(* Title: ZF/UNITY/Union.thy
ID: $Id: Union.thy,v 1.8 2005/06/17 14:15:11 haftmann Exp $
Author: Sidi O Ehmety, Computer Laboratory
Copyright 2001 University of Cambridge
Unions of programs
Partly from Misra's Chapter 5: Asynchronous Compositions of Programs
Theory ported form HOL..
*)
theory Union imports SubstAx FP begin
constdefs
(*FIXME: conjoin Init(F) Int Init(G) ≠ 0 *)
ok :: "[i, i] => o" (infixl "ok" 65)
"F ok G == Acts(F) ⊆ AllowedActs(G) &
Acts(G) ⊆ AllowedActs(F)"
(*FIXME: conjoin (\<Inter>i ∈ I. Init(F(i))) ≠ 0 *)
OK :: "[i, i=>i] => o"
"OK(I,F) == (∀i ∈ I. ∀j ∈ I-{i}. Acts(F(i)) ⊆ AllowedActs(F(j)))"
JOIN :: "[i, i=>i] => i"
"JOIN(I,F) == if I = 0 then SKIP else
mk_program(\<Inter>i ∈ I. Init(F(i)), \<Union>i ∈ I. Acts(F(i)),
\<Inter>i ∈ I. AllowedActs(F(i)))"
Join :: "[i, i] => i" (infixl "Join" 65)
"F Join G == mk_program (Init(F) Int Init(G), Acts(F) Un Acts(G),
AllowedActs(F) Int AllowedActs(G))"
(*Characterizes safety properties. Used with specifying AllowedActs*)
safety_prop :: "i => o"
"safety_prop(X) == X⊆program &
SKIP ∈ X & (∀G ∈ program. Acts(G) ⊆ (\<Union>F ∈ X. Acts(F)) --> G ∈ X)"
syntax
"@JOIN1" :: "[pttrns, i] => i" ("(3JN _./ _)" 10)
"@JOIN" :: "[pttrn, i, i] => i" ("(3JN _:_./ _)" 10)
translations
"JN x:A. B" == "JOIN(A, (%x. B))"
"JN x y. B" == "JN x. JN y. B"
"JN x. B" == "JOIN(state,(%x. B))"
syntax (symbols)
SKIP :: i ("⊥")
Join :: "[i, i] => i" (infixl "\<squnion>" 65)
"@JOIN1" :: "[pttrns, i] => i" ("(3\<Squnion> _./ _)" 10)
"@JOIN" :: "[pttrn, i, i] => i" ("(3\<Squnion> _ ∈ _./ _)" 10)
subsection{*SKIP*}
lemma reachable_SKIP [simp]: "reachable(SKIP) = state"
by (force elim: reachable.induct intro: reachable.intros)
text{*Elimination programify from ok and Join*}
lemma ok_programify_left [iff]: "programify(F) ok G <-> F ok G"
by (simp add: ok_def)
lemma ok_programify_right [iff]: "F ok programify(G) <-> F ok G"
by (simp add: ok_def)
lemma Join_programify_left [simp]: "programify(F) Join G = F Join G"
by (simp add: Join_def)
lemma Join_programify_right [simp]: "F Join programify(G) = F Join G"
by (simp add: Join_def)
subsection{*SKIP and safety properties*}
lemma SKIP_in_constrains_iff [iff]: "(SKIP ∈ A co B) <-> (A⊆B & st_set(A))"
by (unfold constrains_def st_set_def, auto)
lemma SKIP_in_Constrains_iff [iff]: "(SKIP ∈ A Co B)<-> (state Int A⊆B)"
by (unfold Constrains_def, auto)
lemma SKIP_in_stable [iff]: "SKIP ∈ stable(A) <-> st_set(A)"
by (auto simp add: stable_def)
lemma SKIP_in_Stable [iff]: "SKIP ∈ Stable(A)"
by (unfold Stable_def, auto)
subsection{*Join and JOIN types*}
lemma Join_in_program [iff,TC]: "F Join G ∈ program"
by (unfold Join_def, auto)
lemma JOIN_in_program [iff,TC]: "JOIN(I,F) ∈ program"
by (unfold JOIN_def, auto)
subsection{*Init, Acts, and AllowedActs of Join and JOIN*}
lemma Init_Join [simp]: "Init(F Join G) = Init(F) Int Init(G)"
by (simp add: Int_assoc Join_def)
lemma Acts_Join [simp]: "Acts(F Join G) = Acts(F) Un Acts(G)"
by (simp add: Int_Un_distrib2 cons_absorb Join_def)
lemma AllowedActs_Join [simp]: "AllowedActs(F Join G) =
AllowedActs(F) Int AllowedActs(G)"
apply (simp add: Int_assoc cons_absorb Join_def)
done
subsection{*Join's algebraic laws*}
lemma Join_commute: "F Join G = G Join F"
by (simp add: Join_def Un_commute Int_commute)
lemma Join_left_commute: "A Join (B Join C) = B Join (A Join C)"
apply (simp add: Join_def Int_Un_distrib2 cons_absorb)
apply (simp add: Un_ac Int_ac Int_Un_distrib2 cons_absorb)
done
lemma Join_assoc: "(F Join G) Join H = F Join (G Join H)"
by (simp add: Un_ac Join_def cons_absorb Int_assoc Int_Un_distrib2)
subsection{*Needed below*}
lemma cons_id [simp]: "cons(id(state), Pow(state * state)) = Pow(state*state)"
by auto
lemma Join_SKIP_left [simp]: "SKIP Join F = programify(F)"
