (\<Union>i ∈ I. A(i)) co B = (\<Inter>i ∈ I. A(i) co B)"
by (force simp add: constrains_def st_set_def)
subsection{*Constrains and Intersection*}
lemma constrains_Int_distrib: "C co (A ∩ B) = (C co A) ∩ (C co B)"
by (force simp add: constrains_def st_set_def)
lemma constrains_INT_distrib:
"x ∈ I ==> A co (\<Inter>i ∈ I. B(i)) = (\<Inter>i ∈ I. A co B(i))"
by (force simp add: constrains_def st_set_def)
lemma constrains_Int:
"[| F ∈ A co A'; F ∈ B co B' |] ==> F ∈ (A ∩ B) co (A' ∩ B')"
by (force simp add: constrains_def st_set_def)
lemma constrains_INT [rule_format]:
"[| ∀i ∈ I. F ∈ A(i) co A'(i); F ∈ program|]
==> F ∈ (\<Inter>i ∈ I. A(i)) co (\<Inter>i ∈ I. A'(i))"
apply (case_tac "I=0")
apply (simp add: Inter_def)
apply (erule not_emptyE)
apply (auto simp add: constrains_def st_set_def, blast)
apply (drule bspec, assumption, force)
done
(* The rule below simulates the HOL's one for (\<Inter>z. A i) co (\<Inter>z. B i) *)
lemma constrains_All:
"[| ∀z. F:{s ∈ state. P(s, z)} co {s ∈ state. Q(s, z)}; F ∈ program |]==>
F:{s ∈ state. ∀z. P(s, z)} co {s ∈ state. ∀z. Q(s, z)}"
by (unfold constrains_def, blast)
lemma constrains_imp_subset:
"[| F ∈ A co A' |] ==> A ⊆ A'"
by (unfold constrains_def st_set_def, force)
text{*The reasoning is by subsets since "co" refers to single actions
only. So this rule isn't that useful.*}
lemma constrains_trans: "[| F ∈ A co B; F ∈ B co C |] ==> F ∈ A co C"
by (unfold constrains_def st_set_def, auto, blast)
lemma constrains_cancel:
"[| F ∈ A co (A' Un B); F ∈ B co B' |] ==> F ∈ A co (A' Un B')"
apply (drule_tac A = B in constrains_imp_subset)
apply (blast intro: constrains_weaken_R)
done
subsection{*The Unless Operator*}
lemma unless_type: "A unless B ⊆ program"
by (force simp add: unless_def constrains_def)
lemma unlessI: "[| F ∈ (A-B) co (A Un B) |] ==> F ∈ A unless B"
apply (unfold unless_def)
apply (blast dest: constrainsD2)
done
lemma unlessD: "F :A unless B ==> F ∈ (A-B) co (A Un B)"
by (unfold unless_def, auto)
subsection{*The Operator @{term initially}*}
lemma initially_type: "initially(A) ⊆ program"
by (unfold initially_def, blast)
lemma initiallyI: "[| F ∈ program; Init(F)⊆A |] ==> F ∈ initially(A)"
by (unfold initially_def, blast)
lemma initiallyD: "F ∈ initially(A) ==> Init(F)⊆A"
by (unfold initially_def, blast)
subsection{*The Operator @{term stable}*}
lemma stable_type: "stable(A)⊆program"
by (unfold stable_def constrains_def, blast)
lemma stableI: "F ∈ A co A ==> F ∈ stable(A)"
by (unfold stable_def, assumption)
lemma stableD: "F ∈ stable(A) ==> F ∈ A co A"
by (unfold stable_def, assumption)
lemma stableD2: "F ∈ stable(A) ==> F ∈ program & st_set(A)"
by (unfold stable_def constrains_def, auto)
lemma stable_state [simp]: "stable(state) = program"
by (auto simp add: stable_def constrains_def dest: Acts_type [THEN subsetD])
lemma stable_unless: "stable(A)= A unless 0"
by (auto simp add: unless_def stable_def)
subsection{*Union and Intersection with @{term stable}*}
lemma stable_Un:
"[| F ∈ stable(A); F ∈ stable(A') |] ==> F ∈ stable(A Un A')"
apply (unfold stable_def)
