(* Title: ZF/ex/Group.thy
Id: $Id: Group.thy,v 1.3 2005/06/17 14:15:11 haftmann Exp $
*)
header {* Groups *}
theory Group imports Main begin
text{*Based on work by Clemens Ballarin, Florian Kammueller, L C Paulson and
Markus Wenzel.*}
subsection {* Monoids *}
(*First, we must simulate a record declaration:
record monoid =
carrier :: i
mult :: "[i,i] => i" (infixl "·\<index>" 70)
one :: i ("\<one>\<index>")
*)
constdefs
carrier :: "i => i"
"carrier(M) == fst(M)"
mmult :: "[i, i, i] => i" (infixl "·\<index>" 70)
"mmult(M,x,y) == fst(snd(M)) ` <x,y>"
one :: "i => i" ("\<one>\<index>")
"one(M) == fst(snd(snd(M)))"
update_carrier :: "[i,i] => i"
"update_carrier(M,A) == <A,snd(M)>"
constdefs (structure G)
m_inv :: "i => i => i" ("inv\<index> _" [81] 80)
"inv x == (THE y. y ∈ carrier(G) & y · x = \<one> & x · y = \<one>)"
locale monoid = struct G +
assumes m_closed [intro, simp]:
"[|x ∈ carrier(G); y ∈ carrier(G)|] ==> x · y ∈ carrier(G)"
and m_assoc:
"[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|]
==> (x · y) · z = x · (y · z)"
and one_closed [intro, simp]: "\<one> ∈ carrier(G)"
and l_one [simp]: "x ∈ carrier(G) ==> \<one> · x = x"
and r_one [simp]: "x ∈ carrier(G) ==> x · \<one> = x"
text{*Simulating the record*}
lemma carrier_eq [simp]: "carrier(<A,Z>) = A"
by (simp add: carrier_def)
lemma mult_eq [simp]: "mmult(<A,M,Z>, x, y) = M ` <x,y>"
by (simp add: mmult_def)
lemma one_eq [simp]: "one(<A,M,I,Z>) = I"
by (simp add: one_def)
lemma update_carrier_eq [simp]: "update_carrier(<A,Z>,B) = <B,Z>"
by (simp add: update_carrier_def)
lemma carrier_update_carrier [simp]: "carrier(update_carrier(M,B)) = B"
by (simp add: update_carrier_def)
lemma mult_update_carrier [simp]: "mmult(update_carrier(M,B),x,y) = mmult(M,x,y)"
by (simp add: update_carrier_def mmult_def)
lemma one_update_carrier [simp]: "one(update_carrier(M,B)) = one(M)"
by (simp add: update_carrier_def one_def)
lemma (in monoid) inv_unique:
assumes eq: "y · x = \<one>" "x · y' = \<one>"
and G: "x ∈ carrier(G)" "y ∈ carrier(G)" "y' ∈ carrier(G)"
shows "y = y'"
proof -
from G eq have "y = y · (x · y')" by simp
also from G have "... = (y · x) · y'" by (simp add: m_assoc)
also from G eq have "... = y'" by simp
finally show ?thesis .
qed
text {*
A group is a monoid all of whose elements are invertible.
*}
locale group = monoid +
assumes inv_ex:
"!!x. x ∈ carrier(G) ==> ∃y ∈ carrier(G). y · x = \<one> & x · y = \<one>"
lemma (in group) is_group [simp]: "group(G)"
by (rule group.intro [OF prems])
theorem groupI:
includes struct G
assumes m_closed [simp]:
"!!x y. [|x ∈ carrier(G); y ∈ carrier(G)|] ==> x · y ∈ carrier(G)"
and one_closed [simp]: "\<one> ∈ carrier(G)"
and m_assoc:
"!!x y z. [|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] ==>
(x · y) · z = x · (y · z)"
and l_one [simp]: "!!x. x ∈ carrier(G) ==> \<one> · x = x"
and l_inv_ex: "!!x. x ∈ carrier(G) ==> ∃y ∈ carrier(G). y · x = \<one>"
shows "group(G)"
proof -
have l_cancel [simp]:
"!!x y z. [|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] ==>
(x · y = x · z) <-> (y = z)"
proof
fix x y z
assume G: "x ∈ carrier(G)" "y ∈ carrier(G)" "z ∈ carrier(G)"
{
assume eq: "x · y = x · z"
with G l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier(G)"
and l_inv: "x_inv · x = \<one>" by fast
from G eq xG have "(x_inv · x) · y = (x_inv · x) · z"
by (simp add: m_assoc)
with G show "y = z" by (simp add: l_inv)
next
assume eq: "y = z"
with G show "x · y = x · z" by simp
}
qed
have r_one:
"!!x. x ∈ carrier(G) ==> x · \<one> = x"
proof -
fix x
assume x: "x ∈ carrier(G)"
with l_inv_ex obtain x_inv where xG: "x_inv ∈ carrier(G)"
and l_inv: "x_inv · x = \<one>" by fast
from x xG have "x_inv · (x · \<one>) = x_inv · x"
by (simp add: m_assoc [symmetric] l_inv)
with x xG show "x · \<one> = x" by simp
qed
have inv_ex:
"!!x. x ∈ carrier(G) ==> ∃y ∈ carrier(G). y · x = \<one> & x · y = \<one>"
proof -
fix x
assume x: "x ∈ carrier(G)"
with l_inv_ex obtain y where y: "y ∈ carrier(G)"
and l_inv: "y · x = \<one>" by fast
from x y have "y · (x · y) = y · \<one>"
by (simp add: m_assoc [symmetric] l_inv r_one)
with x y have r_inv: "x · y = \<one>"
by simp
from x y show "∃y ∈ carrier(G). y · x = \<one> & x · y = \<one>"
by (fast intro: l_inv r_inv)
qed
show ?thesis
by (blast intro: group.intro monoid.intro group_axioms.intro
prems r_one inv_ex)
qed
lemma (in group) inv [simp]:
"x ∈ carrier(G) ==> inv x ∈ carrier(G) & inv x · x = \<one> & x · inv x = \<one>"
apply (frule inv_ex)
apply (unfold Bex_def m_inv_def)
apply (erule exE)
apply (rule theI)
apply (rule ex1I, assumption)
apply (blast intro: inv_unique)
done
lemma (in group) inv_closed [intro!]:
"x ∈ carrier(G) ==> inv x ∈ carrier(G)"
by simp
lemma (in group) l_inv:
