(* Title: ZF/ZF.thy
ID: $Id: ZF.thy,v 1.50 2005/06/17 14:15:09 haftmann Exp $
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory
Copyright 1993 University of Cambridge
*)
header{*Zermelo-Fraenkel Set Theory*}
theory ZF imports FOL begin
global
typedecl i
arities i :: "term"
consts
"0" :: "i" ("0") --{*the empty set*}
Pow :: "i => i" --{*power sets*}
Inf :: "i" --{*infinite set*}
text {*Bounded Quantifiers *}
consts
Ball :: "[i, i => o] => o"
Bex :: "[i, i => o] => o"
text {*General Union and Intersection *}
consts
Union :: "i => i"
Inter :: "i => i"
text {*Variations on Replacement *}
consts
PrimReplace :: "[i, [i, i] => o] => i"
Replace :: "[i, [i, i] => o] => i"
RepFun :: "[i, i => i] => i"
Collect :: "[i, i => o] => i"
text{*Definite descriptions -- via Replace over the set "1"*}
consts
The :: "(i => o) => i" (binder "THE " 10)
If :: "[o, i, i] => i" ("(if (_)/ then (_)/ else (_))" [10] 10)
syntax
old_if :: "[o, i, i] => i" ("if '(_,_,_')")
translations
"if(P,a,b)" => "If(P,a,b)"
text {*Finite Sets *}
consts
Upair :: "[i, i] => i"
cons :: "[i, i] => i"
succ :: "i => i"
text {*Ordered Pairing *}
consts
Pair :: "[i, i] => i"
fst :: "i => i"
snd :: "i => i"
split :: "[[i, i] => 'a, i] => 'a::{}" --{*for pattern-matching*}
text {*Sigma and Pi Operators *}
consts
Sigma :: "[i, i => i] => i"
Pi :: "[i, i => i] => i"
text {*Relations and Functions *}
consts
"domain" :: "i => i"
range :: "i => i"
field :: "i => i"
converse :: "i => i"
relation :: "i => o" --{*recognizes sets of pairs*}
function :: "i => o" --{*recognizes functions; can have non-pairs*}
Lambda :: "[i, i => i] => i"
restrict :: "[i, i] => i"
text {*Infixes in order of decreasing precedence *}
consts
"``" :: "[i, i] => i" (infixl 90) --{*image*}
"-``" :: "[i, i] => i" (infixl 90) --{*inverse image*}
"`" :: "[i, i] => i" (infixl 90) --{*function application*}
(*"*" :: "[i, i] => i" (infixr 80) [virtual] Cartesian product*)
"Int" :: "[i, i] => i" (infixl 70) --{*binary intersection*}
"Un" :: "[i, i] => i" (infixl 65) --{*binary union*}
"-" :: "[i, i] => i" (infixl 65) --{*set difference*}
(*"->" :: "[i, i] => i" (infixr 60) [virtual] function spacε*)
"<=" :: "[i, i] => o" (infixl 50) --{*subset relation*}
":" :: "[i, i] => o" (infixl 50) --{*membership relation*}
(*"~:" :: "[i, i] => o" (infixl 50) (*negated membership relation*)*)
nonterminals "is" patterns
syntax
"" :: "i => is" ("_")
"@Enum" :: "[i, is] => is" ("_,/ _")
"~:" :: "[i, i] => o" (infixl 50)
"@Finset" :: "is => i" ("{(_)}")
"@Tuple" :: "[i, is] => i" ("<(_,/ _)>")
"@Collect" :: "[pttrn, i, o] => i" ("(1{_: _ ./ _})")
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _: _, _})")
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _: _})" [51,0,51])
"@INTER" :: "[pttrn, i, i] => i" ("(3INT _:_./ _)" 10)
"@UNION" :: "[pttrn, i, i] => i" ("(3UN _:_./ _)" 10)
"@PROD" :: "[pttrn, i, i] => i" ("(3PROD _:_./ _)" 10)
"@SUM" :: "[pttrn, i, i] => i" ("(3SUM _:_./ _)" 10)
"->" :: "[i, i] => i" (infixr 60)
"*" :: "[i, i] => i" (infixr 80)
"@lam" :: "[pttrn, i, i] => i" ("(3lam _:_./ _)" 10)
"@Ball" :: "[pttrn, i, o] => o" ("(3ALL _:_./ _)" 10)
"@Bex" :: "[pttrn, i, o] => o" ("(3EX _:_./ _)" 10)
(** Patterns -- extends pre-defined type "pttrn" used in abstractions **)
"@pattern" :: "patterns => pttrn" ("<_>")
"" :: "pttrn => patterns" ("_")
"@patterns" :: "[pttrn, patterns] => patterns" ("_,/_")
translations
"x ~: y" == "~ (x : y)"
"{x, xs}" == "cons(x, {xs})"
"{x}" == "cons(x, 0)"