apply (blast intro: constrains_Un)
done
lemma stable_UN:
"[|!!i. i∈I ==> F ∈ stable(A(i)); F ∈ program |]
==> F ∈ stable (\<Union>i ∈ I. A(i))"
apply (unfold stable_def)
apply (blast intro: constrains_UN)
done
lemma stable_Int:
"[| F ∈ stable(A); F ∈ stable(A') |] ==> F ∈ stable (A ∩ A')"
apply (unfold stable_def)
apply (blast intro: constrains_Int)
done
lemma stable_INT:
"[| !!i. i ∈ I ==> F ∈ stable(A(i)); F ∈ program |]
==> F ∈ stable (\<Inter>i ∈ I. A(i))"
apply (unfold stable_def)
apply (blast intro: constrains_INT)
done
lemma stable_All:
"[|∀z. F ∈ stable({s ∈ state. P(s, z)}); F ∈ program|]
==> F ∈ stable({s ∈ state. ∀z. P(s, z)})"
apply (unfold stable_def)
apply (rule constrains_All, auto)
done
lemma stable_constrains_Un:
"[| F ∈ stable(C); F ∈ A co (C Un A') |] ==> F ∈ (C Un A) co (C Un A')"
apply (unfold stable_def constrains_def st_set_def, auto)
apply (blast dest!: bspec)
done
lemma stable_constrains_Int:
"[| F ∈ stable(C); F ∈ (C ∩ A) co A' |] ==> F ∈ (C ∩ A) co (C ∩ A')"
by (unfold stable_def constrains_def st_set_def, blast)
(* [| F ∈ stable(C); F ∈ (C ∩ A) co A |] ==> F ∈ stable(C ∩ A) *)
lemmas stable_constrains_stable = stable_constrains_Int [THEN stableI, standard]
subsection{*The Operator @{term invariant}*}
lemma invariant_type: "invariant(A) ⊆ program"
apply (unfold invariant_def)
apply (blast dest: stable_type [THEN subsetD])
done
lemma invariantI: "[| Init(F)⊆A; F ∈ stable(A) |] ==> F ∈ invariant(A)"
apply (unfold invariant_def initially_def)
apply (frule stable_type [THEN subsetD], auto)
done
lemma invariantD: "F ∈ invariant(A) ==> Init(F)⊆A & F ∈ stable(A)"
by (unfold invariant_def initially_def, auto)
lemma invariantD2: "F ∈ invariant(A) ==> F ∈ program & st_set(A)"
apply (unfold invariant_def)
apply (blast dest: stableD2)
done
text{*Could also say
@{term "invariant(A) ∩ invariant(B) ⊆ invariant (A ∩ B)"}*}
lemma invariant_Int:
"[| F ∈ invariant(A); F ∈ invariant(B) |] ==> F ∈ invariant(A ∩ B)"
apply (unfold invariant_def initially_def)
apply (simp add: stable_Int, blast)
done
subsection{*The Elimination Theorem*}
(** The "free" m has become universally quantified!
Should the premise be !!m instead of ∀m ? Would make it harder
to use in forward proof. **)
text{*The general case is easier to prove than the special case!*}
lemma "elimination":
"[| ∀m ∈ M. F ∈ {s ∈ A. x(s) = m} co B(m); F ∈ program |]
==> F ∈ {s ∈ A. x(s) ∈ M} co (\<Union>m ∈ M. B(m))"
by (auto simp add: constrains_def st_set_def, blast)
text{*As above, but for the special case of A=state*}
lemma elimination2:
"[| ∀m ∈ M. F ∈ {s ∈ state. x(s) = m} co B(m); F ∈ program |]
==> F:{s ∈ state. x(s) ∈ M} co (\<Union>m ∈ M. B(m))"
by (rule UNITY.elimination, auto)
subsection{*The Operator @{term strongest_rhs}*}
lemma constrains_strongest_rhs:
"[| F ∈ program; st_set(A) |] ==> F ∈ A co (strongest_rhs(F,A))"
by (auto simp add: constrains_def strongest_rhs_def st_set_def
dest: Acts_type [THEN subsetD])
lemma strongest_rhs_is_strongest:
"[| F ∈ A co B; st_set(B) |] ==> strongest_rhs(F,A) ⊆ B"
by (auto simp add: constrains_def strongest_rhs_def st_set_def)