"x ∈ carrier(G) ==> inv x · x = \<one>"
by simp
lemma (in group) r_inv:
"x ∈ carrier(G) ==> x · inv x = \<one>"
by simp
subsection {* Cancellation Laws and Basic Properties *}
lemma (in group) l_cancel [simp]:
assumes [simp]: "x ∈ carrier(G)" "y ∈ carrier(G)" "z ∈ carrier(G)"
shows "(x · y = x · z) <-> (y = z)"
proof
assume eq: "x · y = x · z"
hence "(inv x · x) · y = (inv x · x) · z"
by (simp only: m_assoc inv_closed prems)
thus "y = z" by simp
next
assume eq: "y = z"
then show "x · y = x · z" by simp
qed
lemma (in group) r_cancel [simp]:
assumes [simp]: "x ∈ carrier(G)" "y ∈ carrier(G)" "z ∈ carrier(G)"
shows "(y · x = z · x) <-> (y = z)"
proof
assume eq: "y · x = z · x"
then have "y · (x · inv x) = z · (x · inv x)"
by (simp only: m_assoc [symmetric] inv_closed prems)
thus "y = z" by simp
next
assume eq: "y = z"
thus "y · x = z · x" by simp
qed
lemma (in group) inv_comm:
assumes inv: "x · y = \<one>"
and G: "x ∈ carrier(G)" "y ∈ carrier(G)"
shows "y · x = \<one>"
proof -
from G have "x · y · x = x · \<one>" by (auto simp add: inv)
with G show ?thesis by (simp del: r_one add: m_assoc)
qed
lemma (in group) inv_equality:
"[|y · x = \<one>; x ∈ carrier(G); y ∈ carrier(G)|] ==> inv x = y"
apply (simp add: m_inv_def)
apply (rule the_equality)
apply (simp add: inv_comm [of y x])
apply (rule r_cancel [THEN iffD1], auto)
done
lemma (in group) inv_one [simp]:
"inv \<one> = \<one>"
by (auto intro: inv_equality)
lemma (in group) inv_inv [simp]: "x ∈ carrier(G) ==> inv (inv x) = x"
by (auto intro: inv_equality)
text{*This proof is by cancellation*}
lemma (in group) inv_mult_group:
"[|x ∈ carrier(G); y ∈ carrier(G)|] ==> inv (x · y) = inv y · inv x"
proof -
assume G: "x ∈ carrier(G)" "y ∈ carrier(G)"
then have "inv (x · y) · (x · y) = (inv y · inv x) · (x · y)"
by (simp add: m_assoc l_inv) (simp add: m_assoc [symmetric] l_inv)
with G show ?thesis by (simp_all del: inv add: inv_closed)
qed
subsection {* Substructures *}
locale subgroup = var H + struct G +
assumes subset: "H ⊆ carrier(G)"
and m_closed [intro, simp]: "[|x ∈ H; y ∈ H|] ==> x · y ∈ H"
and one_closed [simp]: "\<one> ∈ H"
and m_inv_closed [intro,simp]: "x ∈ H ==> inv x ∈ H"
lemma (in subgroup) mem_carrier [simp]:
"x ∈ H ==> x ∈ carrier(G)"
using subset by blast
lemma subgroup_imp_subset:
"subgroup(H,G) ==> H ⊆ carrier(G)"
by (rule subgroup.subset)
lemma (in subgroup) group_axiomsI [intro]:
includes group G
shows "group_axioms (update_carrier(G,H))"
by (force intro: group_axioms.intro l_inv r_inv)
lemma (in subgroup) is_group [intro]:
includes group G
shows "group (update_carrier(G,H))"
by (rule groupI) (auto intro: m_assoc l_inv mem_carrier)
text {*
Since @{term H} is nonempty, it contains some element @{term x}. Since
it is closed under inverse, it contains @{text "inv x"}. Since
it is closed under product, it contains @{text "x · inv x = \<one>"}.
*}
text {*
Since @{term H} is nonempty, it contains some element @{term x}. Since
it is closed under inverse, it contains @{text "inv x"}. Since
it is closed under product, it contains @{text "x · inv x = \<one>"}.
*}
lemma (in group) one_in_subset:
"[|H ⊆ carrier(G); H ≠ 0; ∀a ∈ H. inv a ∈ H; ∀a∈H. ∀b∈H. a · b ∈ H|]
==> \<one> ∈ H"
by (force simp add: l_inv)
text {* A characterization of subgroups: closed, non-empty subset. *}
declare monoid.one_closed [simp] group.inv_closed [simp]
monoid.l_one [simp] monoid.r_one [simp] group.inv_inv [simp]
lemma subgroup_nonempty:
"~ subgroup(0,G)"
by (blast dest: subgroup.one_closed)
subsection {* Direct Products *}
constdefs
DirProdGroup :: "[i,i] => i" (infixr "\<Otimes>" 80)
"G \<Otimes> H == <carrier(G) × carrier(H),
(λ<<g,h>, <g', h'>>
∈ (carrier(G) × carrier(H)) × (carrier(G) × carrier(H)).
<g ·G g', h ·H h'>),
<\<one>G, \<one>H>, 0>"
lemma DirProdGroup_group:
includes group G + group H
shows "group (G \<Otimes> H)"
by (force intro!: groupI G.m_assoc H.m_assoc G.l_inv H.l_inv
simp add: DirProdGroup_def)
lemma carrier_DirProdGroup [simp]:
"carrier (G \<Otimes> H) = carrier(G) × carrier(H)"
by (simp add: DirProdGroup_def)
lemma one_DirProdGroup [simp]:
"\<one>G \<Otimes> H = <\<one>G, \<one>H>"
by (simp add: DirProdGroup_def)
lemma mult_DirProdGroup [simp]:
"[|g ∈ carrier(G); h ∈ carrier(H); g' ∈ carrier(G); h' ∈ carrier(H)|]
==> <g, h> ·G \<Otimes> H <g', h'> = <g ·G g', h ·H h'>"
by (simp add: DirProdGroup_def)
lemma inv_DirProdGroup [simp]:
includes group G + group H
assumes g: "g ∈ carrier(G)"
and h: "h ∈ carrier(H)"
shows "inv G \<Otimes> H <g, h> = <invG g, invH h>"
apply (rule group.inv_equality [OF DirProdGroup_group])
apply (simp_all add: prems group_def group.l_inv)
done
subsection {* Isomorphisms *}
constdefs
hom :: "[i,i] => i"
"hom(G,H) ==
{h ∈ carrier(G) -> carrier(H).