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(A, %x y. Q)"
"{b. x:A}" == "RepFun(A, %x. b)"
"INT x:A. B" == "Inter({B. x:A})"
"UN x:A. B" == "Union({B. x:A})"
"PROD x:A. B" => "Pi(A, %x. B)"
"SUM x:A. B" => "Sigma(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"
"A * B" => "Sigma(A, _K(B))"
"lam x:A. f" == "Lambda(A, %x. f)"
"ALL x:A. P" == "Ball(A, %x. P)"
"EX x:A. P" == "Bex(A, %x. P)"
"<x, y, z>" == "<x, <y, z>>"
"<x, y>" == "Pair(x, y)"
"%<x,y,zs>.b" == "split(%x <y,zs>.b)"
"%<x,y>.b" == "split(%x y. b)"
syntax (xsymbols)
"op *" :: "[i, i] => i" (infixr "×" 80)
"op Int" :: "[i, i] => i" (infixl "∩" 70)
"op Un" :: "[i, i] => i" (infixl "∪" 65)
"op ->" :: "[i, i] => i" (infixr "->" 60)
"op <=" :: "[i, i] => o" (infixl "⊆" 50)
"op :" :: "[i, i] => o" (infixl "∈" 50)
"op ~:" :: "[i, i] => o" (infixl "∉" 50)
"@Collect" :: "[pttrn, i, o] => i" ("(1{_ ∈ _ ./ _})")
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ ∈ _, _})")
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ ∈ _})" [51,0,51])
"@UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_∈_./ _)" 10)
"@INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_∈_./ _)" 10)
Union :: "i =>i" ("\<Union>_" [90] 90)
Inter :: "i =>i" ("\<Inter>_" [90] 90)
"@PROD" :: "[pttrn, i, i] => i" ("(3Π_∈_./ _)" 10)
"@SUM" :: "[pttrn, i, i] => i" ("(3Σ_∈_./ _)" 10)
"@lam" :: "[pttrn, i, i] => i" ("(3λ_∈_./ _)" 10)
"@Ball" :: "[pttrn, i, o] => o" ("(3∀_∈_./ _)" 10)
"@Bex" :: "[pttrn, i, o] => o" ("(3∃_∈_./ _)" 10)
"@Tuple" :: "[i, is] => i" ("〈(_,/ _)〉")
"@pattern" :: "patterns => pttrn" ("〈_〉")
syntax (HTML output)
"op *" :: "[i, i] => i" (infixr "×" 80)
"op Int" :: "[i, i] => i" (infixl "∩" 70)
"op Un" :: "[i, i] => i" (infixl "∪" 65)
"op <=" :: "[i, i] => o" (infixl "⊆" 50)
"op :" :: "[i, i] => o" (infixl "∈" 50)
"op ~:" :: "[i, i] => o" (infixl "∉" 50)
"@Collect" :: "[pttrn, i, o] => i" ("(1{_ ∈ _ ./ _})")
"@Replace" :: "[pttrn, pttrn, i, o] => i" ("(1{_ ./ _ ∈ _, _})")
"@RepFun" :: "[i, pttrn, i] => i" ("(1{_ ./ _ ∈ _})" [51,0,51])
"@UNION" :: "[pttrn, i, i] => i" ("(3\<Union>_∈_./ _)" 10)
"@INTER" :: "[pttrn, i, i] => i" ("(3\<Inter>_∈_./ _)" 10)
Union :: "i =>i" ("\<Union>_" [90] 90)
Inter :: "i =>i" ("\<Inter>_" [90] 90)
"@PROD" :: "[pttrn, i, i] => i" ("(3Π_∈_./ _)" 10)
"@SUM" :: "[pttrn, i, i] => i" ("(3Σ_∈_./ _)" 10)
"@lam" :: "[pttrn, i, i] => i" ("(3λ_∈_./ _)" 10)
"@Ball" :: "[pttrn, i, o] => o" ("(3∀_∈_./ _)" 10)
"@Bex" :: "[pttrn, i, o] => o" ("(3∃_∈_./ _)" 10)
"@Tuple" :: "[i, is] => i" ("〈(_,/ _)〉")
"@pattern" :: "patterns => pttrn" ("〈_〉")
finalconsts
0 Pow Inf Union PrimReplace
"op :"
defs
(*don't try to use constdefs: the declaration order is tightly constrained*)
(* Bounded Quantifiers *)
Ball_def: "Ball(A, P) == ∀x. x∈A --> P(x)"
Bex_def: "Bex(A, P) == ∃x. x∈A & P(x)"
subset_def: "A <= B == ∀x∈A. x∈B"
local
axioms
(* ZF axioms -- see Suppes p.238
Axioms for Union, Pow and Replace state existence only,
uniqueness is derivable using extensionality. *)
extension: "A = B <-> A <= B & B <= A"
Union_iff: "A ∈ Union(C) <-> (∃B∈C. A∈B)"
Pow_iff: "A ∈ Pow(B) <-> A <= B"
(*We may name this set, though it is not uniquely defined.*)
infinity: "0∈Inf & (∀y∈Inf. succ(y): Inf)"
(*This formulation facilitates case analysis on A.*)
foundation: "A=0 | (∃x∈A. ∀y∈x. y~:A)"
(*Schema axiom since predicate P is a higher-order variable*)
replacement: "(∀x∈A. ∀y z. P(x,y) & P(x,z) --> y=z) ==>
b ∈ PrimReplace(A,P) <-> (∃x∈A. P(x,b))"
defs
(* Derived form of replacement, restricting P to its functional part.