ML
{*
val constrains_def = thm "constrains_def";
val stable_def = thm "stable_def";
val invariant_def = thm "invariant_def";
val unless_def = thm "unless_def";
val initially_def = thm "initially_def";
val SKIP_def = thm "SKIP_def";
val Allowed_def = thm "Allowed_def";
val programify_def = thm "programify_def";
val metacomp_def = thm "metacomp_def";
val id_in_Acts = thm "id_in_Acts";
val id_in_RawAllowedActs = thm "id_in_RawAllowedActs";
val id_in_AllowedActs = thm "id_in_AllowedActs";
val cons_id_Acts = thm "cons_id_Acts";
val cons_id_AllowedActs = thm "cons_id_AllowedActs";
val Init_type = thm "Init_type";
val st_set_Init = thm "st_set_Init";
val Acts_type = thm "Acts_type";
val AllowedActs_type = thm "AllowedActs_type";
val ActsD = thm "ActsD";
val AllowedActsD = thm "AllowedActsD";
val mk_program_in_program = thm "mk_program_in_program";
val Init_eq = thm "Init_eq";
val Acts_eq = thm "Acts_eq";
val AllowedActs_eq = thm "AllowedActs_eq";
val Init_SKIP = thm "Init_SKIP";
val Acts_SKIP = thm "Acts_SKIP";
val AllowedActs_SKIP = thm "AllowedActs_SKIP";
val raw_surjective_mk_program = thm "raw_surjective_mk_program";
val surjective_mk_program = thm "surjective_mk_program";
val program_equalityI = thm "program_equalityI";
val program_equalityE = thm "program_equalityE";
val program_equality_iff = thm "program_equality_iff";
val def_prg_Init = thm "def_prg_Init";
val def_prg_Acts = thm "def_prg_Acts";
val def_prg_AllowedActs = thm "def_prg_AllowedActs";
val def_prg_simps = thm "def_prg_simps";
val def_act_simp = thm "def_act_simp";
val def_set_simp = thm "def_set_simp";
val constrains_type = thm "constrains_type";
val constrainsI = thm "constrainsI";
val constrainsD = thm "constrainsD";
val constrainsD2 = thm "constrainsD2";
val constrains_empty = thm "constrains_empty";
val constrains_empty2 = thm "constrains_empty2";
val constrains_state = thm "constrains_state";
val constrains_state2 = thm "constrains_state2";
val constrains_weaken_R = thm "constrains_weaken_R";
val constrains_weaken_L = thm "constrains_weaken_L";
val constrains_weaken = thm "constrains_weaken";
val constrains_Un = thm "constrains_Un";
val constrains_UN = thm "constrains_UN";
val constrains_Un_distrib = thm "constrains_Un_distrib";
val constrains_UN_distrib = thm "constrains_UN_distrib";
val constrains_Int_distrib = thm "constrains_Int_distrib";
val constrains_INT_distrib = thm "constrains_INT_distrib";
val constrains_Int = thm "constrains_Int";
val constrains_INT = thm "constrains_INT";
val constrains_All = thm "constrains_All";
val constrains_imp_subset = thm "constrains_imp_subset";
val constrains_trans = thm "constrains_trans";
val constrains_cancel = thm "constrains_cancel";
val unless_type = thm "unless_type";
val unlessI = thm "unlessI";
val unlessD = thm "unlessD";
val initially_type = thm "initially_type";
val initiallyI = thm "initiallyI";
val initiallyD = thm "initiallyD";
val stable_type = thm "stable_type";
val stableI = thm "stableI";
val stableD = thm "stableD";
val stableD2 = thm "stableD2";
val stable_state = thm "stable_state";
