(* Title: ZF/Zorn.thy
ID: $Id: Zorn.thy,v 1.18 2005/06/17 14:15:10 haftmann Exp $
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1994 University of Cambridge
*)
header{*Zorn's Lemma*}
theory Zorn imports OrderArith AC Inductive begin
text{*Based upon the unpublished article ``Towards the Mechanization of the
Proofs of Some Classical Theorems of Set Theory,'' by Abrial and Laffitte.*}
constdefs
Subset_rel :: "i=>i"
"Subset_rel(A) == {z ∈ A*A . ∃x y. z=<x,y> & x<=y & x≠y}"
chain :: "i=>i"
"chain(A) == {F ∈ Pow(A). ∀X∈F. ∀Y∈F. X<=Y | Y<=X}"
super :: "[i,i]=>i"
"super(A,c) == {d ∈ chain(A). c<=d & c≠d}"
maxchain :: "i=>i"
"maxchain(A) == {c ∈ chain(A). super(A,c)=0}"
constdefs
increasing :: "i=>i"
"increasing(A) == {f ∈ Pow(A)->Pow(A). ∀x. x<=A --> x<=f`x}"
text{*Lemma for the inductive definition below*}
lemma Union_in_Pow: "Y ∈ Pow(Pow(A)) ==> Union(Y) ∈ Pow(A)"
by blast
text{*We could make the inductive definition conditional on
@{term "next ∈ increasing(S)"}
but instead we make this a side-condition of an introduction rule. Thus
the induction rule lets us assume that condition! Many inductive proofs
are therefore unconditional.*}
consts
"TFin" :: "[i,i]=>i"
inductive
domains "TFin(S,next)" <= "Pow(S)"
intros
nextI: "[| x ∈ TFin(S,next); next ∈ increasing(S) |]
==> next`x ∈ TFin(S,next)"
Pow_UnionI: "Y ∈ Pow(TFin(S,next)) ==> Union(Y) ∈ TFin(S,next)"
monos Pow_mono
con_defs increasing_def
type_intros CollectD1 [THEN apply_funtype] Union_in_Pow
subsection{*Mathematical Preamble *}
lemma Union_lemma0: "(∀x∈C. x<=A | B<=x) ==> Union(C)<=A | B<=Union(C)"
by blast
lemma Inter_lemma0:
"[| c ∈ C; ∀x∈C. A<=x | x<=B |] ==> A <= Inter(C) | Inter(C) <= B"
by blast
subsection{*The Transfinite Construction *}
lemma increasingD1: "f ∈ increasing(A) ==> f ∈ Pow(A)->Pow(A)"
apply (unfold increasing_def)
apply (erule CollectD1)
done
lemma increasingD2: "[| f ∈ increasing(A); x<=A |] ==> x <= f`x"
by (unfold increasing_def, blast)
lemmas TFin_UnionI = PowI [THEN TFin.Pow_UnionI, standard]
lemmas TFin_is_subset = TFin.dom_subset [THEN subsetD, THEN PowD, standard]
text{*Structural induction on @{term "TFin(S,next)"} *}
lemma TFin_induct:
"[| n ∈ TFin(S,next);
!!x. [| x ∈ TFin(S,next); P(x); next ∈ increasing(S) |] ==> P(next`x);
!!Y. [| Y <= TFin(S,next); ∀y∈Y. P(y) |] ==> P(Union(Y))
|] ==> P(n)"
by (erule TFin.induct, blast+)
subsection{*Some Properties of the Transfinite Construction *}
lemmas increasing_trans = subset_trans [OF _ increasingD2,
OF _ _ TFin_is_subset]
text{*Lemma 1 of section 3.1*}
lemma TFin_linear_lemma1:
"[| n ∈ TFin(S,next); m ∈ TFin(S,next);
∀x ∈ TFin(S,next) . x<=m --> x=m | next`x<=m |]
==> n<=m | next`m<=n"
apply (erule TFin_induct)
apply (erule_tac [2] Union_lemma0) (*or just Blast_tac*)
(*downgrade subsetI from intro! to intro*)
apply (blast dest: increasing_trans)
done
text{*Lemma 2 of section 3.2. Interesting in its own right!
