(* Title: HOL/Lambda/Commutation.thy
ID: $Id: Commutation.thy,v 1.6 2005/06/17 14:15:11 haftmann Exp $
Author: Tobias Nipkow & Sidi Ould Ehmety
Copyright 1995 TU Muenchen
Commutation theory for proving the Church Rosser theorem
ported from Isabelle/HOL by Sidi Ould Ehmety
*)
theory Commutation imports Main begin
constdefs
square :: "[i, i, i, i] => o"
"square(r,s,t,u) ==
(∀a b. <a,b> ∈ r --> (∀c. <a, c> ∈ s --> (∃x. <b,x> ∈ t & <c,x> ∈ u)))"
commute :: "[i, i] => o"
"commute(r,s) == square(r,s,s,r)"
diamond :: "i=>o"
"diamond(r) == commute(r, r)"
strip :: "i=>o"
"strip(r) == commute(r^*, r)"
Church_Rosser :: "i => o"
"Church_Rosser(r) == (∀x y. <x,y> ∈ (r Un converse(r))^* -->
(∃z. <x,z> ∈ r^* & <y,z> ∈ r^*))"
confluent :: "i=>o"
"confluent(r) == diamond(r^*)"
lemma square_sym: "square(r,s,t,u) ==> square(s,r,u,t)"
by (unfold square_def, blast)
lemma square_subset: "[| square(r,s,t,u); t ⊆ t' |] ==> square(r,s,t',u)"
by (unfold square_def, blast)
lemma square_rtrancl [rule_format]:
"square(r,s,s,t) --> field(s)<=field(t) --> square(r^*,s,s,t^*)"
apply (unfold square_def, clarify)
apply (erule rtrancl_induct)
apply (blast intro: rtrancl_refl)
apply (blast intro: rtrancl_into_rtrancl)
done
(* A special case of square_rtrancl_on *)
lemma diamond_strip:
"diamond(r) ==> strip(r)"
apply (unfold diamond_def commute_def strip_def)
apply (rule square_rtrancl, simp_all)
done
(*** commute ***)
lemma commute_sym:
"commute(r,s) ==> commute(s,r)"
by (unfold commute_def, blast intro: square_sym)
lemma commute_rtrancl [rule_format]:
"commute(r,s) ==> field(r)=field(s) --> commute(r^*,s^*)"
apply (unfold commute_def, clarify)
apply (rule square_rtrancl)
apply (rule square_sym [THEN square_rtrancl, THEN square_sym])
apply (simp_all add: rtrancl_field)
done
lemma confluentD: "confluent(r) ==> diamond(r^*)"
by (simp add: confluent_def)
lemma strip_confluent: "strip(r) ==> confluent(r)"
apply (unfold strip_def confluent_def diamond_def)
apply (drule commute_rtrancl)
apply (simp_all add: rtrancl_field)
done
lemma commute_Un: "[| commute(r,t); commute(s,t) |] ==> commute(r Un s, t)"
by (unfold commute_def square_def, blast)
lemma diamond_Un:
"[| diamond(r); diamond(s); commute(r, s) |] ==> diamond(r Un s)"
by (unfold diamond_def, blast intro: commute_Un commute_sym)
lemma diamond_confluent:
"diamond(r) ==> confluent(r)"
apply (unfold diamond_def confluent_def)
apply (erule commute_rtrancl, simp)
done
lemma confluent_Un:
"[| confluent(r); confluent(s); commute(r^*, s^*);
relation(r); relation(s) |] ==> confluent(r Un s)"
apply (unfold confluent_def)
apply (rule rtrancl_Un_rtrancl [THEN subst], auto)
apply (blast dest: diamond_Un intro: diamond_confluent [THEN confluentD])
done
lemma diamond_to_confluence:
"[| diamond(r); s ⊆ r; r<= s^* |] ==> confluent(s)"
apply (drule rtrancl_subset [symmetric], assumption)
apply (simp_all add: confluent_def)
apply (blast intro: diamond_confluent [THEN confluentD])
done
(*** Church_Rosser ***)
lemma Church_Rosser1:
"Church_Rosser(r) ==> confluent(r)"
apply (unfold confluent_def Church_Rosser_def square_def
commute_def diamond_def, auto)
apply (drule converseI)
apply (simp (no_asm_use) add: rtrancl_converse [symmetric])
apply (drule_tac x = b in spec)
apply (drule_tac x1 = c in spec [THEN mp])
apply (rule_tac b = a in rtrancl_trans)
apply (blast intro: rtrancl_mono [THEN subsetD])+
done
lemma Church_Rosser2:
"confluent(r) ==> Church_Rosser(r)"
apply (unfold confluent_def Church_Rosser_def square_def
commute_def diamond_def, auto)
apply (frule fieldI1)
apply (simp add: rtrancl_field)
apply (erule rtrancl_induct, auto)
apply (blast intro: rtrancl_refl)
apply (blast del: rtrancl_refl intro: r_into_rtrancl rtrancl_trans)+
done
lemma Church_Rosser: "Church_Rosser(r) <-> confluent(r)"
by (blast intro: Church_Rosser1 Church_Rosser2)
end
lemma square_sym:
square(r, s, t, u) ==> square(s, r, u, t)
lemma square_subset:
[| square(r, s, t, u); t ⊆ t' |] ==> square(r, s, t', u)
lemma square_rtrancl:
[| square(r, s, s, t); field(s) ⊆ field(t) |] ==> square(r^*, s, s, t^*)
lemma diamond_strip:
diamond(r) ==> strip(r)
lemma commute_sym:
commute(r, s) ==> commute(s, r)
lemma commute_rtrancl:
[| commute(r, s); field(r) = field(s) |] ==> commute(r^*, s^*)
lemma confluentD:
confluent(r) ==> diamond(r^*)
lemma strip_confluent:
strip(r) ==> confluent(r)
lemma commute_Un:
[| commute(r, t); commute(s, t) |] ==> commute(r ∪ s, t)
lemma diamond_Un:
[| diamond(r); diamond(s); commute(r, s) |] ==> diamond(r ∪ s)
lemma diamond_confluent:
diamond(r) ==> confluent(r)
lemma confluent_Un:
[| confluent(r); confluent(s); commute(r^*, s^*); relation(r); relation(s) |] ==> confluent(r ∪ s)
lemma diamond_to_confluence:
[| diamond(r); s ⊆ r; r ⊆ s^* |] ==> confluent(s)
lemma Church_Rosser1:
Church_Rosser(r) ==> confluent(r)
lemma Church_Rosser2:
confluent(r) ==> Church_Rosser(r)
lemma Church_Rosser:
Church_Rosser(r) <-> confluent(r)