(∀x ∈ carrier(G). ∀y ∈ carrier(G). h ` (x ·G y) = (h ` x) ·H (h ` y))}"
lemma hom_mult:
"[|h ∈ hom(G,H); x ∈ carrier(G); y ∈ carrier(G)|]
==> h ` (x ·G y) = h ` x ·H h ` y"
by (simp add: hom_def)
lemma hom_closed:
"[|h ∈ hom(G,H); x ∈ carrier(G)|] ==> h ` x ∈ carrier(H)"
by (auto simp add: hom_def)
lemma (in group) hom_compose:
"[|h ∈ hom(G,H); i ∈ hom(H,I)|] ==> i O h ∈ hom(G,I)"
by (force simp add: hom_def comp_fun)
lemma hom_is_fun:
"h ∈ hom(G,H) ==> h ∈ carrier(G) -> carrier(H)"
by (simp add: hom_def)
subsection {* Isomorphisms *}
constdefs
iso :: "[i,i] => i" (infixr "≅" 60)
"G ≅ H == hom(G,H) ∩ bij(carrier(G), carrier(H))"
lemma (in group) iso_refl: "id(carrier(G)) ∈ G ≅ G"
by (simp add: iso_def hom_def id_type id_bij)
lemma (in group) iso_sym:
"h ∈ G ≅ H ==> converse(h) ∈ H ≅ G"
apply (simp add: iso_def bij_converse_bij, clarify)
apply (subgoal_tac "converse(h) ∈ carrier(H) -> carrier(G)")
prefer 2 apply (simp add: bij_converse_bij bij_is_fun)
apply (auto intro: left_inverse_eq [of _ "carrier(G)" "carrier(H)"]
simp add: hom_def bij_is_inj right_inverse_bij);
done
lemma (in group) iso_trans:
"[|h ∈ G ≅ H; i ∈ H ≅ I|] ==> i O h ∈ G ≅ I"
by (auto simp add: iso_def hom_compose comp_bij)
lemma DirProdGroup_commute_iso:
includes group G + group H
shows "(λ<x,y> ∈ carrier(G \<Otimes> H). <y,x>) ∈ (G \<Otimes> H) ≅ (H \<Otimes> G)"
by (auto simp add: iso_def hom_def inj_def surj_def bij_def)
lemma DirProdGroup_assoc_iso:
includes group G + group H + group I
shows "(λ<<x,y>,z> ∈ carrier((G \<Otimes> H) \<Otimes> I). <x,<y,z>>)
∈ ((G \<Otimes> H) \<Otimes> I) ≅ (G \<Otimes> (H \<Otimes> I))"
by (auto intro: lam_type simp add: iso_def hom_def inj_def surj_def bij_def)
text{*Basis for homomorphism proofs: we assume two groups @{term G} and
@term{H}, with a homomorphism @{term h} between them*}
locale group_hom = group G + group H + var h +
assumes homh: "h ∈ hom(G,H)"
notes hom_mult [simp] = hom_mult [OF homh]
and hom_closed [simp] = hom_closed [OF homh]
and hom_is_fun [simp] = hom_is_fun [OF homh]
lemma (in group_hom) one_closed [simp]:
"h ` \<one> ∈ carrier(H)"
by simp
lemma (in group_hom) hom_one [simp]:
"h ` \<one> = \<one>H"
proof -
have "h ` \<one> ·H \<one>H = (h ` \<one>) ·H (h ` \<one>)"
by (simp add: hom_mult [symmetric] del: hom_mult)
then show ?thesis by (simp del: r_one)
qed
lemma (in group_hom) inv_closed [simp]:
"x ∈ carrier(G) ==> h ` (inv x) ∈ carrier(H)"
by simp
lemma (in group_hom) hom_inv [simp]:
"x ∈ carrier(G) ==> h ` (inv x) = invH (h ` x)"
proof -
assume x: "x ∈ carrier(G)"
then have "h ` x ·H h ` (inv x) = \<one>H"
by (simp add: hom_mult [symmetric] G.r_inv del: hom_mult)
also from x have "... = h ` x ·H invH (h ` x)"
by (simp add: hom_mult [symmetric] H.r_inv del: hom_mult)
finally have "h ` x ·H h ` (inv x) = h ` x ·H invH (h ` x)" .
with x show ?thesis by (simp del: inv add: is_group)
qed
subsection {* Commutative Structures *}
text {*
Naming convention: multiplicative structures that are commutative
are called \emph{commutative}, additive structures are called
\emph{Abelian}.
*}
subsection {* Definition *}
locale comm_monoid = monoid +
assumes m_comm: "[|x ∈ carrier(G); y ∈ carrier(G)|] ==> x · y = y · x"
lemma (in comm_monoid) m_lcomm:
"[|x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|] ==>
x · (y · z) = y · (x · z)"
proof -
assume xyz: "x ∈ carrier(G)" "y ∈ carrier(G)" "z ∈ carrier(G)"
from xyz have "x · (y · z) = (x · y) · z" by (simp add: m_assoc)
also from xyz have "... = (y · x) · z" by (simp add: m_comm)
also from xyz have "... = y · (x · z)" by (simp add: m_assoc)
finally show ?thesis .