Requires @{term "next ∈ increasing(S)"} in the second induction step.*}
lemma TFin_linear_lemma2:
"[| m ∈ TFin(S,next); next ∈ increasing(S) |]
==> ∀n ∈ TFin(S,next). n<=m --> n=m | next`n <= m"
apply (erule TFin_induct)
apply (rule impI [THEN ballI])
txt{*case split using @{text TFin_linear_lemma1}*}
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
assumption+)
apply (blast del: subsetI
intro: increasing_trans subsetI, blast)
txt{*second induction step*}
apply (rule impI [THEN ballI])
apply (rule Union_lemma0 [THEN disjE])
apply (erule_tac [3] disjI2)
prefer 2 apply blast
apply (rule ballI)
apply (drule bspec, assumption)
apply (drule subsetD, assumption)
apply (rule_tac n1 = n and m1 = x in TFin_linear_lemma1 [THEN disjE],
assumption+, blast)
apply (erule increasingD2 [THEN subset_trans, THEN disjI1])
apply (blast dest: TFin_is_subset)+
done
text{*a more convenient form for Lemma 2*}
lemma TFin_subsetD:
"[| n<=m; m ∈ TFin(S,next); n ∈ TFin(S,next); next ∈ increasing(S) |]
==> n=m | next`n <= m"
by (blast dest: TFin_linear_lemma2 [rule_format])
text{*Consequences from section 3.3 -- Property 3.2, the ordering is total*}
lemma TFin_subset_linear:
"[| m ∈ TFin(S,next); n ∈ TFin(S,next); next ∈ increasing(S) |]
==> n <= m | m<=n"
apply (rule disjE)
apply (rule TFin_linear_lemma1 [OF _ _TFin_linear_lemma2])
apply (assumption+, erule disjI2)
apply (blast del: subsetI
intro: subsetI increasingD2 [THEN subset_trans] TFin_is_subset)
done
text{*Lemma 3 of section 3.3*}
lemma equal_next_upper:
"[| n ∈ TFin(S,next); m ∈ TFin(S,next); m = next`m |] ==> n <= m"
apply (erule TFin_induct)
apply (drule TFin_subsetD)
apply (assumption+, force, blast)
done
text{*Property 3.3 of section 3.3*}
lemma equal_next_Union:
"[| m ∈ TFin(S,next); next ∈ increasing(S) |]
==> m = next`m <-> m = Union(TFin(S,next))"
apply (rule iffI)
apply (rule Union_upper [THEN equalityI])
apply (rule_tac [2] equal_next_upper [THEN Union_least])
apply (assumption+)
apply (erule ssubst)
apply (rule increasingD2 [THEN equalityI], assumption)
apply (blast del: subsetI
intro: subsetI TFin_UnionI TFin.nextI TFin_is_subset)+
done
subsection{*Hausdorff's Theorem: Every Set Contains a Maximal Chain*}
text{*NOTE: We assume the partial ordering is @{text "⊆"}, the subset
relation!*}
text{** Defining the "next" operation for Hausdorff's Theorem **}
lemma chain_subset_Pow: "chain(A) <= Pow(A)"
apply (unfold chain_def)
apply (rule Collect_subset)
done
lemma super_subset_chain: "super(A,c) <= chain(A)"
apply (unfold super_def)
apply (rule Collect_subset)
done
lemma maxchain_subset_chain: "maxchain(A) <= chain(A)"
apply (unfold maxchain_def)
apply (rule Collect_subset)
done
lemma choice_super:
"[| ch ∈ (Π X ∈ Pow(chain(S)) - {0}. X); X ∈ chain(S); X ∉ maxchain(S) |]
==> ch ` super(S,X) ∈ super(S,X)"
apply (erule apply_type)
apply (unfold super_def maxchain_def, blast)
done
lemma choice_not_equals:
"[| ch ∈ (Π X ∈ Pow(chain(S)) - {0}. X); X ∈ chain(S); X ∉ maxchain(S) |]
==> ch ` super(S,X) ≠ X"
apply (rule notI)
apply (drule choice_super, assumption, assumption)
apply (simp add: super_def)
done
text{*This justifies Definition 4.4*}
lemma Hausdorff_next_exists:
"ch ∈ (Π X ∈ Pow(chain(S))-{0}. X) ==>
∃next ∈ increasing(S). ∀X ∈ Pow(S).