apply (unfold Join_def SKIP_def)
apply (auto simp add: Int_absorb cons_eq)
done
lemma Join_SKIP_right [simp]: "F Join SKIP = programify(F)"
apply (subst Join_commute)
apply (simp add: Join_SKIP_left)
done
lemma Join_absorb [simp]: "F Join F = programify(F)"
by (rule program_equalityI, auto)
lemma Join_left_absorb: "F Join (F Join G) = F Join G"
by (simp add: Join_assoc [symmetric])
subsection{*Join is an AC-operator*}
lemmas Join_ac = Join_assoc Join_left_absorb Join_commute Join_left_commute
subsection{*Eliminating programify form JN and OK expressions*}
lemma OK_programify [iff]: "OK(I, %x. programify(F(x))) <-> OK(I, F)"
by (simp add: OK_def)
lemma JN_programify [iff]: "JOIN(I, %x. programify(F(x))) = JOIN(I, F)"
by (simp add: JOIN_def)
subsection{*JN*}
lemma JN_empty [simp]: "JOIN(0, F) = SKIP"
by (unfold JOIN_def, auto)
lemma Init_JN [simp]:
"Init(\<Squnion>i ∈ I. F(i)) = (if I=0 then state else (\<Inter>i ∈ I. Init(F(i))))"
by (simp add: JOIN_def INT_extend_simps del: INT_simps)
lemma Acts_JN [simp]:
"Acts(JOIN(I,F)) = cons(id(state), \<Union>i ∈ I. Acts(F(i)))"
apply (unfold JOIN_def)
apply (auto simp del: INT_simps UN_simps)
apply (rule equalityI)
apply (auto dest: Acts_type [THEN subsetD])
done
lemma AllowedActs_JN [simp]:
"AllowedActs(\<Squnion>i ∈ I. F(i)) =
(if I=0 then Pow(state*state) else (\<Inter>i ∈ I. AllowedActs(F(i))))"
apply (unfold JOIN_def, auto)
apply (rule equalityI)
apply (auto elim!: not_emptyE dest: AllowedActs_type [THEN subsetD])
done
lemma JN_cons [simp]: "(\<Squnion>i ∈ cons(a,I). F(i)) = F(a) Join (\<Squnion>i ∈ I. F(i))"
by (rule program_equalityI, auto)
lemma JN_cong [cong]:
"[| I=J; !!i. i ∈ J ==> F(i) = G(i) |] ==>
(\<Squnion>i ∈ I. F(i)) = (\<Squnion>i ∈ J. G(i))"
by (simp add: JOIN_def)
subsection{*JN laws*}
lemma JN_absorb: "k ∈ I ==>F(k) Join (\<Squnion>i ∈ I. F(i)) = (\<Squnion>i ∈ I. F(i))"
apply (subst JN_cons [symmetric])
apply (auto simp add: cons_absorb)
done
lemma JN_Un: "(\<Squnion>i ∈ I Un J. F(i)) = ((\<Squnion>i ∈ I. F(i)) Join (\<Squnion>i ∈ J. F(i)))"
apply (rule program_equalityI)
apply (simp_all add: UN_Un INT_Un)
apply (simp_all del: INT_simps add: INT_extend_simps, blast)
done
lemma JN_constant: "(\<Squnion>i ∈ I. c) = (if I=0 then SKIP else programify(c))"
by (rule program_equalityI, auto)
lemma JN_Join_distrib:
"(\<Squnion>i ∈ I. F(i) Join G(i)) = (\<Squnion>i ∈ I. F(i)) Join (\<Squnion>i ∈ I. G(i))"
apply (rule program_equalityI)
apply (simp_all add: INT_Int_distrib, blast)
done
lemma JN_Join_miniscope: "(\<Squnion>i ∈ I. F(i) Join G) = ((\<Squnion>i ∈ I. F(i) Join G))"
by (simp add: JN_Join_distrib JN_constant)
text{*Used to prove guarantees_JN_I*}
lemma JN_Join_diff: "i ∈ I==>F(i) Join JOIN(I - {i}, F) = JOIN(I, F)"
apply (rule program_equalityI)
apply (auto elim!: not_emptyE)
done
subsection{*Safety: co, stable, FP*}
(*Fails if I=0 because it collapses to SKIP ∈ A co B, i.e. to A⊆B. So an
alternative precondition is A⊆B, but most proofs using this rule require
I to be nonempty for other reasons anyway.*)
lemma JN_constrains:
"i ∈ I==>(\<Squnion>i ∈ I. F(i)) ∈ A co B <-> (∀i ∈ I. programify(F(i)) ∈ A co B)"
apply (unfold constrains_def JOIN_def st_set_def, auto)
prefer 2 apply blast
apply (rename_tac j act y z)
apply (cut_tac F = "F (j) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done
lemma Join_constrains [iff]:
"(F Join G ∈ A co B) <-> (programify(F) ∈ A co B & programify(G) ∈ A co B)"
by (auto simp add: constrains_def)
lemma Join_unless [iff]:
"(F Join G ∈ A unless B) <->
(programify(F) ∈ A unless B & programify(G) ∈ A unless B)"
by (simp add: Join_constrains unless_def)
(*Analogous weak versions FAIL; see Misra [1994] 5.4.1, Substitution Axiom.