qed
lemmas (in comm_monoid) m_ac = m_assoc m_comm m_lcomm
locale comm_group = comm_monoid + group
lemma (in comm_group) inv_mult:
"[|x ∈ carrier(G); y ∈ carrier(G)|] ==> inv (x · y) = inv x · inv y"
by (simp add: m_ac inv_mult_group)
lemma (in group) subgroup_self: "subgroup (carrier(G),G)"
by (simp add: subgroup_def prems)
lemma (in group) subgroup_imp_group:
"subgroup(H,G) ==> group (update_carrier(G,H))"
by (simp add: subgroup.is_group)
lemma (in group) subgroupI:
assumes subset: "H ⊆ carrier(G)" and non_empty: "H ≠ 0"
and inv: "!!a. a ∈ H ==> inv a ∈ H"
and mult: "!!a b. [|a ∈ H; b ∈ H|] ==> a · b ∈ H"
shows "subgroup(H,G)"
proof (simp add: subgroup_def prems)
show "\<one> ∈ H" by (rule one_in_subset) (auto simp only: prems)
qed
subsection {* Bijections of a Set, Permutation Groups, Automorphism Groups *}
constdefs
BijGroup :: "i=>i"
"BijGroup(S) ==
<bij(S,S),
λ<g,f> ∈ bij(S,S) × bij(S,S). g O f,
id(S), 0>"
subsection {*Bijections Form a Group *}
theorem group_BijGroup: "group(BijGroup(S))"
apply (simp add: BijGroup_def)
apply (rule groupI)
apply (simp_all add: id_bij comp_bij comp_assoc)
apply (simp add: id_bij bij_is_fun left_comp_id [of _ S S] fun_is_rel)
apply (blast intro: left_comp_inverse bij_is_inj bij_converse_bij)
done
subsection{*Automorphisms Form a Group*}
lemma Bij_Inv_mem: "[|f ∈ bij(S,S); x ∈ S|] ==> converse(f) ` x ∈ S"
by (blast intro: apply_funtype bij_is_fun bij_converse_bij)
lemma inv_BijGroup: "f ∈ bij(S,S) ==> m_inv (BijGroup(S), f) = converse(f)"
apply (rule group.inv_equality)
apply (rule group_BijGroup)
apply (simp_all add: BijGroup_def bij_converse_bij
left_comp_inverse [OF bij_is_inj])
done
lemma iso_is_bij: "h ∈ G ≅ H ==> h ∈ bij(carrier(G), carrier(H))"
by (simp add: iso_def)
constdefs
auto :: "i=>i"
"auto(G) == iso(G,G)"
AutoGroup :: "i=>i"
"AutoGroup(G) == update_carrier(BijGroup(carrier(G)), auto(G))"
lemma (in group) id_in_auto: "id(carrier(G)) ∈ auto(G)"
by (simp add: iso_refl auto_def)
lemma (in group) subgroup_auto:
"subgroup (auto(G)) (BijGroup (carrier(G)))"
proof (rule subgroup.intro)
show "auto(G) ⊆ carrier (BijGroup (carrier(G)))"
by (auto simp add: auto_def BijGroup_def iso_def)
next
fix x y
assume "x ∈ auto(G)" "y ∈ auto(G)"
thus "x ·BijGroup (carrier(G)) y ∈ auto(G)"
by (auto simp add: BijGroup_def auto_def iso_def bij_is_fun
group.hom_compose comp_bij)
next
show "\<one>BijGroup (carrier(G)) ∈ auto(G)" by (simp add: BijGroup_def id_in_auto)
next
fix x
assume "x ∈ auto(G)"
thus "invBijGroup (carrier(G)) x ∈ auto(G)"
by (simp add: auto_def inv_BijGroup iso_is_bij iso_sym)
qed
theorem (in group) AutoGroup: "group (AutoGroup(G))"
by (simp add: AutoGroup_def subgroup.is_group subgroup_auto group_BijGroup)
subsection{*Cosets and Quotient Groups*}
constdefs (structure G)
r_coset :: "[i,i,i] => i" (infixl "#>\<index>" 60)
"H #> a == \<Union>h∈H. {h · a}"
l_coset :: "[i,i,i] => i" (infixl "<#\<index>" 60)
"a <# H == \<Union>h∈H. {a · h}"
RCOSETS :: "[i,i] => i" ("rcosets\<index> _" [81] 80)
"rcosets H == \<Union>a∈carrier(G). {H #> a}"
set_mult :: "[i,i,i] => i" (infixl "<#>\<index>" 60)
"H <#> K == \<Union>h∈H. \<Union>k∈K. {h · k}"
SET_INV :: "[i,i] => i" ("set'_inv\<index> _" [81] 80)
"set_inv H == \<Union>h∈H. {inv h}"
locale normal = subgroup + group +
assumes coset_eq: "(∀x ∈ carrier(G). H #> x = x <# H)"
syntax
"@normal" :: "[i,i] => i" (infixl "\<lhd>" 60)
translations
"H \<lhd> G" == "normal(H,G)"
subsection {*Basic Properties of Cosets*}
lemma (in group) coset_mult_assoc:
"[|M ⊆ carrier(G); g ∈ carrier(G); h ∈ carrier(G)|]
==> (M #> g) #> h = M #> (g · h)"
by (force simp add: r_coset_def m_assoc)
lemma (in group) coset_mult_one [simp]: "M ⊆ carrier(G) ==> M #> \<one> = M"
by (force simp add: r_coset_def)
lemma (in group) solve_equation:
"[|subgroup(H,G); x ∈ H; y ∈ H|] ==> ∃h∈H. y = h · x"
apply (rule bexI [of _ "y · (inv x)"])
apply (auto simp add: subgroup.m_closed subgroup.m_inv_closed m_assoc
subgroup.subset [THEN subsetD])
done
lemma (in group) repr_independence:
"[|y ∈ H #> x; x ∈ carrier(G); subgroup(H,G)|] ==> H #> x = H #> y"
by (auto simp add: r_coset_def m_assoc [symmetric]
subgroup.subset [THEN subsetD]
subgroup.m_closed solve_equation)
lemma (in group) coset_join2:
"[|x ∈ carrier(G); subgroup(H,G); x∈H|] ==> H #> x = H"
--{*Alternative proof is to put @{term "x=\<one>"} in @{text repr_independence}.*}
by (force simp add: subgroup.m_closed r_coset_def solve_equation)
lemma (in group) r_coset_subset_G:
"[|H ⊆ carrier(G); x ∈ carrier(G)|] ==> H #> x ⊆ carrier(G)"
by (auto simp add: r_coset_def)
lemma (in group) rcosI:
"[|h ∈ H; H ⊆ carrier(G); x ∈ carrier(G)|] ==> h · x ∈ H #> x"