next`X = if(X ∈ chain(S)-maxchain(S), ch`super(S,X), X)"
apply (rule_tac x="λX∈Pow(S).
if X ∈ chain(S) - maxchain(S) then ch ` super(S, X) else X"
in bexI)
apply force
apply (unfold increasing_def)
apply (rule CollectI)
apply (rule lam_type)
apply (simp (no_asm_simp))
apply (blast dest: super_subset_chain [THEN subsetD]
chain_subset_Pow [THEN subsetD] choice_super)
txt{*Now, verify that it increases*}
apply (simp (no_asm_simp) add: Pow_iff subset_refl)
apply safe
apply (drule choice_super)
apply (assumption+)
apply (simp add: super_def, blast)
done
text{*Lemma 4*}
lemma TFin_chain_lemma4:
"[| c ∈ TFin(S,next);
ch ∈ (Π X ∈ Pow(chain(S))-{0}. X);
next ∈ increasing(S);
∀X ∈ Pow(S). next`X =
if(X ∈ chain(S)-maxchain(S), ch`super(S,X), X) |]
==> c ∈ chain(S)"
apply (erule TFin_induct)
apply (simp (no_asm_simp) add: chain_subset_Pow [THEN subsetD, THEN PowD]
choice_super [THEN super_subset_chain [THEN subsetD]])
apply (unfold chain_def)
apply (rule CollectI, blast, safe)
apply (rule_tac m1=B and n1=Ba in TFin_subset_linear [THEN disjE], fast+)
txt{*@{text "Blast_tac's"} slow*}
done
theorem Hausdorff: "∃c. c ∈ maxchain(S)"
apply (rule AC_Pi_Pow [THEN exE])
apply (rule Hausdorff_next_exists [THEN bexE], assumption)
apply (rename_tac ch "next")
apply (subgoal_tac "Union (TFin (S,next)) ∈ chain (S) ")
prefer 2
apply (blast intro!: TFin_chain_lemma4 subset_refl [THEN TFin_UnionI])
apply (rule_tac x = "Union (TFin (S,next))" in exI)
apply (rule classical)
apply (subgoal_tac "next ` Union (TFin (S,next)) = Union (TFin (S,next))")
apply (rule_tac [2] equal_next_Union [THEN iffD2, symmetric])
apply (rule_tac [2] subset_refl [THEN TFin_UnionI])
prefer 2 apply assumption
apply (rule_tac [2] refl)
apply (simp add: subset_refl [THEN TFin_UnionI,
THEN TFin.dom_subset [THEN subsetD, THEN PowD]])
apply (erule choice_not_equals [THEN notE])
apply (assumption+)
done
subsection{*Zorn's Lemma: If All Chains in S Have Upper Bounds In S,
then S contains a Maximal Element*}
text{*Used in the proof of Zorn's Lemma*}
lemma chain_extend:
"[| c ∈ chain(A); z ∈ A; ∀x ∈ c. x<=z |] ==> cons(z,c) ∈ chain(A)"
by (unfold chain_def, blast)
lemma Zorn: "∀c ∈ chain(S). Union(c) ∈ S ==> ∃y ∈ S. ∀z ∈ S. y<=z --> y=z"
apply (rule Hausdorff [THEN exE])
apply (simp add: maxchain_def)
apply (rename_tac c)
apply (rule_tac x = "Union (c)" in bexI)
prefer 2 apply blast
apply safe
apply (rename_tac z)
apply (rule classical)
apply (subgoal_tac "cons (z,c) ∈ super (S,c) ")
apply (blast elim: equalityE)
apply (unfold super_def, safe)
apply (fast elim: chain_extend)
apply (fast elim: equalityE)
done
subsection{*Zermelo's Theorem: Every Set can be Well-Ordered*}
text{*Lemma 5*}
lemma TFin_well_lemma5:
"[| n ∈ TFin(S,next); Z <= TFin(S,next); z:Z; ~ Inter(Z) ∈ Z |]
==> ∀m ∈ Z. n <= m"