reachable (F Join G) could be much bigger than reachable F, reachable G
*)
lemma Join_constrains_weaken:
"[| F ∈ A co A'; G ∈ B co B' |]
==> F Join G ∈ (A Int B) co (A' Un B')"
apply (subgoal_tac "st_set (A) & st_set (B) & F ∈ program & G ∈ program")
prefer 2 apply (blast dest: constrainsD2, simp)
apply (blast intro: constrains_weaken)
done
(*If I=0, it degenerates to SKIP ∈ state co 0, which is false.*)
lemma JN_constrains_weaken:
assumes major: "(!!i. i ∈ I ==> F(i) ∈ A(i) co A'(i))"
and minor: "i ∈ I"
shows "(\<Squnion>i ∈ I. F(i)) ∈ (\<Inter>i ∈ I. A(i)) co (\<Union>i ∈ I. A'(i))"
apply (cut_tac minor)
apply (simp (no_asm_simp) add: JN_constrains)
apply clarify
apply (rename_tac "j")
apply (frule_tac i = j in major)
apply (frule constrainsD2, simp)
apply (blast intro: constrains_weaken)
done
lemma JN_stable:
"(\<Squnion>i ∈ I. F(i)) ∈ stable(A) <-> ((∀i ∈ I. programify(F(i)) ∈ stable(A)) & st_set(A))"
apply (auto simp add: stable_def constrains_def JOIN_def)
apply (cut_tac F = "F (i) " in Acts_type)
apply (drule_tac x = act in bspec, auto)
done
lemma initially_JN_I:
assumes major: "(!!i. i ∈ I ==>F(i) ∈ initially(A))"
and minor: "i ∈ I"
shows "(\<Squnion>i ∈ I. F(i)) ∈ initially(A)"
apply (cut_tac minor)
apply (auto elim!: not_emptyE simp add: Inter_iff initially_def)
apply (frule_tac i = x in major)
apply (auto simp add: initially_def)
done
lemma invariant_JN_I:
assumes major: "(!!i. i ∈ I ==> F(i) ∈ invariant(A))"
and minor: "i ∈ I"
shows "(\<Squnion>i ∈ I. F(i)) ∈ invariant(A)"
apply (cut_tac minor)
apply (auto intro!: initially_JN_I dest: major simp add: invariant_def JN_stable)
apply (erule_tac V = "i ∈ I" in thin_rl)
apply (frule major)
apply (drule_tac [2] major)
apply (auto simp add: invariant_def)
apply (frule stableD2, force)+
done
lemma Join_stable [iff]:
" (F Join G ∈ stable(A)) <->
(programify(F) ∈ stable(A) & programify(G) ∈ stable(A))"
by (simp add: stable_def)
lemma initially_JoinI [intro!]:
"[| F ∈ initially(A); G ∈ initially(A) |] ==> F Join G ∈ initially(A)"
by (unfold initially_def, auto)
lemma invariant_JoinI:
"[| F ∈ invariant(A); G ∈ invariant(A) |]
==> F Join G ∈ invariant(A)"
apply (subgoal_tac "F ∈ program&G ∈ program")
prefer 2 apply (blast dest: invariantD2)
apply (simp add: invariant_def)
apply (auto intro: Join_in_program)
done
(* Fails if I=0 because \<Inter>i ∈ 0. A(i) = 0 *)
lemma FP_JN: "i ∈ I ==> FP(\<Squnion>i ∈ I. F(i)) = (\<Inter>i ∈ I. FP (programify(F(i))))"
by (auto simp add: FP_def Inter_def st_set_def JN_stable)
subsection{*Progress: transient, ensures*}
lemma JN_transient:
"i ∈ I ==>
(\<Squnion>i ∈ I. F(i)) ∈ transient(A) <-> (∃i ∈ I. programify(F(i)) ∈ transient(A))"
apply (auto simp add: transient_def JOIN_def)
apply (unfold st_set_def)
apply (drule_tac [2] x = act in bspec)
apply (auto dest: Acts_type [THEN subsetD])
done
lemma Join_transient [iff]:
"F Join G ∈ transient(A) <->
(programify(F) ∈ transient(A) | programify(G) ∈ transient(A))"
apply (auto simp add: transient_def Join_def Int_Un_distrib2)
done
lemma Join_transient_I1: "F ∈ transient(A) ==> F Join G ∈ transient(A)"
by (simp add: Join_transient transientD2)
lemma Join_transient_I2: "G ∈ transient(A) ==> F Join G ∈ transient(A)"
by (simp add: Join_transient transientD2)
(*If I=0 it degenerates to (SKIP ∈ A ensures B) = False, i.e. to ~(A⊆B) *)
lemma JN_ensures:
"i ∈ I ==>
(\<Squnion>i ∈ I. F(i)) ∈ A ensures B <->
((∀i ∈ I. programify(F(i)) ∈ (A-B) co (A Un B)) &
(∃i ∈ I. programify(F(i)) ∈ A ensures B))"
by (auto simp add: ensures_def JN_constrains JN_transient)
lemma Join_ensures:
"F Join G ∈ A ensures B <->