The resulting set (for functional P) is the same as with
PrimReplace, but the rules are simpler. *)
Replace_def: "Replace(A,P) == PrimReplace(A, %x y. (EX!z. P(x,z)) & P(x,y))"
(* Functional form of replacement -- analgous to ML's map functional *)
RepFun_def: "RepFun(A,f) == {y . x∈A, y=f(x)}"
(* Separation and Pairing can be derived from the Replacement
and Powerset Axioms using the following definitions. *)
Collect_def: "Collect(A,P) == {y . x∈A, x=y & P(x)}"
(*Unordered pairs (Upair) express binary union/intersection and cons;
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...)*)
Upair_def: "Upair(a,b) == {y. x∈Pow(Pow(0)), (x=0 & y=a) | (x=Pow(0) & y=b)}"
cons_def: "cons(a,A) == Upair(a,a) Un A"
succ_def: "succ(i) == cons(i, i)"
(* Difference, general intersection, binary union and small intersection *)
Diff_def: "A - B == { x∈A . ~(x∈B) }"
Inter_def: "Inter(A) == { x∈Union(A) . ∀y∈A. x∈y}"
Un_def: "A Un B == Union(Upair(A,B))"
Int_def: "A Int B == Inter(Upair(A,B))"
(* definite descriptions *)
the_def: "The(P) == Union({y . x ∈ {0}, P(y)})"
if_def: "if(P,a,b) == THE z. P & z=a | ~P & z=b"
(* this "symmetric" definition works better than {{a}, {a,b}} *)
Pair_def: "<a,b> == {{a,a}, {a,b}}"
fst_def: "fst(p) == THE a. ∃b. p=<a,b>"
snd_def: "snd(p) == THE b. ∃a. p=<a,b>"
split_def: "split(c) == %p. c(fst(p), snd(p))"
Sigma_def: "Sigma(A,B) == \<Union>x∈A. \<Union>y∈B(x). {<x,y>}"
(* Operations on relations *)
(*converse of relation r, inverse of function*)
converse_def: "converse(r) == {z. w∈r, ∃x y. w=<x,y> & z=<y,x>}"
domain_def: "domain(r) == {x. w∈r, ∃y. w=<x,y>}"
range_def: "range(r) == domain(converse(r))"
field_def: "field(r) == domain(r) Un range(r)"
relation_def: "relation(r) == ∀z∈r. ∃x y. z = <x,y>"
function_def: "function(r) ==
∀x y. <x,y>:r --> (∀y'. <x,y'>:r --> y=y')"
image_def: "r `` A == {y : range(r) . ∃x∈A. <x,y> : r}"
vimage_def: "r -`` A == converse(r)``A"
(* Abstraction, application and Cartesian product of a family of sets *)
lam_def: "Lambda(A,b) == {<x,b(x)> . x∈A}"
apply_def: "f`a == Union(f``{a})"
Pi_def: "Pi(A,B) == {f∈Pow(Sigma(A,B)). A<=domain(f) & function(f)}"
(* Restrict the relation r to the domain A *)
restrict_def: "restrict(r,A) == {z : r. ∃x∈A. ∃y. z = <x,y>}"
(* Pattern-matching and 'Dependent' type operators *)
print_translation {*
[("Pi", dependent_tr' ("@PROD", "op ->")),
("Sigma", dependent_tr' ("@SUM", "op *"))];
*}
subsection {* Substitution*}
(*Useful examples: singletonI RS subst_elem, subst_elem RSN (2,IntI) *)
lemma subst_elem: "[| b∈A; a=b |] ==> a∈A"
by (erule ssubst, assumption)
subsection{*Bounded universal quantifier*}
lemma ballI [intro!]: "[| !!x. x∈A ==> P(x) |] ==> ∀x∈A. P(x)"
by (simp add: Ball_def)
lemmas strip = impI allI ballI
lemma bspec [dest?]: "[| ∀x∈A. P(x); x: A |] ==> P(x)"
by (simp add: Ball_def)
(*Instantiates x first: better for automatic theorem proving?*)
lemma rev_ballE [elim]:
"[| ∀x∈A. P(x); x~:A ==> Q; P(x) ==> Q |] ==> Q"
by (simp add: Ball_def, blast)