apply (erule TFin_induct)
prefer 2 apply blast txt{*second induction step is easy*}
apply (rule ballI)
apply (rule bspec [THEN TFin_subsetD, THEN disjE], auto)
apply (subgoal_tac "m = Inter (Z) ")
apply blast+
done
text{*Well-ordering of @{term "TFin(S,next)"} *}
lemma well_ord_TFin_lemma: "[| Z <= TFin(S,next); z ∈ Z |] ==> Inter(Z) ∈ Z"
apply (rule classical)
apply (subgoal_tac "Z = {Union (TFin (S,next))}")
apply (simp (no_asm_simp) add: Inter_singleton)
apply (erule equal_singleton)
apply (rule Union_upper [THEN equalityI])
apply (rule_tac [2] subset_refl [THEN TFin_UnionI, THEN TFin_well_lemma5, THEN bspec], blast+)
done
text{*This theorem just packages the previous result*}
lemma well_ord_TFin:
"next ∈ increasing(S)
==> well_ord(TFin(S,next), Subset_rel(TFin(S,next)))"
apply (rule well_ordI)
apply (unfold Subset_rel_def linear_def)
txt{*Prove the well-foundedness goal*}
apply (rule wf_onI)
apply (frule well_ord_TFin_lemma, assumption)
apply (drule_tac x = "Inter (Z) " in bspec, assumption)
apply blast
txt{*Now prove the linearity goal*}
apply (intro ballI)
apply (case_tac "x=y")
apply blast
txt{*The @{term "x≠y"} case remains*}
apply (rule_tac n1=x and m1=y in TFin_subset_linear [THEN disjE],
assumption+, blast+)
done
text{** Defining the "next" operation for Zermelo's Theorem **}
lemma choice_Diff:
"[| ch ∈ (Π X ∈ Pow(S) - {0}. X); X ⊆ S; X≠S |] ==> ch ` (S-X) ∈ S-X"
apply (erule apply_type)
apply (blast elim!: equalityE)
done
text{*This justifies Definition 6.1*}
lemma Zermelo_next_exists:
"ch ∈ (Π X ∈ Pow(S)-{0}. X) ==>
∃next ∈ increasing(S). ∀X ∈ Pow(S).
next`X = (if X=S then S else cons(ch`(S-X), X))"
apply (rule_tac x="λX∈Pow(S). if X=S then S else cons(ch`(S-X), X)"
in bexI)
apply force
apply (unfold increasing_def)
apply (rule CollectI)
apply (rule lam_type)
txt{*Type checking is surprisingly hard!*}
apply (simp (no_asm_simp) add: Pow_iff cons_subset_iff subset_refl)
apply (blast intro!: choice_Diff [THEN DiffD1])
txt{*Verify that it increases*}
apply (intro allI impI)
apply (simp add: Pow_iff subset_consI subset_refl)
done
text{*The construction of the injection*}
lemma choice_imp_injection:
"[| ch ∈ (Π X ∈ Pow(S)-{0}. X);
next ∈ increasing(S);
∀X ∈ Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |]
==> (λ x ∈ S. Union({y ∈ TFin(S,next). x ∉ y}))
∈ inj(S, TFin(S,next) - {S})"
apply (rule_tac d = "%y. ch` (S-y) " in lam_injective)
apply (rule DiffI)
apply (rule Collect_subset [THEN TFin_UnionI])
apply (blast intro!: Collect_subset [THEN TFin_UnionI] elim: equalityE)
apply (subgoal_tac "x ∉ Union ({y ∈ TFin (S,next) . x ∉ y}) ")
prefer 2 apply (blast elim: equalityE)
apply (subgoal_tac "Union ({y ∈ TFin (S,next) . x ∉ y}) ≠ S")
prefer 2 apply (blast elim: equalityE)
txt{*For proving @{text "x ∈ next`Union(...)"}.