val stable_unless = thm "stable_unless";
val stable_Un = thm "stable_Un";
val stable_UN = thm "stable_UN";
val stable_Int = thm "stable_Int";
val stable_INT = thm "stable_INT";
val stable_All = thm "stable_All";
val stable_constrains_Un = thm "stable_constrains_Un";
val stable_constrains_Int = thm "stable_constrains_Int";
val invariant_type = thm "invariant_type";
val invariantI = thm "invariantI";
val invariantD = thm "invariantD";
val invariantD2 = thm "invariantD2";
val invariant_Int = thm "invariant_Int";
val elimination = thm "elimination";
val elimination2 = thm "elimination2";
val constrains_strongest_rhs = thm "constrains_strongest_rhs";
val strongest_rhs_is_strongest = thm "strongest_rhs_is_strongest";
fun simp_of_act def = def RS def_act_simp;
fun simp_of_set def = def RS def_set_simp;
*}
end
lemma SKIP_in_program:
SKIP ∈ program
lemma programify_program:
F ∈ program ==> programify(F) = F
lemma programify_in_program:
programify(F) ∈ program
lemma programify_idem:
programify(programify(F)) = programify(F)
lemma Init_programify:
Init(programify(F)) = Init(F)
lemma Acts_programify:
Acts(programify(F)) = Acts(F)
lemma AllowedActs_programify:
AllowedActs(programify(F)) = AllowedActs(F)
lemma id_in_RawActs:
F ∈ program ==> id(state) ∈ RawActs(F)
lemma id_in_Acts:
id(state) ∈ Acts(F)
lemma id_in_RawAllowedActs:
F ∈ program ==> id(state) ∈ RawAllowedActs(F)
lemma id_in_AllowedActs:
id(state) ∈ AllowedActs(F)
lemma cons_id_Acts:
cons(id(state), Acts(F)) = Acts(F)
lemma cons_id_AllowedActs:
cons(id(state), AllowedActs(F)) = AllowedActs(F)
lemma RawInit_type:
F ∈ program ==> RawInit(F) ⊆ state
lemma RawActs_type:
F ∈ program ==> RawActs(F) ⊆ Pow(state × state)
lemma RawAllowedActs_type:
F ∈ program ==> RawAllowedActs(F) ⊆ Pow(state × state)
lemma Init_type:
Init(F) ⊆ state
lemmas InitD:
c ∈ Init(F) ==> c ∈ state
lemmas InitD:
c ∈ Init(F) ==> c ∈ state
lemma st_set_Init:
st_set(Init(F))
lemma Acts_type:
Acts(F) ⊆ Pow(state × state)
lemma AllowedActs_type:
AllowedActs(F) ⊆ Pow(state × state)
lemma ActsD:
[| act ∈ Acts(F); 〈s, s'〉 ∈ act |] ==> s ∈ state ∧ s' ∈ state
lemma AllowedActsD:
[| act ∈ AllowedActs(F); 〈s, s'〉 ∈ act |] ==> s ∈ state ∧ s' ∈ state
lemma state_subset_is_Init_iff:
state ⊆ Init(F) <-> Init(F) = state
lemma Pow_state_times_state_is_subset_Acts_iff:
Pow(state × state) ⊆ Acts(F) <-> Acts(F) = Pow(state × state)
lemma Pow_state_times_state_is_subset_AllowedActs_iff:
Pow(state × state) ⊆ AllowedActs(F) <-> AllowedActs(F) = Pow(state × state)
lemma Init_Int_state:
Init(F) ∩ state = Init(F)
lemma state_Int_Init:
state ∩ Init(F) = Init(F)
lemma Acts_Int_Pow_state_times_state:
Acts(F) ∩ Pow(state × state) = Acts(F)
lemma state_times_state_Int_Acts:
Pow(state × state) ∩ Acts(F) = Acts(F)
lemma AllowedActs_Int_Pow_state_times_state:
AllowedActs(F) ∩ Pow(state × state) = AllowedActs(F)
lemma state_times_state_Int_AllowedActs:
Pow(state × state) ∩ AllowedActs(F) = AllowedActs(F)
lemma mk_program_in_program:
mk_program(init, acts, allowed) ∈ program
lemma RawInit_eq:
RawInit(mk_program(init, acts, allowed)) = init ∩ state