by (auto simp add: r_coset_def)
lemma (in group) rcosetsI:
"[|H ⊆ carrier(G); x ∈ carrier(G)|] ==> H #> x ∈ rcosets H"
by (auto simp add: RCOSETS_def)
text{*Really needed?*}
lemma (in group) transpose_inv:
"[|x · y = z; x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G)|]
==> (inv x) · z = y"
by (force simp add: m_assoc [symmetric])
subsection {* Normal subgroups *}
lemma normal_imp_subgroup: "H \<lhd> G ==> subgroup(H,G)"
by (simp add: normal_def subgroup_def)
lemma (in group) normalI:
"subgroup(H,G) ==> (∀x ∈ carrier(G). H #> x = x <# H) ==> H \<lhd> G";
apply (simp add: normal_def normal_axioms_def, auto)
by (blast intro: prems)
lemma (in normal) inv_op_closed1:
"[|x ∈ carrier(G); h ∈ H|] ==> (inv x) · h · x ∈ H"
apply (insert coset_eq)
apply (auto simp add: l_coset_def r_coset_def)
apply (drule bspec, assumption)
apply (drule equalityD1 [THEN subsetD], blast, clarify)
apply (simp add: m_assoc)
apply (simp add: m_assoc [symmetric])
done
lemma (in normal) inv_op_closed2:
"[|x ∈ carrier(G); h ∈ H|] ==> x · h · (inv x) ∈ H"
apply (subgoal_tac "inv (inv x) · h · (inv x) ∈ H")
apply simp
apply (blast intro: inv_op_closed1)
done
text{*Alternative characterization of normal subgroups*}
lemma (in group) normal_inv_iff:
"(N \<lhd> G) <->
(subgroup(N,G) & (∀x ∈ carrier(G). ∀h ∈ N. x · h · (inv x) ∈ N))"
(is "_ <-> ?rhs")
proof
assume N: "N \<lhd> G"
show ?rhs
by (blast intro: N normal.inv_op_closed2 normal_imp_subgroup)
next
assume ?rhs
hence sg: "subgroup(N,G)"
and closed: "!!x. x∈carrier(G) ==> ∀h∈N. x · h · inv x ∈ N" by auto
hence sb: "N ⊆ carrier(G)" by (simp add: subgroup.subset)
show "N \<lhd> G"
proof (intro normalI [OF sg], simp add: l_coset_def r_coset_def, clarify)
fix x
assume x: "x ∈ carrier(G)"
show "(\<Union>h∈N. {h · x}) = (\<Union>h∈N. {x · h})"
proof
show "(\<Union>h∈N. {h · x}) ⊆ (\<Union>h∈N. {x · h})"
proof clarify
fix n
assume n: "n ∈ N"
show "n · x ∈ (\<Union>h∈N. {x · h})"
proof (rule UN_I)
from closed [of "inv x"]
show "inv x · n · x ∈ N" by (simp add: x n)
show "n · x ∈ {x · (inv x · n · x)}"
by (simp add: x n m_assoc [symmetric] sb [THEN subsetD])
qed
qed
next
show "(\<Union>h∈N. {x · h}) ⊆ (\<Union>h∈N. {h · x})"
proof clarify
fix n
assume n: "n ∈ N"
show "x · n ∈ (\<Union>h∈N. {h · x})"
proof (rule UN_I)
show "x · n · inv x ∈ N" by (simp add: x n closed)
show "x · n ∈ {x · n · inv x · x}"
by (simp add: x n m_assoc sb [THEN subsetD])
qed
qed
qed
qed
qed
subsection{*More Properties of Cosets*}
lemma (in group) l_coset_subset_G:
"[|H ⊆ carrier(G); x ∈ carrier(G)|] ==> x <# H ⊆ carrier(G)"
by (auto simp add: l_coset_def subsetD)
lemma (in group) l_coset_swap:
"[|y ∈ x <# H; x ∈ carrier(G); subgroup(H,G)|] ==> x ∈ y <# H"
proof (simp add: l_coset_def)
assume "∃h∈H. y = x · h"
and x: "x ∈ carrier(G)"
and sb: "subgroup(H,G)"
then obtain h' where h': "h' ∈ H & x · h' = y" by blast
show "∃h∈H. x = y · h"
proof
show "x = y · inv h'" using h' x sb
by (auto simp add: m_assoc subgroup.subset [THEN subsetD])
show "inv h' ∈ H" using h' sb
by (auto simp add: subgroup.subset [THEN subsetD] subgroup.m_inv_closed)
qed
qed
lemma (in group) l_coset_carrier:
"[|y ∈ x <# H; x ∈ carrier(G); subgroup(H,G)|] ==> y ∈ carrier(G)"
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
lemma (in group) l_repr_imp_subset:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier(G)" and sb: "subgroup(H,G)"
shows "y <# H ⊆ x <# H"
proof -
from y
obtain h' where "h' ∈ H" "x · h' = y" by (auto simp add: l_coset_def)
thus ?thesis using x sb
by (auto simp add: l_coset_def m_assoc
subgroup.subset [THEN subsetD] subgroup.m_closed)
qed
lemma (in group) l_repr_independence:
assumes y: "y ∈ x <# H" and x: "x ∈ carrier(G)" and sb: "subgroup(H,G)"
shows "x <# H = y <# H"
proof
show "x <# H ⊆ y <# H"
by (rule l_repr_imp_subset,
(blast intro: l_coset_swap l_coset_carrier y x sb)+)
show "y <# H ⊆ x <# H" by (rule l_repr_imp_subset [OF y x sb])
qed
lemma (in group) setmult_subset_G:
"[|H ⊆ carrier(G); K ⊆ carrier(G)|] ==> H <#> K ⊆ carrier(G)"
by (auto simp add: set_mult_def subsetD)
lemma (in group) subgroup_mult_id: "subgroup(H,G) ==> H <#> H = H"
apply (rule equalityI)
apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def)
apply (rule_tac x = x in bexI)
apply (rule bexI [of _ "\<one>"])
apply (auto simp add: subgroup.m_closed subgroup.one_closed
r_one subgroup.subset [THEN subsetD])
done
subsubsection {* Set of inverses of an @{text r_coset}. *}
lemma (in normal) rcos_inv:
assumes x: "x ∈ carrier(G)"
shows "set_inv (H #> x) = H #> (inv x)"
proof (simp add: r_coset_def SET_INV_def x inv_mult_group, safe intro!: equalityI)
fix h
assume "h ∈ H"
show "inv x · inv h ∈ (\<Union>j∈H. {j · inv x})"