Abrial and Laffitte's justification appears to be faulty.*}
apply (subgoal_tac "~ next ` Union ({y ∈ TFin (S,next) . x ∉ y})
<= Union ({y ∈ TFin (S,next) . x ∉ y}) ")
prefer 2
apply (simp del: Union_iff
add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset]
Pow_iff cons_subset_iff subset_refl choice_Diff [THEN DiffD2])
apply (subgoal_tac "x ∈ next ` Union ({y ∈ TFin (S,next) . x ∉ y}) ")
prefer 2
apply (blast intro!: Collect_subset [THEN TFin_UnionI] TFin.nextI)
txt{*End of the lemmas!*}
apply (simp add: Collect_subset [THEN TFin_UnionI, THEN TFin_is_subset])
done
text{*The wellordering theorem*}
theorem AC_well_ord: "∃r. well_ord(S,r)"
apply (rule AC_Pi_Pow [THEN exE])
apply (rule Zermelo_next_exists [THEN bexE], assumption)
apply (rule exI)
apply (rule well_ord_rvimage)
apply (erule_tac [2] well_ord_TFin)
apply (rule choice_imp_injection [THEN inj_weaken_type], blast+)
done
end
lemma Union_in_Pow:
Y ∈ Pow(Pow(A)) ==> \<Union>Y ∈ Pow(A)
lemma Union_lemma0:
∀x∈C. x ⊆ A ∨ B ⊆ x ==> \<Union>C ⊆ A ∨ B ⊆ \<Union>C
lemma Inter_lemma0:
[| c ∈ C; ∀x∈C. A ⊆ x ∨ x ⊆ B |] ==> A ⊆ \<Inter>C ∨ \<Inter>C ⊆ B
lemma increasingD1:
f ∈ increasing(A) ==> f ∈ Pow(A) -> Pow(A)
lemma increasingD2:
[| f ∈ increasing(A); x ⊆ A |] ==> x ⊆ f ` x
lemmas TFin_UnionI:
Y ⊆ TFin(S, next) ==> \<Union>Y ∈ TFin(S, next)
lemmas TFin_UnionI:
Y ⊆ TFin(S, next) ==> \<Union>Y ∈ TFin(S, next)
lemmas TFin_is_subset:
A ∈ TFin(B, next) ==> A ⊆ B
lemmas TFin_is_subset:
A ∈ TFin(B, next) ==> A ⊆ B
lemma TFin_induct:
[| n ∈ TFin(S, next); !!x. [| x ∈ TFin(S, next); P(x); next ∈ increasing(S) |] ==> P(next ` x); !!Y. [| Y ⊆ TFin(S, next); ∀y∈Y. P(y) |] ==> P(\<Union>Y) |] ==> P(n)
lemmas increasing_trans:
[| A ⊆ B; f1 ∈ increasing(A1); B ∈ TFin(A1, next3) |] ==> A ⊆ f1 ` B
lemmas increasing_trans:
[| A ⊆ B; f1 ∈ increasing(A1); B ∈ TFin(A1, next3) |] ==> A ⊆ f1 ` B
lemma TFin_linear_lemma1:
[| n ∈ TFin(S, next); m ∈ TFin(S, next); ∀x∈TFin(S, next). x ⊆ m --> x = m ∨ next ` x ⊆ m |] ==> n ⊆ m ∨ next ` m ⊆ n
lemma TFin_linear_lemma2:
[| m ∈ TFin(S, next); next ∈ increasing(S) |] ==> ∀n∈TFin(S, next). n ⊆ m --> n = m ∨ next ` n ⊆ m
lemma TFin_subsetD:
[| n ⊆ m; m ∈ TFin(S, next); n ∈ TFin(S, next); next ∈ increasing(S) |] ==> n = m ∨ next ` n ⊆ m
lemma TFin_subset_linear:
[| m ∈ TFin(S, next); n ∈ TFin(S, next); next ∈ increasing(S) |] ==> n ⊆ m ∨ m ⊆ n
lemma equal_next_upper:
[| n ∈ TFin(S, next); m ∈ TFin(S, next); m = next ` m |] ==> n ⊆ m
lemma equal_next_Union:
[| m ∈ TFin(S, next); next ∈ increasing(S) |] ==> m = next ` m <-> m = \<Union>TFin(S, next)
lemma chain_subset_Pow:
chain(A) ⊆ Pow(A)
lemma super_subset_chain:
super(A, c) ⊆ chain(A)
lemma maxchain_subset_chain:
maxchain(A) ⊆ chain(A)
lemma choice_super:
[| ch ∈ (ΠX∈Pow(chain(S)) - {0}. X); X ∈ chain(S); X ∉ maxchain(S) |] ==> ch ` super(S, X) ∈ super(S, X)
lemma choice_not_equals:
[| ch ∈ (ΠX∈Pow(chain(S)) - {0}. X); X ∈ chain(S); X ∉ maxchain(S) |] ==> ch ` super(S, X) ≠ X
lemma Hausdorff_next_exists:
ch ∈ (ΠX∈Pow(chain(S)) - {0}. X) ==> ∃next∈increasing(S). ∀X∈Pow(S). next ` X = (if X ∈ chain(S) - maxchain(S) then ch ` super(S, X) else X)
lemma TFin_chain_lemma4:
[| c ∈ TFin(S, next); ch ∈ (ΠX∈Pow(chain(S)) - {0}. X); next ∈ increasing(S); ∀X∈Pow(S). next ` X = (if X ∈ chain(S) - maxchain(S) then ch ` super(S, X) else X) |] ==> c ∈ chain(S)
theorem Hausdorff:
∃c. c ∈ maxchain(S)
lemma chain_extend:
[| c ∈ chain(A); z ∈ A; ∀x∈c. x ⊆ z |] ==> cons(z, c) ∈ chain(A)
lemma Zorn:
∀c∈chain(S). \<Union>c ∈ S ==> ∃y∈S. ∀z∈S. y ⊆ z --> y = z
lemma TFin_well_lemma5:
[| n ∈ TFin(S, next); Z ⊆ TFin(S, next); z ∈ Z; \<Inter>Z ∉ Z |] ==> ∀m∈Z. n ⊆ m
lemma well_ord_TFin_lemma:
[| Z ⊆ TFin(S, next); z ∈ Z |] ==> \<Inter>Z ∈ Z
lemma well_ord_TFin:
next ∈ increasing(S) ==> well_ord(TFin(S, next), Subset_rel(TFin(S, next)))
lemma choice_Diff:
[| ch ∈ (ΠX∈Pow(S) - {0}. X); X ⊆ S; X ≠ S |] ==> ch ` (S - X) ∈ S - X
lemma Zermelo_next_exists:
ch ∈ (ΠX∈Pow(S) - {0}. X) ==> ∃next∈increasing(S). ∀X∈Pow(S). next ` X = (if X = S then S else cons(ch ` (S - X), X))
lemma choice_imp_injection:
[| ch ∈ (ΠX∈Pow(S) - {0}. X); next ∈ increasing(S); ∀X∈Pow(S). next ` X = (if X = S then S else cons(ch ` (S - X), X)) |] ==> (λx∈S. \<Union>{y ∈ TFin(S, next) . x ∉ y}) ∈ inj(S, TFin(S, next) - {S})
theorem AC_well_ord:
∃r. well_ord(S, r)