(programify(F) ∈ (A-B) co (A Un B) & programify(G) ∈ (A-B) co (A Un B) &
(programify(F) ∈ transient (A-B) | programify(G) ∈ transient (A-B)))"
apply (unfold ensures_def)
apply (auto simp add: Join_transient)
done
lemma stable_Join_constrains:
"[| F ∈ stable(A); G ∈ A co A' |]
==> F Join G ∈ A co A'"
apply (unfold stable_def constrains_def Join_def st_set_def)
apply (cut_tac F = F in Acts_type)
apply (cut_tac F = G in Acts_type, force)
done
(*Premise for G cannot use Always because F ∈ Stable A is
weaker than G ∈ stable A *)
lemma stable_Join_Always1:
"[| F ∈ stable(A); G ∈ invariant(A) |] ==> F Join G ∈ Always(A)"
apply (subgoal_tac "F ∈ program & G ∈ program & st_set (A) ")
prefer 2 apply (blast dest: invariantD2 stableD2)
apply (simp add: Always_def invariant_def initially_def Stable_eq_stable)
apply (force intro: stable_Int)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_Always2:
"[| F ∈ invariant(A); G ∈ stable(A) |] ==> F Join G ∈ Always(A)"
apply (subst Join_commute)
apply (blast intro: stable_Join_Always1)
done
lemma stable_Join_ensures1:
"[| F ∈ stable(A); G ∈ A ensures B |] ==> F Join G ∈ A ensures B"
apply (subgoal_tac "F ∈ program & G ∈ program & st_set (A) ")
prefer 2 apply (blast dest: stableD2 ensures_type [THEN subsetD])
apply (simp (no_asm_simp) add: Join_ensures)
apply (simp add: stable_def ensures_def)
apply (erule constrains_weaken, auto)
done
(*As above, but exchanging the roles of F and G*)
lemma stable_Join_ensures2:
"[| F ∈ A ensures B; G ∈ stable(A) |] ==> F Join G ∈ A ensures B"
apply (subst Join_commute)
apply (blast intro: stable_Join_ensures1)
done
subsection{*The ok and OK relations*}
lemma ok_SKIP1 [iff]: "SKIP ok F"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)
lemma ok_SKIP2 [iff]: "F ok SKIP"
by (auto dest: Acts_type [THEN subsetD] simp add: ok_def)
lemma ok_Join_commute:
"(F ok G & (F Join G) ok H) <-> (G ok H & F ok (G Join H))"
by (auto simp add: ok_def)
lemma ok_commute: "(F ok G) <->(G ok F)"
by (auto simp add: ok_def)
lemmas ok_sym = ok_commute [THEN iffD1, standard]
lemma ok_iff_OK: "OK({<0,F>,<1,G>,<2,H>}, snd) <-> (F ok G & (F Join G) ok H)"
by (simp add: ok_def Join_def OK_def Int_assoc cons_absorb
Int_Un_distrib2 Ball_def, safe, force+)
lemma ok_Join_iff1 [iff]: "F ok (G Join H) <-> (F ok G & F ok H)"
by (auto simp add: ok_def)
lemma ok_Join_iff2 [iff]: "(G Join H) ok F <-> (G ok F & H ok F)"
by (auto simp add: ok_def)
(*useful? Not with the previous two around*)
lemma ok_Join_commute_I: "[| F ok G; (F Join G) ok H |] ==> F ok (G Join H)"
by (auto simp add: ok_def)
lemma ok_JN_iff1 [iff]: "F ok JOIN(I,G) <-> (∀i ∈ I. F ok G(i))"
by (force dest: Acts_type [THEN subsetD] elim!: not_emptyE simp add: ok_def)
lemma ok_JN_iff2 [iff]: "JOIN(I,G) ok F <-> (∀i ∈ I. G(i) ok F)"
apply (auto elim!: not_emptyE simp add: ok_def)
apply (blast dest: Acts_type [THEN subsetD])
done
lemma OK_iff_ok: "OK(I,F) <-> (∀i ∈ I. ∀j ∈ I-{i}. F(i) ok (F(j)))"
by (auto simp add: ok_def OK_def)
lemma OK_imp_ok: "[| OK(I,F); i ∈ I; j ∈ I; i≠j|] ==> F(i) ok F(j)"
by (auto simp add: OK_iff_ok)
lemma OK_0 [iff]: "OK(0,F)"
by (simp add: OK_def)
lemma OK_cons_iff:
"OK(cons(i, I), F) <->
(i ∈ I & OK(I, F)) | (i∉I & OK(I, F) & F(i) ok JOIN(I,F))"
apply (simp add: OK_iff_ok)
apply (blast intro: ok_sym)
done
subsection{*Allowed*}
lemma Allowed_SKIP [simp]: "Allowed(SKIP) = program"
by (auto dest: Acts_type [THEN subsetD] simp add: Allowed_def)
lemma Allowed_Join [simp]:
"Allowed(F Join G) =
Allowed(programify(F)) Int Allowed(programify(G))"
apply (auto simp add: Allowed_def)
done
lemma Allowed_JN [simp]:
"i ∈ I ==>
Allowed(JOIN(I,F)) = (\<Inter>i ∈ I. Allowed(programify(F(i))))"