lemma ballE: "[| ∀x∈A. P(x); P(x) ==> Q; x~:A ==> Q |] ==> Q"
by blast
(*Used in the datatype package*)
lemma rev_bspec: "[| x: A; ∀x∈A. P(x) |] ==> P(x)"
by (simp add: Ball_def)
(*Trival rewrite rule; (∀x∈A.P)<->P holds only if A is nonempty!*)
lemma ball_triv [simp]: "(∀x∈A. P) <-> ((∃x. x∈A) --> P)"
by (simp add: Ball_def)
(*Congruence rule for rewriting*)
lemma ball_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |] ==> (∀x∈A. P(x)) <-> (∀x∈A'. P'(x))"
by (simp add: Ball_def)
subsection{*Bounded existential quantifier*}
lemma bexI [intro]: "[| P(x); x: A |] ==> ∃x∈A. P(x)"
by (simp add: Bex_def, blast)
(*The best argument order when there is only one x∈A*)
lemma rev_bexI: "[| x∈A; P(x) |] ==> ∃x∈A. P(x)"
by blast
(*Not of the general form for such rules; ~∃has become ALL~ *)
lemma bexCI: "[| ∀x∈A. ~P(x) ==> P(a); a: A |] ==> ∃x∈A. P(x)"
by blast
lemma bexE [elim!]: "[| ∃x∈A. P(x); !!x. [| x∈A; P(x) |] ==> Q |] ==> Q"
by (simp add: Bex_def, blast)
(*We do not even have (∃x∈A. True) <-> True unless A is nonempty!!*)
lemma bex_triv [simp]: "(∃x∈A. P) <-> ((∃x. x∈A) & P)"
by (simp add: Bex_def)
lemma bex_cong [cong]:
"[| A=A'; !!x. x∈A' ==> P(x) <-> P'(x) |]
==> (∃x∈A. P(x)) <-> (∃x∈A'. P'(x))"
by (simp add: Bex_def cong: conj_cong)
subsection{*Rules for subsets*}
lemma subsetI [intro!]:
"(!!x. x∈A ==> x∈B) ==> A <= B"
by (simp add: subset_def)
(*Rule in Modus Ponens style [was called subsetE] *)
lemma subsetD [elim]: "[| A <= B; c∈A |] ==> c∈B"
apply (unfold subset_def)
apply (erule bspec, assumption)
done
(*Classical elimination rule*)
lemma subsetCE [elim]:
"[| A <= B; c~:A ==> P; c∈B ==> P |] ==> P"
by (simp add: subset_def, blast)
(*Sometimes useful with premises in this order*)
lemma rev_subsetD: "[| c∈A; A<=B |] ==> c∈B"
by blast
lemma contra_subsetD: "[| A <= B; c ~: B |] ==> c ~: A"
by blast
lemma rev_contra_subsetD: "[| c ~: B; A <= B |] ==> c ~: A"
by blast
lemma subset_refl [simp]: "A <= A"
by blast
lemma subset_trans: "[| A<=B; B<=C |] ==> A<=C"
by blast
(*Useful for proving A<=B by rewriting in some cases*)
lemma subset_iff:
"A<=B <-> (∀x. x∈A --> x∈B)"
apply (unfold subset_def Ball_def)
apply (rule iff_refl)
done
subsection{*Rules for equality*}
(*Anti-symmetry of the subset relation*)
lemma equalityI [intro]: "[| A <= B; B <= A |] ==> A = B"
by (rule extension [THEN iffD2], rule conjI)
lemma equality_iffI: "(!!x. x∈A <-> x∈B) ==> A = B"
by (rule equalityI, blast+)
lemmas equalityD1 = extension [THEN iffD1, THEN conjunct1, standard]
lemmas equalityD2 = extension [THEN iffD1, THEN conjunct2, standard]
lemma equalityE: "[| A = B; [| A<=B; B<=A |] ==> P |] ==> P"
by (blast dest: equalityD1 equalityD2)
lemma equalityCE:
"[| A = B; [| c∈A; c∈B |] ==> P; [| c~:A; c~:B |] ==> P |] ==> P"
by (erule equalityE, blast)
(*Lemma for creating induction formulae -- for "pattern matching" on p
To make the induction hypotheses usable, apply "spec" or "bspec" to
put universal quantifiers over the free variables in p.