proof (rule UN_I)
show "inv x · inv h · x ∈ H"
by (simp add: inv_op_closed1 prems)
show "inv x · inv h ∈ {inv x · inv h · x · inv x}"
by (simp add: prems m_assoc)
qed
next
fix h
assume "h ∈ H"
show "h · inv x ∈ (\<Union>j∈H. {inv x · inv j})"
proof (rule UN_I)
show "x · inv h · inv x ∈ H"
by (simp add: inv_op_closed2 prems)
show "h · inv x ∈ {inv x · inv (x · inv h · inv x)}"
by (simp add: prems m_assoc [symmetric] inv_mult_group)
qed
qed
subsubsection {*Theorems for @{text "<#>"} with @{text "#>"} or @{text "<#"}.*}
lemma (in group) setmult_rcos_assoc:
"[|H ⊆ carrier(G); K ⊆ carrier(G); x ∈ carrier(G)|]
==> H <#> (K #> x) = (H <#> K) #> x"
by (force simp add: r_coset_def set_mult_def m_assoc)
lemma (in group) rcos_assoc_lcos:
"[|H ⊆ carrier(G); K ⊆ carrier(G); x ∈ carrier(G)|]
==> (H #> x) <#> K = H <#> (x <# K)"
by (force simp add: r_coset_def l_coset_def set_mult_def m_assoc)
lemma (in normal) rcos_mult_step1:
"[|x ∈ carrier(G); y ∈ carrier(G)|]
==> (H #> x) <#> (H #> y) = (H <#> (x <# H)) #> y"
by (simp add: setmult_rcos_assoc subset
r_coset_subset_G l_coset_subset_G rcos_assoc_lcos)
lemma (in normal) rcos_mult_step2:
"[|x ∈ carrier(G); y ∈ carrier(G)|]
==> (H <#> (x <# H)) #> y = (H <#> (H #> x)) #> y"
by (insert coset_eq, simp add: normal_def)
lemma (in normal) rcos_mult_step3:
"[|x ∈ carrier(G); y ∈ carrier(G)|]
==> (H <#> (H #> x)) #> y = H #> (x · y)"
by (simp add: setmult_rcos_assoc coset_mult_assoc
subgroup_mult_id subset prems)
lemma (in normal) rcos_sum:
"[|x ∈ carrier(G); y ∈ carrier(G)|]
==> (H #> x) <#> (H #> y) = H #> (x · y)"
by (simp add: rcos_mult_step1 rcos_mult_step2 rcos_mult_step3)
lemma (in normal) rcosets_mult_eq: "M ∈ rcosets H ==> H <#> M = M"
-- {* generalizes @{text subgroup_mult_id} *}
by (auto simp add: RCOSETS_def subset
setmult_rcos_assoc subgroup_mult_id prems)
subsubsection{*Two distinct right cosets are disjoint*}
constdefs (structure G)
r_congruent :: "[i,i] => i" ("rcong\<index> _" [60] 60)
"rcong H == {<x,y> ∈ carrier(G) * carrier(G). inv x · y ∈ H}"
lemma (in subgroup) equiv_rcong:
includes group G
shows "equiv (carrier(G), rcong H)"
proof (simp add: equiv_def, intro conjI)
show "rcong H ⊆ carrier(G) × carrier(G)"
by (auto simp add: r_congruent_def)
next
show "refl (carrier(G), rcong H)"
by (auto simp add: r_congruent_def refl_def)
next
show "sym (rcong H)"
proof (simp add: r_congruent_def sym_def, clarify)
fix x y
assume [simp]: "x ∈ carrier(G)" "y ∈ carrier(G)"
and "inv x · y ∈ H"
hence "inv (inv x · y) ∈ H" by (simp add: m_inv_closed)
thus "inv y · x ∈ H" by (simp add: inv_mult_group)
qed
next
show "trans (rcong H)"
proof (simp add: r_congruent_def trans_def, clarify)
fix x y z
assume [simp]: "x ∈ carrier(G)" "y ∈ carrier(G)" "z ∈ carrier(G)"
and "inv x · y ∈ H" and "inv y · z ∈ H"
hence "(inv x · y) · (inv y · z) ∈ H" by simp
hence "inv x · (y · inv y) · z ∈ H" by (simp add: m_assoc del: inv)
thus "inv x · z ∈ H" by simp
qed
qed
text{*Equivalence classes of @{text rcong} correspond to left cosets.
Was there a mistake in the definitions? I'd have expected them to
correspond to right cosets.*}
lemma (in subgroup) l_coset_eq_rcong:
includes group G
assumes a: "a ∈ carrier(G)"
shows "a <# H = (rcong H) `` {a}"
by (force simp add: r_congruent_def l_coset_def m_assoc [symmetric] a
Collect_image_eq)
lemma (in group) rcos_equation:
includes subgroup H G
shows
"[|ha · a = h · b; a ∈ carrier(G); b ∈ carrier(G);
h ∈ H; ha ∈ H; hb ∈ H|]
==> hb · a ∈ (\<Union>h∈H. {h · b})"
apply (rule UN_I [of "hb · ((inv ha) · h)"], simp)
apply (simp add: m_assoc transpose_inv)
done
lemma (in group) rcos_disjoint:
includes subgroup H G
shows "[|a ∈ rcosets H; b ∈ rcosets H; a≠b|] ==> a ∩ b = 0"
apply (simp add: RCOSETS_def r_coset_def)
apply (blast intro: rcos_equation prems sym)
done
subsection {*Order of a Group and Lagrange's Theorem*}
constdefs
order :: "i => i"
"order(S) == |carrier(S)|"
lemma (in group) rcos_self:
includes subgroup
shows "x ∈ carrier(G) ==> x ∈ H #> x"
apply (simp add: r_coset_def)
apply (rule_tac x="\<one>" in bexI, auto)
done
lemma (in group) rcosets_part_G:
includes subgroup
shows "\<Union>(rcosets H) = carrier(G)"
apply (rule equalityI)
apply (force simp add: RCOSETS_def r_coset_def)
apply (auto simp add: RCOSETS_def intro: rcos_self prems)
done
lemma (in group) cosets_finite:
"[|c ∈ rcosets H; H ⊆ carrier(G); Finite (carrier(G))|] ==> Finite(c)"
apply (auto simp add: RCOSETS_def)
apply (simp add: r_coset_subset_G [THEN subset_Finite])
done
text{*More general than the HOL version, which also requires @{term G} to
be finite.*}
lemma (in group) card_cosets_equal:
assumes H: "H ⊆ carrier(G)"