apply (auto simp add: Allowed_def, blast)
done
lemma ok_iff_Allowed:
"F ok G <-> (programify(F) ∈ Allowed(programify(G)) &
programify(G) ∈ Allowed(programify(F)))"
by (simp add: ok_def Allowed_def)
lemma OK_iff_Allowed:
"OK(I,F) <->
(∀i ∈ I. ∀j ∈ I-{i}. programify(F(i)) ∈ Allowed(programify(F(j))))"
apply (auto simp add: OK_iff_ok ok_iff_Allowed)
done
subsection{*safety_prop, for reasoning about given instances of "ok"*}
lemma safety_prop_Acts_iff:
"safety_prop(X) ==> (Acts(G) ⊆ cons(id(state), (\<Union>F ∈ X. Acts(F)))) <-> (programify(G) ∈ X)"
apply (simp (no_asm_use) add: safety_prop_def)
apply clarify
apply (case_tac "G ∈ program", simp_all, blast, safe)
prefer 2 apply force
apply (force simp add: programify_def)
done
lemma safety_prop_AllowedActs_iff_Allowed:
"safety_prop(X) ==>
(\<Union>G ∈ X. Acts(G)) ⊆ AllowedActs(F) <-> (X ⊆ Allowed(programify(F)))"
apply (simp add: Allowed_def safety_prop_Acts_iff [THEN iff_sym]
safety_prop_def, blast)
done
lemma Allowed_eq:
"safety_prop(X) ==> Allowed(mk_program(init, acts, \<Union>F ∈ X. Acts(F))) = X"
apply (subgoal_tac "cons (id (state), Union (RepFun (X, Acts)) Int Pow (state * state)) = Union (RepFun (X, Acts))")
apply (rule_tac [2] equalityI)
apply (simp del: UN_simps add: Allowed_def safety_prop_Acts_iff safety_prop_def, auto)
apply (force dest: Acts_type [THEN subsetD] simp add: safety_prop_def)+
done
lemma def_prg_Allowed:
"[| F == mk_program (init, acts, \<Union>F ∈ X. Acts(F)); safety_prop(X) |]
==> Allowed(F) = X"
by (simp add: Allowed_eq)
(*For safety_prop to hold, the property must be satisfiable!*)
lemma safety_prop_constrains [iff]:
"safety_prop(A co B) <-> (A ⊆ B & st_set(A))"
by (simp add: safety_prop_def constrains_def st_set_def, blast)
(* To be used with resolution *)
lemma safety_prop_constrainsI [iff]:
"[| A⊆B; st_set(A) |] ==>safety_prop(A co B)"
by auto
lemma safety_prop_stable [iff]: "safety_prop(stable(A)) <-> st_set(A)"
by (simp add: stable_def)
lemma safety_prop_stableI: "st_set(A) ==> safety_prop(stable(A))"
by auto
lemma safety_prop_Int [simp]:
"[| safety_prop(X) ; safety_prop(Y) |] ==> safety_prop(X Int Y)"
apply (simp add: safety_prop_def, safe, blast)
apply (drule_tac [2] B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (Y, Acts))" in subset_trans)
apply (drule_tac B = "Union (RepFun (X Int Y, Acts))" and C = "Union (RepFun (X, Acts))" in subset_trans)
apply blast+
done
(* If I=0 the conclusion becomes safety_prop(0) which is false *)
lemma safety_prop_Inter:
assumes major: "(!!i. i ∈ I ==>safety_prop(X(i)))"
and minor: "i ∈ I"
shows "safety_prop(\<Inter>i ∈ I. X(i))"
apply (simp add: safety_prop_def)
apply (cut_tac minor, safe)
apply (simp (no_asm_use) add: Inter_iff)
apply clarify
apply (frule major)
apply (drule_tac [2] i = xa in major)
apply (frule_tac [4] i = xa in major)
apply (auto simp add: safety_prop_def)
apply (drule_tac B = "Union (RepFun (Inter (RepFun (I, X)), Acts))" and C = "Union (RepFun (X (xa), Acts))" in subset_trans)
apply blast+
done
lemma def_UNION_ok_iff:
"[| F == mk_program(init,acts, \<Union>G ∈ X. Acts(G)); safety_prop(X) |]
==> F ok G <-> (programify(G) ∈ X & acts Int Pow(state*state) ⊆ AllowedActs(G))"
apply (unfold ok_def)
apply (drule_tac G = G in safety_prop_Acts_iff)
apply (cut_tac F = G in AllowedActs_type)
apply (cut_tac F = G in Acts_type, auto)
done
ML
{*
val safety_prop_def = thm "safety_prop_def";
val reachable_SKIP = thm "reachable_SKIP";
val ok_programify_left = thm "ok_programify_left";
val ok_programify_right = thm "ok_programify_right";
val Join_programify_left = thm "Join_programify_left";