Would it be better to do subgoal_tac "∀z. p = f(z) --> R(z)" ??*)
lemma setup_induction: "[| p: A; !!z. z: A ==> p=z --> R |] ==> R"
by auto
subsection{*Rules for Replace -- the derived form of replacement*}
lemma Replace_iff:
"b : {y. x∈A, P(x,y)} <-> (∃x∈A. P(x,b) & (∀y. P(x,y) --> y=b))"
apply (unfold Replace_def)
apply (rule replacement [THEN iff_trans], blast+)
done
(*Introduction; there must be a unique y such that P(x,y), namely y=b. *)
lemma ReplaceI [intro]:
"[| P(x,b); x: A; !!y. P(x,y) ==> y=b |] ==>
b : {y. x∈A, P(x,y)}"
by (rule Replace_iff [THEN iffD2], blast)
(*Elimination; may asssume there is a unique y such that P(x,y), namely y=b. *)
lemma ReplaceE:
"[| b : {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b); ∀y. P(x,y)-->y=b |] ==> R
|] ==> R"
by (rule Replace_iff [THEN iffD1, THEN bexE], simp+)
(*As above but without the (generally useless) 3rd assumption*)
lemma ReplaceE2 [elim!]:
"[| b : {y. x∈A, P(x,y)};
!!x. [| x: A; P(x,b) |] ==> R
|] ==> R"
by (erule ReplaceE, blast)
lemma Replace_cong [cong]:
"[| A=B; !!x y. x∈B ==> P(x,y) <-> Q(x,y) |] ==>
Replace(A,P) = Replace(B,Q)"
apply (rule equality_iffI)
apply (simp add: Replace_iff)
done
subsection{*Rules for RepFun*}
lemma RepFunI: "a ∈ A ==> f(a) : {f(x). x∈A}"
by (simp add: RepFun_def Replace_iff, blast)
(*Useful for coinduction proofs*)
lemma RepFun_eqI [intro]: "[| b=f(a); a ∈ A |] ==> b : {f(x). x∈A}"
apply (erule ssubst)
apply (erule RepFunI)
done
lemma RepFunE [elim!]:
"[| b : {f(x). x∈A};
!!x.[| x∈A; b=f(x) |] ==> P |] ==>
P"
by (simp add: RepFun_def Replace_iff, blast)
lemma RepFun_cong [cong]:
"[| A=B; !!x. x∈B ==> f(x)=g(x) |] ==> RepFun(A,f) = RepFun(B,g)"
by (simp add: RepFun_def)
lemma RepFun_iff [simp]: "b : {f(x). x∈A} <-> (∃x∈A. b=f(x))"
by (unfold Bex_def, blast)
lemma triv_RepFun [simp]: "{x. x∈A} = A"
by blast
subsection{*Rules for Collect -- forming a subset by separation*}
(*Separation is derivable from Replacement*)
lemma separation [simp]: "a : {x∈A. P(x)} <-> a∈A & P(a)"
by (unfold Collect_def, blast)
lemma CollectI [intro!]: "[| a∈A; P(a) |] ==> a : {x∈A. P(x)}"
by simp
lemma CollectE [elim!]: "[| a : {x∈A. P(x)}; [| a∈A; P(a) |] ==> R |] ==> R"
by simp
lemma CollectD1: "a : {x∈A. P(x)} ==> a∈A"
by (erule CollectE, assumption)
lemma CollectD2: "a : {x∈A. P(x)} ==> P(a)"
by (erule CollectE, assumption)
lemma Collect_cong [cong]:
"[| A=B; !!x. x∈B ==> P(x) <-> Q(x) |]
==> Collect(A, %x. P(x)) = Collect(B, %x. Q(x))"
by (simp add: Collect_def)
subsection{*Rules for Unions*}
declare Union_iff [simp]
(*The order of the premises presupposes that C is rigid; A may be flexible*)
lemma UnionI [intro]: "[| B: C; A: B |] ==> A: Union(C)"
by (simp, blast)
lemma UnionE [elim!]: "[| A ∈ Union(C); !!B.[| A: B; B: C |] ==> R |] ==> R"
by (simp, blast)
subsection{*Rules for Unions of families*}
(* \<Union>x∈A. B(x) abbreviates Union({B(x). x∈A}) *)
lemma UN_iff [simp]: "b : (\<Union>x∈A. B(x)) <-> (∃x∈A. b ∈ B(x))"
by (simp add: Bex_def, blast)
(*The order of the premises presupposes that A is rigid; b may be flexible*)
lemma UN_I: "[| a: A; b: B(a) |] ==> b: (\<Union>x∈A. B(x))"
by (simp, blast)
lemma UN_E [elim!]:
"[| b : (\<Union>x∈A. B(x)); !!x.[| x: A; b: B(x) |] ==> R |] ==> R"
by blast
lemma UN_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (\<Union>x∈A. C(x)) = (\<Union>x∈B. D(x))"
by simp
(*No "Addcongs [UN_cong]" because \<Union>is a combination of constants*)