lemma RawActs_eq:
RawActs(mk_program(init, acts, allowed)) = cons(id(state), acts ∩ Pow(state × state))
lemma RawAllowedActs_eq:
RawAllowedActs(mk_program(init, acts, allowed)) = cons(id(state), allowed ∩ Pow(state × state))
lemma Init_eq:
Init(mk_program(init, acts, allowed)) = init ∩ state
lemma Acts_eq:
Acts(mk_program(init, acts, allowed)) = cons(id(state), acts ∩ Pow(state × state))
lemma AllowedActs_eq:
AllowedActs(mk_program(init, acts, allowed)) = cons(id(state), allowed ∩ Pow(state × state))
lemma RawInit_SKIP:
RawInit(SKIP) = state
lemma RawAllowedActs_SKIP:
RawAllowedActs(SKIP) = Pow(state × state)
lemma RawActs_SKIP:
RawActs(SKIP) = {id(state)}
lemma Init_SKIP:
Init(SKIP) = state
lemma Acts_SKIP:
Acts(SKIP) = {id(state)}
lemma AllowedActs_SKIP:
AllowedActs(SKIP) = Pow(state × state)
lemma raw_surjective_mk_program:
F ∈ program ==> mk_program(RawInit(F), RawActs(F), RawAllowedActs(F)) = F
lemma surjective_mk_program:
mk_program(Init(F), Acts(F), AllowedActs(F)) = programify(F)
lemma program_equalityI:
[| Init(F) = Init(G); Acts(F) = Acts(G); AllowedActs(F) = AllowedActs(G); F ∈ program; G ∈ program |] ==> F = G
lemma program_equalityE:
[| F = G; [| Init(F) = Init(G); Acts(F) = Acts(G); AllowedActs(F) = AllowedActs(G) |] ==> P |] ==> P
lemma program_equality_iff:
[| F ∈ program; G ∈ program |] ==> F = G <-> Init(F) = Init(G) ∧ Acts(F) = Acts(G) ∧ AllowedActs(F) = AllowedActs(G)
lemma def_prg_Init:
F == mk_program(init, acts, allowed) ==> Init(F) = init ∩ state
lemma def_prg_Acts:
F == mk_program(init, acts, allowed) ==> Acts(F) = cons(id(state), acts ∩ Pow(state × state))
lemma def_prg_AllowedActs:
F == mk_program(init, acts, allowed) ==> AllowedActs(F) = cons(id(state), allowed ∩ Pow(state × state))
lemma def_prg_simps:
F == mk_program(init, acts, allowed) ==> Init(F) = init ∩ state ∧ Acts(F) = cons(id(state), acts ∩ Pow(state × state)) ∧ AllowedActs(F) = cons(id(state), allowed ∩ Pow(state × state))
lemma def_act_simp:
act == {〈s,s'〉 ∈ A × B . P(s, s')} ==> 〈s, s'〉 ∈ act <-> 〈s, s'〉 ∈ A × B ∧ P(s, s')
lemma def_set_simp:
A == B ==> x ∈ A <-> x ∈ B
lemma constrains_type:
A co B ⊆ program
lemma constrainsI:
[| !!act s s'. [| act ∈ Acts(F); 〈s, s'〉 ∈ act; s ∈ A |] ==> s' ∈ A'; F ∈ program; st_set(A) |] ==> F ∈ A co A'
lemma constrainsD:
F ∈ A co B ==> ∀act∈Acts(F). act `` A ⊆ B
lemma constrainsD2:
F ∈ A co B ==> F ∈ program ∧ st_set(A)
lemma constrains_empty:
F ∈ 0 co B <-> F ∈ program
lemma constrains_empty2:
F ∈ A co 0 <-> A = 0 ∧ F ∈ program
lemma constrains_state:
F ∈ state co B <-> state ⊆ B ∧ F ∈ program
lemma constrains_state2:
F ∈ A co state <-> F ∈ program ∧ st_set(A)
lemma constrains_weaken_R:
[| F ∈ A co A'; A' ⊆ B' |] ==> F ∈ A co B'
lemma constrains_weaken_L:
[| F ∈ A co A'; B ⊆ A |] ==> F ∈ B co A'
lemma constrains_weaken:
[| F ∈ A co A'; B ⊆ A; A' ⊆ B' |] ==> F ∈ B co B'
lemma constrains_Un:
[| F ∈ A co A'; F ∈ B co B' |] ==> F ∈ A ∪ B co A' ∪ B'
lemma constrains_UN:
[| !!i. i ∈ I ==> F ∈ A(i) co A'(i); F ∈ program |] ==> F ∈ (\<Union>i∈I. A(i)) co (\<Union>i∈I. A'(i))