val Join_programify_right = thm "Join_programify_right";
val SKIP_in_constrains_iff = thm "SKIP_in_constrains_iff";
val SKIP_in_Constrains_iff = thm "SKIP_in_Constrains_iff";
val SKIP_in_stable = thm "SKIP_in_stable";
val SKIP_in_Stable = thm "SKIP_in_Stable";
val Join_in_program = thm "Join_in_program";
val JOIN_in_program = thm "JOIN_in_program";
val Init_Join = thm "Init_Join";
val Acts_Join = thm "Acts_Join";
val AllowedActs_Join = thm "AllowedActs_Join";
val Join_commute = thm "Join_commute";
val Join_left_commute = thm "Join_left_commute";
val Join_assoc = thm "Join_assoc";
val cons_id = thm "cons_id";
val Join_SKIP_left = thm "Join_SKIP_left";
val Join_SKIP_right = thm "Join_SKIP_right";
val Join_absorb = thm "Join_absorb";
val Join_left_absorb = thm "Join_left_absorb";
val OK_programify = thm "OK_programify";
val JN_programify = thm "JN_programify";
val JN_empty = thm "JN_empty";
val Init_JN = thm "Init_JN";
val Acts_JN = thm "Acts_JN";
val AllowedActs_JN = thm "AllowedActs_JN";
val JN_cons = thm "JN_cons";
val JN_cong = thm "JN_cong";
val JN_absorb = thm "JN_absorb";
val JN_Un = thm "JN_Un";
val JN_constant = thm "JN_constant";
val JN_Join_distrib = thm "JN_Join_distrib";
val JN_Join_miniscope = thm "JN_Join_miniscope";
val JN_Join_diff = thm "JN_Join_diff";
val JN_constrains = thm "JN_constrains";
val Join_constrains = thm "Join_constrains";
val Join_unless = thm "Join_unless";
val Join_constrains_weaken = thm "Join_constrains_weaken";
val JN_constrains_weaken = thm "JN_constrains_weaken";
val JN_stable = thm "JN_stable";
val initially_JN_I = thm "initially_JN_I";
val invariant_JN_I = thm "invariant_JN_I";
val Join_stable = thm "Join_stable";
val initially_JoinI = thm "initially_JoinI";
val invariant_JoinI = thm "invariant_JoinI";
val FP_JN = thm "FP_JN";
val JN_transient = thm "JN_transient";
val Join_transient = thm "Join_transient";
val Join_transient_I1 = thm "Join_transient_I1";
val Join_transient_I2 = thm "Join_transient_I2";
val JN_ensures = thm "JN_ensures";
val Join_ensures = thm "Join_ensures";
val stable_Join_constrains = thm "stable_Join_constrains";
val stable_Join_Always1 = thm "stable_Join_Always1";
val stable_Join_Always2 = thm "stable_Join_Always2";
val stable_Join_ensures1 = thm "stable_Join_ensures1";
val stable_Join_ensures2 = thm "stable_Join_ensures2";
val ok_SKIP1 = thm "ok_SKIP1";
val ok_SKIP2 = thm "ok_SKIP2";
val ok_Join_commute = thm "ok_Join_commute";
val ok_commute = thm "ok_commute";
val ok_sym = thm "ok_sym";
val ok_iff_OK = thm "ok_iff_OK";
val ok_Join_iff1 = thm "ok_Join_iff1";
val ok_Join_iff2 = thm "ok_Join_iff2";
val ok_Join_commute_I = thm "ok_Join_commute_I";
val ok_JN_iff1 = thm "ok_JN_iff1";
val ok_JN_iff2 = thm "ok_JN_iff2";
val OK_iff_ok = thm "OK_iff_ok";
val OK_imp_ok = thm "OK_imp_ok";
val Allowed_SKIP = thm "Allowed_SKIP";
val Allowed_Join = thm "Allowed_Join";
val Allowed_JN = thm "Allowed_JN";
val ok_iff_Allowed = thm "ok_iff_Allowed";
val OK_iff_Allowed = thm "OK_iff_Allowed";
val safety_prop_Acts_iff = thm "safety_prop_Acts_iff";
val safety_prop_AllowedActs_iff_Allowed = thm "safety_prop_AllowedActs_iff_Allowed";
val Allowed_eq = thm "Allowed_eq";
val def_prg_Allowed = thm "def_prg_Allowed";
val safety_prop_constrains = thm "safety_prop_constrains";
val safety_prop_constrainsI = thm "safety_prop_constrainsI";
val safety_prop_stable = thm "safety_prop_stable";
val safety_prop_stableI = thm "safety_prop_stableI";
val safety_prop_Int = thm "safety_prop_Int";
val safety_prop_Inter = thm "safety_prop_Inter";
val def_UNION_ok_iff = thm "def_UNION_ok_iff";
val Join_ac = thms "Join_ac";
*}