(* UN_E appears before UnionE so that it is tried first, to avoid expensive
calls to hyp_subst_tac. Cannot include UN_I as it is unsafe: would enlarge
the search space.*)
subsection{*Rules for the empty set*}
(*The set {x∈0. False} is empty; by foundation it equals 0
See Suppes, page 21.*)
lemma not_mem_empty [simp]: "a ~: 0"
apply (cut_tac foundation)
apply (best dest: equalityD2)
done
lemmas emptyE [elim!] = not_mem_empty [THEN notE, standard]
lemma empty_subsetI [simp]: "0 <= A"
by blast
lemma equals0I: "[| !!y. y∈A ==> False |] ==> A=0"
by blast
lemma equals0D [dest]: "A=0 ==> a ~: A"
by blast
declare sym [THEN equals0D, dest]
lemma not_emptyI: "a∈A ==> A ~= 0"
by blast
lemma not_emptyE: "[| A ~= 0; !!x. x∈A ==> R |] ==> R"
by blast
subsection{*Rules for Inter*}
(*Not obviously useful for proving InterI, InterD, InterE*)
lemma Inter_iff: "A ∈ Inter(C) <-> (∀x∈C. A: x) & C≠0"
by (simp add: Inter_def Ball_def, blast)
(* Intersection is well-behaved only if the family is non-empty! *)
lemma InterI [intro!]:
"[| !!x. x: C ==> A: x; C≠0 |] ==> A ∈ Inter(C)"
by (simp add: Inter_iff)
(*A "destruct" rule -- every B in C contains A as an element, but
A∈B can hold when B∈C does not! This rule is analogous to "spec". *)
lemma InterD [elim]: "[| A ∈ Inter(C); B ∈ C |] ==> A ∈ B"
by (unfold Inter_def, blast)
(*"Classical" elimination rule -- does not require exhibiting B∈C *)
lemma InterE [elim]:
"[| A ∈ Inter(C); B~:C ==> R; A∈B ==> R |] ==> R"
by (simp add: Inter_def, blast)
subsection{*Rules for Intersections of families*}
(* \<Inter>x∈A. B(x) abbreviates Inter({B(x). x∈A}) *)
lemma INT_iff: "b : (\<Inter>x∈A. B(x)) <-> (∀x∈A. b ∈ B(x)) & A≠0"
by (force simp add: Inter_def)
lemma INT_I: "[| !!x. x: A ==> b: B(x); A≠0 |] ==> b: (\<Inter>x∈A. B(x))"
by blast
lemma INT_E: "[| b : (\<Inter>x∈A. B(x)); a: A |] ==> b ∈ B(a)"
by blast
lemma INT_cong:
"[| A=B; !!x. x∈B ==> C(x)=D(x) |] ==> (\<Inter>x∈A. C(x)) = (\<Inter>x∈B. D(x))"
by simp
(*No "Addcongs [INT_cong]" because \<Inter>is a combination of constants*)
subsection{*Rules for Powersets*}
lemma PowI: "A <= B ==> A ∈ Pow(B)"
by (erule Pow_iff [THEN iffD2])
lemma PowD: "A ∈ Pow(B) ==> A<=B"
by (erule Pow_iff [THEN iffD1])
declare Pow_iff [iff]
lemmas Pow_bottom = empty_subsetI [THEN PowI] (* 0 ∈ Pow(B) *)
lemmas Pow_top = subset_refl [THEN PowI] (* A ∈ Pow(A) *)
subsection{*Cantor's Theorem: There is no surjection from a set to its powerset.*}
(*The search is undirected. Allowing redundant introduction rules may
make it diverge. Variable b represents ANY map, such as
(lam x∈A.b(x)): A->Pow(A). *)
lemma cantor: "∃S ∈ Pow(A). ∀x∈A. b(x) ~= S"
by (best elim!: equalityCE del: ReplaceI RepFun_eqI)
ML
{*
val lam_def = thm "lam_def";
val domain_def = thm "domain_def";
val range_def = thm "range_def";
val image_def = thm "image_def";
val vimage_def = thm "vimage_def";
val field_def = thm "field_def";
val Inter_def = thm "Inter_def";
val Ball_def = thm "Ball_def";
val Bex_def = thm "Bex_def";
val ballI = thm "ballI";
val bspec = thm "bspec";
val rev_ballE = thm "rev_ballE";
val ballE = thm "ballE";
val rev_bspec = thm "rev_bspec";
val ball_triv = thm "ball_triv";
val ball_cong = thm "ball_cong";
val bexI = thm "bexI";
val rev_bexI = thm "rev_bexI";
val bexCI = thm "bexCI";
val bexE = thm "bexE";
val bex_triv = thm "bex_triv";
val bex_cong = thm "bex_cong";