shows "c ∈ rcosets H ==> |c| = |H|"
proof (simp add: RCOSETS_def, clarify)
fix a
assume a: "a ∈ carrier(G)"
show "|H #> a| = |H|"
proof (rule eqpollI [THEN cardinal_cong])
show "H #> a \<lesssim> H"
proof (simp add: lepoll_def, intro exI)
show "(λy ∈ H#>a. y · inv a) ∈ inj(H #> a, H)"
by (auto intro: lam_type
simp add: inj_def r_coset_def m_assoc subsetD [OF H] a)
qed
show "H \<lesssim> H #> a"
proof (simp add: lepoll_def, intro exI)
show "(λy∈ H. y · a) ∈ inj(H, H #> a)"
by (auto intro: lam_type
simp add: inj_def r_coset_def subsetD [OF H] a)
qed
qed
qed
lemma (in group) rcosets_subset_PowG:
"subgroup(H,G) ==> rcosets H ⊆ Pow(carrier(G))"
apply (simp add: RCOSETS_def)
apply (blast dest: r_coset_subset_G subgroup.subset)
done
theorem (in group) lagrange:
"[|Finite(carrier(G)); subgroup(H,G)|]
==> |rcosets H| #* |H| = order(G)"
apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
apply (subst mult_commute)
apply (rule card_partition)
apply (simp add: rcosets_subset_PowG [THEN subset_Finite])
apply (simp add: rcosets_part_G)
apply (simp add: card_cosets_equal [OF subgroup.subset])
apply (simp add: rcos_disjoint)
done
subsection {*Quotient Groups: Factorization of a Group*}
constdefs (structure G)
FactGroup :: "[i,i] => i" (infixl "Mod" 65)
--{*Actually defined for groups rather than monoids*}
"G Mod H ==
<rcosetsG H, λ<K1,K2> ∈ (rcosetsG H) × (rcosetsG H). K1 <#> K2, H, 0>"
lemma (in normal) setmult_closed:
"[|K1 ∈ rcosets H; K2 ∈ rcosets H|] ==> K1 <#> K2 ∈ rcosets H"
by (auto simp add: rcos_sum RCOSETS_def)
lemma (in normal) setinv_closed:
"K ∈ rcosets H ==> set_inv K ∈ rcosets H"
by (auto simp add: rcos_inv RCOSETS_def)
lemma (in normal) rcosets_assoc:
"[|M1 ∈ rcosets H; M2 ∈ rcosets H; M3 ∈ rcosets H|]
==> M1 <#> M2 <#> M3 = M1 <#> (M2 <#> M3)"
by (auto simp add: RCOSETS_def rcos_sum m_assoc)
lemma (in subgroup) subgroup_in_rcosets:
includes group G
shows "H ∈ rcosets H"
proof -
have "H #> \<one> = H"
by (rule coset_join2, auto)
then show ?thesis
by (auto simp add: RCOSETS_def intro: sym)
qed
lemma (in normal) rcosets_inv_mult_group_eq:
"M ∈ rcosets H ==> set_inv M <#> M = H"
by (auto simp add: RCOSETS_def rcos_inv rcos_sum subgroup.subset prems)
theorem (in normal) factorgroup_is_group:
"group (G Mod H)"
apply (simp add: FactGroup_def)
apply (rule groupI)
apply (simp add: setmult_closed)
apply (simp add: normal_imp_subgroup subgroup_in_rcosets)
apply (simp add: setmult_closed rcosets_assoc)
apply (simp add: normal_imp_subgroup
subgroup_in_rcosets rcosets_mult_eq)
apply (auto dest: rcosets_inv_mult_group_eq simp add: setinv_closed)
done
lemma (in normal) inv_FactGroup:
"X ∈ carrier (G Mod H) ==> invG Mod H X = set_inv X"
apply (rule group.inv_equality [OF factorgroup_is_group])
apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
done
text{*The coset map is a homomorphism from @{term G} to the quotient group
@{term "G Mod H"}*}
lemma (in normal) r_coset_hom_Mod:
"(λa ∈ carrier(G). H #> a) ∈ hom(G, G Mod H)"
by (auto simp add: FactGroup_def RCOSETS_def hom_def rcos_sum intro: lam_type)
subsection{*The First Isomorphism Theorem*}
text{*The quotient by the kernel of a homomorphism is isomorphic to the
range of that homomorphism.*}
constdefs
kernel :: "[i,i,i] => i"
--{*the kernel of a homomorphism*}
"kernel(G,H,h) == {x ∈ carrier(G). h ` x = \<one>H}";
lemma (in group_hom) subgroup_kernel: "subgroup (kernel(G,H,h), G)"
apply (rule subgroup.intro)
apply (auto simp add: kernel_def group.intro prems)
done
text{*The kernel of a homomorphism is a normal subgroup*}
lemma (in group_hom) normal_kernel: "(kernel(G,H,h)) \<lhd> G"
apply (simp add: group.normal_inv_iff subgroup_kernel group.intro prems)
apply (simp add: kernel_def)
done
lemma (in group_hom) FactGroup_nonempty:
assumes X: "X ∈ carrier (G Mod kernel(G,H,h))"
shows "X ≠ 0"
proof -
from X
obtain g where "g ∈ carrier(G)"
and "X = kernel(G,H,h) #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
thus ?thesis
by (auto simp add: kernel_def r_coset_def image_def intro: hom_one)
qed
lemma (in group_hom) FactGroup_contents_mem:
assumes X: "X ∈ carrier (G Mod (kernel(G,H,h)))"
shows "contents (h``X) ∈ carrier(H)"
proof -
from X
obtain g where g: "g ∈ carrier(G)"
and "X = kernel(G,H,h) #> g"
by (auto simp add: FactGroup_def RCOSETS_def)
hence "h `` X = {h ` g}"
by (auto simp add: kernel_def r_coset_def image_UN
image_eq_UN [OF hom_is_fun] g)
thus ?thesis by (auto simp add: g)
qed
lemma mult_FactGroup:
"[|X ∈ carrier(G Mod H); X' ∈ carrier(G Mod H)|]
==> X ·(G Mod H) X' = X <#>G X'"
by (simp add: FactGroup_def)
lemma (in normal) FactGroup_m_closed:
"[|X ∈ carrier(G Mod H); X' ∈ carrier(G Mod H)|]