end
lemma reachable_SKIP:
reachable(SKIP) = state
lemma ok_programify_left:
programify(F) ok G <-> F ok G
lemma ok_programify_right:
F ok programify(G) <-> F ok G
lemma Join_programify_left:
programify(F) Join G = F Join G
lemma Join_programify_right:
F Join programify(G) = F Join G
lemma SKIP_in_constrains_iff:
SKIP ∈ A co B <-> A ⊆ B ∧ st_set(A)
lemma SKIP_in_Constrains_iff:
SKIP ∈ A Co B <-> state ∩ A ⊆ B
lemma SKIP_in_stable:
SKIP ∈ stable(A) <-> st_set(A)
lemma SKIP_in_Stable:
SKIP ∈ Stable(A)
lemma Join_in_program:
F Join G ∈ program
lemma JOIN_in_program:
JOIN(I, F) ∈ program
lemma Init_Join:
Init(F Join G) = Init(F) ∩ Init(G)
lemma Acts_Join:
Acts(F Join G) = Acts(F) ∪ Acts(G)
lemma AllowedActs_Join:
AllowedActs(F Join G) = AllowedActs(F) ∩ AllowedActs(G)
lemma Join_commute:
F Join G = G Join F
lemma Join_left_commute:
A Join (B Join C) = B Join (A Join C)
lemma Join_assoc:
F Join G Join H = F Join (G Join H)
lemma cons_id:
cons(id(state), Pow(state × state)) = Pow(state × state)
lemma Join_SKIP_left:
SKIP Join F = programify(F)
lemma Join_SKIP_right:
F Join SKIP = programify(F)
lemma Join_absorb:
F Join F = programify(F)
lemma Join_left_absorb:
F Join (F Join G) = F Join G
lemmas Join_ac:
F Join G Join H = F Join (G Join H)
F Join (F Join G) = F Join G
F Join G = G Join F
A Join (B Join C) = B Join (A Join C)
lemmas Join_ac:
F Join G Join H = F Join (G Join H)
F Join (F Join G) = F Join G
F Join G = G Join F
A Join (B Join C) = B Join (A Join C)
lemma OK_programify:
OK(I, %x. programify(F(x))) <-> OK(I, F)
lemma JN_programify:
(JN x:I. programify(F(x))) = JOIN(I, F)
lemma JN_empty:
JOIN(0, F) = SKIP
lemma Init_JN:
Init(JN i:I. F(i)) = (if I = 0 then state else \<Inter>i∈I. Init(F(i)))
lemma Acts_JN:
Acts(JOIN(I, F)) = cons(id(state), \<Union>i∈I. Acts(F(i)))
lemma AllowedActs_JN:
AllowedActs(JN i:I. F(i)) = (if I = 0 then Pow(state × state) else \<Inter>i∈I. AllowedActs(F(i)))
lemma JN_cons:
(JN i:cons(a, I). F(i)) = F(a) Join (JN i:I. F(i))
lemma JN_cong:
[| I = J; !!i. i ∈ J ==> F(i) = G(i) |] ==> (JN i:I. F(i)) = (JN i:J. G(i))
lemma JN_absorb:
k ∈ I ==> F(k) Join (JN i:I. F(i)) = (JN i:I. F(i))
lemma JN_Un:
(JN i:I ∪ J. F(i)) = (JN i:I. F(i)) Join (JN i:J. F(i))
lemma JN_constant:
(JN i:I. c) = (if I = 0 then SKIP else programify(c))
lemma JN_Join_distrib:
(JN i:I. F(i) Join G(i)) = (JN i:I. F(i)) Join (JN i:I. G(i))
lemma JN_Join_miniscope:
(JN i:I. F(i) Join G) = (JN i:I. F(i) Join G)
lemma JN_Join_diff:
i ∈ I ==> F(i) Join JOIN(I - {i}, F) = JOIN(I, F)
lemma JN_constrains:
i ∈ I ==> (JN i:I. F(i)) ∈ A co B <-> (∀i∈I. programify(F(i)) ∈ A co B)
lemma Join_constrains:
F Join G ∈ A co B <-> programify(F) ∈ A co B ∧ programify(G) ∈ A co B
lemma Join_unless:
F Join G ∈ A unless B <-> programify(F) ∈ A unless B ∧ programify(G) ∈ A unless B
lemma Join_constrains_weaken:
[| F ∈ A co A'; G ∈ B co B' |] ==> F Join G ∈ A ∩ B co A' ∪ B'
lemma JN_constrains_weaken:
[| !!i. i ∈ I ==> F(i) ∈ A(i) co A'(i); i ∈ I |] ==> (JN i:I. F(i)) ∈ (\<Inter>i∈I. A(i)) co (\<Union>i∈I. A'(i))
lemma JN_stable:
(JN i:I. F(i)) ∈ stable(A) <-> (∀i∈I. programify(F(i)) ∈ stable(A)) ∧ st_set(A)
lemma initially_JN_I:
[| !!i. i ∈ I ==> F(i) ∈ initially(A); i ∈ I |] ==> (JN i:I. F(i)) ∈ initially(A)
lemma invariant_JN_I:
[| !!i. i ∈ I ==> F(i) ∈ invariant(A); i ∈ I |] ==> (JN i:I. F(i)) ∈ invariant(A)
lemma Join_stable:
F Join G ∈ stable(A) <-> programify(F) ∈ stable(A) ∧ programify(G) ∈ stable(A)
lemma initially_JoinI:
[| F ∈ initially(A); G ∈ initially(A) |] ==> F Join G ∈ initially(A)
lemma invariant_JoinI:
[| F ∈ invariant(A); G ∈ invariant(A) |] ==> F Join G ∈ invariant(A)