val subst_elem = thm "subst_elem";
val subsetI = thm "subsetI";
val subsetD = thm "subsetD";
val subsetCE = thm "subsetCE";
val rev_subsetD = thm "rev_subsetD";
val contra_subsetD = thm "contra_subsetD";
val rev_contra_subsetD = thm "rev_contra_subsetD";
val subset_refl = thm "subset_refl";
val subset_trans = thm "subset_trans";
val subset_iff = thm "subset_iff";
val equalityI = thm "equalityI";
val equality_iffI = thm "equality_iffI";
val equalityD1 = thm "equalityD1";
val equalityD2 = thm "equalityD2";
val equalityE = thm "equalityE";
val equalityCE = thm "equalityCE";
val setup_induction = thm "setup_induction";
val Replace_iff = thm "Replace_iff";
val ReplaceI = thm "ReplaceI";
val ReplaceE = thm "ReplaceE";
val ReplaceE2 = thm "ReplaceE2";
val Replace_cong = thm "Replace_cong";
val RepFunI = thm "RepFunI";
val RepFun_eqI = thm "RepFun_eqI";
val RepFunE = thm "RepFunE";
val RepFun_cong = thm "RepFun_cong";
val RepFun_iff = thm "RepFun_iff";
val triv_RepFun = thm "triv_RepFun";
val separation = thm "separation";
val CollectI = thm "CollectI";
val CollectE = thm "CollectE";
val CollectD1 = thm "CollectD1";
val CollectD2 = thm "CollectD2";
val Collect_cong = thm "Collect_cong";
val UnionI = thm "UnionI";
val UnionE = thm "UnionE";
val UN_iff = thm "UN_iff";
val UN_I = thm "UN_I";
val UN_E = thm "UN_E";
val UN_cong = thm "UN_cong";
val Inter_iff = thm "Inter_iff";
val InterI = thm "InterI";
val InterD = thm "InterD";
val InterE = thm "InterE";
val INT_iff = thm "INT_iff";
val INT_I = thm "INT_I";
val INT_E = thm "INT_E";
val INT_cong = thm "INT_cong";
val PowI = thm "PowI";
val PowD = thm "PowD";
val Pow_bottom = thm "Pow_bottom";
val Pow_top = thm "Pow_top";
val not_mem_empty = thm "not_mem_empty";
val emptyE = thm "emptyE";
val empty_subsetI = thm "empty_subsetI";
val equals0I = thm "equals0I";
val equals0D = thm "equals0D";
val not_emptyI = thm "not_emptyI";
val not_emptyE = thm "not_emptyE";
val cantor = thm "cantor";
*}
(*Functions for ML scripts*)
ML
{*
(*Converts A<=B to x∈A ==> x∈B*)
fun impOfSubs th = th RSN (2, rev_subsetD);
(*Takes assumptions ∀x∈A.P(x) and a∈A; creates assumption P(a)*)
val ball_tac = dtac bspec THEN' assume_tac
*}
end
lemma subst_elem:
[| b ∈ A; a = b |] ==> a ∈ A
lemma ballI:
(!!x. x ∈ A ==> P(x)) ==> ∀x∈A. P(x)
lemmas strip:
(P ==> Q) ==> P --> Q
(!!x. P(x)) ==> ∀x. P(x)
(!!x. x ∈ A ==> P(x)) ==> ∀x∈A. P(x)
lemmas strip:
(P ==> Q) ==> P --> Q
(!!x. P(x)) ==> ∀x. P(x)
(!!x. x ∈ A ==> P(x)) ==> ∀x∈A. P(x)
lemma bspec:
[| ∀x∈A. P(x); x ∈ A |] ==> P(x)
lemma rev_ballE:
[| ∀x∈A. P(x); x ∉ A ==> Q; P(x) ==> Q |] ==> Q
lemma ballE:
[| ∀x∈A. P(x); P(x) ==> Q; x ∉ A ==> Q |] ==> Q
lemma rev_bspec:
[| x ∈ A; ∀x∈A. P(x) |] ==> P(x)
lemma ball_triv:
(∀x∈A. P) <-> (∃x. x ∈ A) --> P
lemma ball_cong:
[| A = A'; !!x. x ∈ A' ==> P(x) <-> P'(x) |] ==> (∀x∈A. P(x)) <-> (∀x∈A'. P'(x))
lemma bexI:
[| P(x); x ∈ A |] ==> ∃x∈A. P(x)
lemma rev_bexI:
[| x ∈ A; P(x) |] ==> ∃x∈A. P(x)
lemma bexCI:
[| ∀x∈A. ¬ P(x) ==> P(a); a ∈ A |] ==> ∃x∈A. P(x)
lemma bexE:
[| ∃x∈A. P(x); !!x. [| x ∈ A; P(x) |] ==> Q |] ==> Q
lemma bex_triv:
(∃x∈A. P) <-> (∃x. x ∈ A) ∧ P
lemma bex_cong:
[| A = A'; !!x. x ∈ A' ==> P(x) <-> P'(x) |] ==> (∃x∈A. P(x)) <-> (∃x∈A'. P'(x))
lemma subsetI:
(!!x. x ∈ A ==> x ∈ B) ==> A ⊆ B
lemma subsetD:
[| A ⊆ B; c ∈ A |] ==> c ∈ B
lemma subsetCE:
[| A ⊆ B; c ∉ A ==> P; c ∈ B ==> P |] ==> P
lemma rev_subsetD:
[| c ∈ A; A ⊆ B |] ==> c ∈ B