lemma constrains_Un_distrib:
A ∪ B co C = (A co C) ∩ (B co C)
lemma constrains_UN_distrib:
i ∈ I ==> (\<Union>i∈I. A(i)) co B = (\<Inter>i∈I. A(i) co B)
lemma constrains_Int_distrib:
C co A ∩ B = (C co A) ∩ (C co B)
lemma constrains_INT_distrib:
x ∈ I ==> A co (\<Inter>i∈I. B(i)) = (\<Inter>i∈I. A co B(i))
lemma constrains_Int:
[| F ∈ A co A'; F ∈ B co B' |] ==> F ∈ A ∩ B co A' ∩ B'
lemma constrains_INT:
[| !!i. i ∈ I ==> F ∈ A(i) co A'(i); F ∈ program |] ==> F ∈ (\<Inter>i∈I. A(i)) co (\<Inter>i∈I. A'(i))
lemma constrains_All:
[| ∀z. F ∈ {s ∈ state . P(s, z)} co {s ∈ state . Q(s, z)}; F ∈ program |] ==> F ∈ {s ∈ state . ∀z. P(s, z)} co {s ∈ state . ∀z. Q(s, z)}
lemma constrains_imp_subset:
F ∈ A co A' ==> A ⊆ A'
lemma constrains_trans:
[| F ∈ A co B; F ∈ B co C |] ==> F ∈ A co C
lemma constrains_cancel:
[| F ∈ A co A' ∪ B; F ∈ B co B' |] ==> F ∈ A co A' ∪ B'
lemma unless_type:
A unless B ⊆ program
lemma unlessI:
F ∈ A - B co A ∪ B ==> F ∈ A unless B
lemma unlessD:
F ∈ A unless B ==> F ∈ A - B co A ∪ B
lemma initially_type:
initially(A) ⊆ program
lemma initiallyI:
[| F ∈ program; Init(F) ⊆ A |] ==> F ∈ initially(A)
lemma initiallyD:
F ∈ initially(A) ==> Init(F) ⊆ A
lemma stable_type:
stable(A) ⊆ program
lemma stableI:
F ∈ A co A ==> F ∈ stable(A)
lemma stableD:
F ∈ stable(A) ==> F ∈ A co A
lemma stableD2:
F ∈ stable(A) ==> F ∈ program ∧ st_set(A)
lemma stable_state:
stable(state) = program
lemma stable_unless:
stable(A) = A unless 0
lemma stable_Un:
[| F ∈ stable(A); F ∈ stable(A') |] ==> F ∈ stable(A ∪ A')
lemma stable_UN:
[| !!i. i ∈ I ==> F ∈ stable(A(i)); F ∈ program |] ==> F ∈ stable(\<Union>i∈I. A(i))
lemma stable_Int:
[| F ∈ stable(A); F ∈ stable(A') |] ==> F ∈ stable(A ∩ A')
lemma stable_INT:
[| !!i. i ∈ I ==> F ∈ stable(A(i)); F ∈ program |] ==> F ∈ stable(\<Inter>i∈I. A(i))
lemma stable_All:
[| ∀z. F ∈ stable({s ∈ state . P(s, z)}); F ∈ program |] ==> F ∈ stable({s ∈ state . ∀z. P(s, z)})
lemma stable_constrains_Un:
[| F ∈ stable(C); F ∈ A co C ∪ A' |] ==> F ∈ C ∪ A co C ∪ A'
lemma stable_constrains_Int:
[| F ∈ stable(C); F ∈ C ∩ A co A' |] ==> F ∈ C ∩ A co C ∩ A'
lemmas stable_constrains_stable:
[| F ∈ stable(C); F ∈ C ∩ A co A |] ==> F ∈ stable(C ∩ A)
lemmas stable_constrains_stable:
[| F ∈ stable(C); F ∈ C ∩ A co A |] ==> F ∈ stable(C ∩ A)
lemma invariant_type:
invariant(A) ⊆ program
lemma invariantI:
[| Init(F) ⊆ A; F ∈ stable(A) |] ==> F ∈ invariant(A)
lemma invariantD:
F ∈ invariant(A) ==> Init(F) ⊆ A ∧ F ∈ stable(A)
lemma invariantD2:
F ∈ invariant(A) ==> F ∈ program ∧ st_set(A)
lemma invariant_Int:
[| F ∈ invariant(A); F ∈ invariant(B) |] ==> F ∈ invariant(A ∩ B)
lemma elimination:
[| ∀m∈M. F ∈ {s ∈ A . x(s) = m} co B(m); F ∈ program |] ==> F ∈ {s ∈ A . x(s) ∈ M} co (\<Union>m∈M. B(m))
lemma elimination2:
[| ∀m∈M. F ∈ {s ∈ state . x(s) = m} co B(m); F ∈ program |] ==> F ∈ {s ∈ state . x(s) ∈ M} co (\<Union>m∈M. B(m))
lemma constrains_strongest_rhs:
[| F ∈ program; st_set(A) |] ==> F ∈ A co strongest_rhs(F, A)
lemma strongest_rhs_is_strongest:
[| F ∈ A co B; st_set(B) |] ==> strongest_rhs(F, A) ⊆ B