lemma FP_JN:
i ∈ I ==> FP(JN i:I. F(i)) = (\<Inter>i∈I. FP(programify(F(i))))
lemma JN_transient:
i ∈ I ==> (JN i:I. F(i)) ∈ transient(A) <-> (∃i∈I. programify(F(i)) ∈ transient(A))
lemma Join_transient:
F Join G ∈ transient(A) <-> programify(F) ∈ transient(A) ∨ programify(G) ∈ transient(A)
lemma Join_transient_I1:
F ∈ transient(A) ==> F Join G ∈ transient(A)
lemma Join_transient_I2:
G ∈ transient(A) ==> F Join G ∈ transient(A)
lemma JN_ensures:
i ∈ I ==> (JN i:I. F(i)) ∈ A ensures B <-> (∀i∈I. programify(F(i)) ∈ A - B co A ∪ B) ∧ (∃i∈I. programify(F(i)) ∈ A ensures B)
lemma Join_ensures:
F Join G ∈ A ensures B <-> programify(F) ∈ A - B co A ∪ B ∧ programify(G) ∈ A - B co A ∪ B ∧ (programify(F) ∈ transient(A - B) ∨ programify(G) ∈ transient(A - B))
lemma stable_Join_constrains:
[| F ∈ stable(A); G ∈ A co A' |] ==> F Join G ∈ A co A'
lemma stable_Join_Always1:
[| F ∈ stable(A); G ∈ invariant(A) |] ==> F Join G ∈ Always(A)
lemma stable_Join_Always2:
[| F ∈ invariant(A); G ∈ stable(A) |] ==> F Join G ∈ Always(A)
lemma stable_Join_ensures1:
[| F ∈ stable(A); G ∈ A ensures B |] ==> F Join G ∈ A ensures B
lemma stable_Join_ensures2:
[| F ∈ A ensures B; G ∈ stable(A) |] ==> F Join G ∈ A ensures B
lemma ok_SKIP1:
SKIP ok F
lemma ok_SKIP2:
F ok SKIP
lemma ok_Join_commute:
F ok G ∧ F Join G ok H <-> G ok H ∧ F ok (G Join H)
lemma ok_commute:
F ok G <-> G ok F
lemmas ok_sym:
F ok G ==> G ok F
lemmas ok_sym:
F ok G ==> G ok F
lemma ok_iff_OK:
OK({〈0, F〉, 〈1, G〉, 〈2, H〉}, snd) <-> F ok G ∧ F Join G ok H
lemma ok_Join_iff1:
F ok (G Join H) <-> F ok G ∧ F ok H
lemma ok_Join_iff2:
G Join H ok F <-> G ok F ∧ H ok F
lemma ok_Join_commute_I:
[| F ok G; F Join G ok H |] ==> F ok (G Join H)
lemma ok_JN_iff1:
F ok JOIN(I, G) <-> (∀i∈I. F ok G(i))
lemma ok_JN_iff2:
JOIN(I, G) ok F <-> (∀i∈I. G(i) ok F)
lemma OK_iff_ok:
OK(I, F) <-> (∀i∈I. ∀j∈I - {i}. F(i) ok F(j))
lemma OK_imp_ok:
[| OK(I, F); i ∈ I; j ∈ I; i ≠ j |] ==> F(i) ok F(j)
lemma OK_0:
OK(0, F)
lemma OK_cons_iff:
OK(cons(i, I), F) <-> i ∈ I ∧ OK(I, F) ∨ i ∉ I ∧ OK(I, F) ∧ F(i) ok JOIN(I, F)
lemma Allowed_SKIP:
Allowed(SKIP) = program
lemma Allowed_Join:
Allowed(F Join G) = Allowed(programify(F)) ∩ Allowed(programify(G))
lemma Allowed_JN:
i ∈ I ==> Allowed(JOIN(I, F)) = (\<Inter>i∈I. Allowed(programify(F(i))))
lemma ok_iff_Allowed:
F ok G <-> programify(F) ∈ Allowed(programify(G)) ∧ programify(G) ∈ Allowed(programify(F))
lemma OK_iff_Allowed:
OK(I, F) <-> (∀i∈I. ∀j∈I - {i}. programify(F(i)) ∈ Allowed(programify(F(j))))
lemma safety_prop_Acts_iff:
safety_prop(X) ==> Acts(G) ⊆ cons(id(state), \<Union>F∈X. Acts(F)) <-> programify(G) ∈ X
lemma safety_prop_AllowedActs_iff_Allowed:
safety_prop(X) ==> (\<Union>G∈X. Acts(G)) ⊆ AllowedActs(F) <-> X ⊆ Allowed(programify(F))
lemma Allowed_eq:
safety_prop(X) ==> Allowed(mk_program(init, acts, \<Union>F∈X. Acts(F))) = X
lemma def_prg_Allowed:
[| F == mk_program(init, acts, \<Union>F∈X. Acts(F)); safety_prop(X) |] ==> Allowed(F) = X
lemma safety_prop_constrains:
safety_prop(A co B) <-> A ⊆ B ∧ st_set(A)
lemma safety_prop_constrainsI:
[| A ⊆ B; st_set(A) |] ==> safety_prop(A co B)
lemma safety_prop_stable:
safety_prop(stable(A)) <-> st_set(A)
lemma safety_prop_stableI:
st_set(A) ==> safety_prop(stable(A))
lemma safety_prop_Int:
[| safety_prop(X); safety_prop(Y) |] ==> safety_prop(X ∩ Y)
lemma safety_prop_Inter:
[| !!i. i ∈ I ==> safety_prop(X(i)); i ∈ I |] ==> safety_prop(\<Inter>i∈I. X(i))
lemma def_UNION_ok_iff:
[| F == mk_program(init, acts, \<Union>G∈X. Acts(G)); safety_prop(X) |] ==> F ok G <-> programify(G) ∈ X ∧ acts ∩ Pow(state × state) ⊆ AllowedActs(G)