lemma contra_subsetD:
[| A ⊆ B; c ∉ B |] ==> c ∉ A
lemma rev_contra_subsetD:
[| c ∉ B; A ⊆ B |] ==> c ∉ A
lemma subset_refl:
A ⊆ A
lemma subset_trans:
[| A ⊆ B; B ⊆ C |] ==> A ⊆ C
lemma subset_iff:
A ⊆ B <-> (∀x. x ∈ A --> x ∈ B)
lemma equalityI:
[| A ⊆ B; B ⊆ A |] ==> A = B
lemma equality_iffI:
(!!x. x ∈ A <-> x ∈ B) ==> A = B
lemmas equalityD1:
A = B ==> A ⊆ B
lemmas equalityD1:
A = B ==> A ⊆ B
lemmas equalityD2:
A = B ==> B ⊆ A
lemmas equalityD2:
A = B ==> B ⊆ A
lemma equalityE:
[| A = B; [| A ⊆ B; B ⊆ A |] ==> P |] ==> P
lemma equalityCE:
[| A = B; [| c ∈ A; c ∈ B |] ==> P; [| c ∉ A; c ∉ B |] ==> P |] ==> P
lemma setup_induction:
[| p ∈ A; !!z. z ∈ A ==> p = z --> R |] ==> R
lemma Replace_iff:
b ∈ {y . x ∈ A, P(x, y)} <-> (∃x∈A. P(x, b) ∧ (∀y. P(x, y) --> y = b))
lemma ReplaceI:
[| P(x, b); x ∈ A; !!y. P(x, y) ==> y = b |] ==> b ∈ {y . x ∈ A, P(x, y)}
lemma ReplaceE:
[| b ∈ {y . x ∈ A, P(x, y)}; !!x. [| x ∈ A; P(x, b); ∀y. P(x, y) --> y = b |] ==> R |] ==> R
lemma ReplaceE2:
[| b ∈ {y . x ∈ A, P(x, y)}; !!x. [| x ∈ A; P(x, b) |] ==> R |] ==> R
lemma Replace_cong:
[| A = B; !!x y. x ∈ B ==> P(x, y) <-> Q(x, y) |] ==> Replace(A, P) = Replace(B, Q)
lemma RepFunI:
a ∈ A ==> f(a) ∈ {f(x) . x ∈ A}
lemma RepFun_eqI:
[| b = f(a); a ∈ A |] ==> b ∈ {f(x) . x ∈ A}
lemma RepFunE:
[| b ∈ {f(x) . x ∈ A}; !!x. [| x ∈ A; b = f(x) |] ==> P |] ==> P
lemma RepFun_cong:
[| A = B; !!x. x ∈ B ==> f(x) = g(x) |] ==> RepFun(A, f) = RepFun(B, g)
lemma RepFun_iff:
b ∈ {f(x) . x ∈ A} <-> (∃x∈A. b = f(x))
lemma triv_RepFun:
{x . x ∈ A} = A
lemma separation:
a ∈ {x ∈ A . P(x)} <-> a ∈ A ∧ P(a)
lemma CollectI:
[| a ∈ A; P(a) |] ==> a ∈ {x ∈ A . P(x)}
lemma CollectE:
[| a ∈ {x ∈ A . P(x)}; [| a ∈ A; P(a) |] ==> R |] ==> R
lemma CollectD1:
a ∈ {x ∈ A . P(x)} ==> a ∈ A
lemma CollectD2:
a ∈ {x ∈ A . P(x)} ==> P(a)
lemma Collect_cong:
[| A = B; !!x. x ∈ B ==> P(x) <-> Q(x) |] ==> {x ∈ A . P(x)} = {x ∈ B . Q(x)}
lemma UnionI:
[| B ∈ C; A ∈ B |] ==> A ∈ \<Union>C
lemma UnionE:
[| A ∈ \<Union>C; !!B. [| A ∈ B; B ∈ C |] ==> R |] ==> R
lemma UN_iff:
b ∈ (\<Union>x∈A. B(x)) <-> (∃x∈A. b ∈ B(x))
lemma UN_I:
[| a ∈ A; b ∈ B(a) |] ==> b ∈ (\<Union>x∈A. B(x))
lemma UN_E:
[| b ∈ (\<Union>x∈A. B(x)); !!x. [| x ∈ A; b ∈ B(x) |] ==> R |] ==> R
lemma UN_cong:
[| A = B; !!x. x ∈ B ==> C(x) = D(x) |] ==> (\<Union>x∈A. C(x)) = (\<Union>x∈B. D(x))
lemma not_mem_empty:
a ∉ 0
lemmas emptyE:
a ∈ 0 ==> R
lemmas emptyE:
a ∈ 0 ==> R
lemma empty_subsetI:
0 ⊆ A
lemma equals0I:
(!!y. y ∈ A ==> False) ==> A = 0
lemma equals0D:
A = 0 ==> a ∉ A
lemma not_emptyI:
a ∈ A ==> A ≠ 0
lemma not_emptyE:
[| A ≠ 0; !!x. x ∈ A ==> R |] ==> R
lemma Inter_iff:
A ∈ \<Inter>C <-> (∀x∈C. A ∈ x) ∧ C ≠ 0
lemma InterI:
[| !!x. x ∈ C ==> A ∈ x; C ≠ 0 |] ==> A ∈ \<Inter>C
lemma InterD:
[| A ∈ \<Inter>C; B ∈ C |] ==> A ∈ B
lemma InterE:
[| A ∈ \<Inter>C; B ∉ C ==> R; A ∈ B ==> R |] ==> R
lemma INT_iff:
b ∈ (\<Inter>x∈A. B(x)) <-> (∀x∈A. b ∈ B(x)) ∧ A ≠ 0
lemma INT_I:
[| !!x. x ∈ A ==> b ∈ B(x); A ≠ 0 |] ==> b ∈ (\<Inter>x∈A. B(x))
lemma INT_E:
[| b ∈ (\<Inter>x∈A. B(x)); a ∈ A |] ==> b ∈ B(a)
lemma INT_cong:
[| A = B; !!x. x ∈ B ==> C(x) = D(x) |] ==> (\<Inter>x∈A. C(x)) = (\<Inter>x∈B. D(x))
lemma PowI:
A ⊆ B ==> A ∈ Pow(B)
lemma PowD:
A ∈ Pow(B) ==> A ⊆ B
lemmas Pow_bottom:
0 ∈ Pow(B)
lemmas Pow_bottom:
0 ∈ Pow(B)
lemmas Pow_top:
A ∈ Pow(A)
lemmas Pow_top:
A ∈ Pow(A)
lemma cantor:
∃S∈Pow(A). ∀x∈A. b(x) ≠ S