==> X <#>G X' ∈ carrier(G Mod H)"
by (simp add: FactGroup_def setmult_closed)
lemma (in group_hom) FactGroup_hom:
"(λX ∈ carrier(G Mod (kernel(G,H,h))). contents (h``X))
∈ hom (G Mod (kernel(G,H,h)), H)"
proof (simp add: hom_def FactGroup_contents_mem lam_type mult_FactGroup normal.FactGroup_m_closed [OF normal_kernel], intro ballI)
fix X and X'
assume X: "X ∈ carrier (G Mod kernel(G,H,h))"
and X': "X' ∈ carrier (G Mod kernel(G,H,h))"
then
obtain g and g'
where "g ∈ carrier(G)" and "g' ∈ carrier(G)"
and "X = kernel(G,H,h) #> g" and "X' = kernel(G,H,h) #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀x∈X. h ` x = h ` g" "∀x∈X'. h ` x = h ` g'"
and Xsub: "X ⊆ carrier(G)" and X'sub: "X' ⊆ carrier(G)"
by (force simp add: kernel_def r_coset_def image_def)+
hence "h `` (X <#> X') = {h ` g ·H h ` g'}" using X X'
by (auto dest!: FactGroup_nonempty
simp add: set_mult_def image_eq_UN [OF hom_is_fun] image_UN
subsetD [OF Xsub] subsetD [OF X'sub])
thus "contents (h `` (X <#> X')) = contents (h `` X) ·H contents (h `` X')"
by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
X X' Xsub X'sub)
qed
text{*Lemma for the following injectivity result*}
lemma (in group_hom) FactGroup_subset:
"[|g ∈ carrier(G); g' ∈ carrier(G); h ` g = h ` g'|]
==> kernel(G,H,h) #> g ⊆ kernel(G,H,h) #> g'"
apply (clarsimp simp add: kernel_def r_coset_def image_def)
apply (rename_tac y)
apply (rule_tac x="y · g · inv g'" in bexI)
apply (simp_all add: G.m_assoc)
done
lemma (in group_hom) FactGroup_inj:
"(λX∈carrier (G Mod kernel(G,H,h)). contents (h `` X))
∈ inj(carrier (G Mod kernel(G,H,h)), carrier(H))"
proof (simp add: inj_def FactGroup_contents_mem lam_type, clarify)
fix X and X'
assume X: "X ∈ carrier (G Mod kernel(G,H,h))"
and X': "X' ∈ carrier (G Mod kernel(G,H,h))"
then
obtain g and g'
where gX: "g ∈ carrier(G)" "g' ∈ carrier(G)"
"X = kernel(G,H,h) #> g" "X' = kernel(G,H,h) #> g'"
by (auto simp add: FactGroup_def RCOSETS_def)
hence all: "∀x∈X. h ` x = h ` g" "∀x∈X'. h ` x = h ` g'"
and Xsub: "X ⊆ carrier(G)" and X'sub: "X' ⊆ carrier(G)"
by (force simp add: kernel_def r_coset_def image_def)+
assume "contents (h `` X) = contents (h `` X')"
hence h: "h ` g = h ` g'"
by (simp add: all image_eq_UN [OF hom_is_fun] FactGroup_nonempty
X X' Xsub X'sub)
show "X=X'" by (rule equalityI) (simp_all add: FactGroup_subset h gX)
qed
lemma (in group_hom) kernel_rcoset_subset:
assumes g: "g ∈ carrier(G)"
shows "kernel(G,H,h) #> g ⊆ carrier (G)"
by (auto simp add: g kernel_def r_coset_def)
text{*If the homomorphism @{term h} is onto @{term H}, then so is the
homomorphism from the quotient group*}
lemma (in group_hom) FactGroup_surj:
assumes h: "h ∈ surj(carrier(G), carrier(H))"
shows "(λX∈carrier (G Mod kernel(G,H,h)). contents (h `` X))
∈ surj(carrier (G Mod kernel(G,H,h)), carrier(H))"
proof (simp add: surj_def FactGroup_contents_mem lam_type, clarify)
fix y
assume y: "y ∈ carrier(H)"
with h obtain g where g: "g ∈ carrier(G)" "h ` g = y"
by (auto simp add: surj_def)
hence "(\<Union>x∈kernel(G,H,h) #> g. {h ` x}) = {y}"
by (auto simp add: y kernel_def r_coset_def)
with g show "∃x∈carrier(G Mod kernel(G, H, h)). contents(h `` x) = y"
--{*The witness is @{term "kernel(G,H,h) #> g"}*}
by (force simp add: FactGroup_def RCOSETS_def
image_eq_UN [OF hom_is_fun] kernel_rcoset_subset)
qed
text{*If @{term h} is a homomorphism from @{term G} onto @{term H}, then the
quotient group @{term "G Mod (kernel(G,H,h))"} is isomorphic to @{term H}.*}
theorem (in group_hom) FactGroup_iso:
"h ∈ surj(carrier(G), carrier(H))
==> (λX∈carrier (G Mod kernel(G,H,h)). contents (h``X)) ∈ (G Mod (kernel(G,H,h))) ≅ H"
by (simp add: iso_def FactGroup_hom FactGroup_inj bij_def FactGroup_surj)
end
lemma carrier_eq:
carrier(〈A, Z〉) = A
lemma mult_eq:
x ·〈A, M, Z〉 y = M ` 〈x, y〉
lemma one_eq:
\<one>〈A, M, I, Z〉 = I
lemma update_carrier_eq:
update_carrier(〈A, Z〉, B) = 〈B, Z〉
lemma carrier_update_carrier:
carrier(update_carrier(M, B)) = B
lemma mult_update_carrier:
x ·update_carrier(M, B) y = x ·M y
lemma one_update_carrier:
\<one>update_carrier(M, B) = \<one>M
lemma inv_unique:
[| monoid(G); y ·G x = \<one>G; x ·G y' = \<one>G; x ∈ carrier(G); y ∈ carrier(G); y' ∈ carrier(G) |] ==> y = y'
lemma is_group:
group(G) ==> group(G)
theorem groupI:
[| !!x y. [| x ∈ carrier(G); y ∈ carrier(G) |] ==> x ·G y ∈ carrier(G); \<one>G ∈ carrier(G); !!x y z. [| x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> x ·G y ·G z = x ·G (y ·G z); !!x. x ∈ carrier(G) ==> \<one>G ·G x = x; !!x. x ∈ carrier(G) ==> ∃y∈carrier(G). y ·G x = \<one>G |] ==> group(G)
lemma inv:
[| group(G); x ∈ carrier(G) |] ==> invG x ∈ carrier(G) ∧ invG x ·G x = \<one>G ∧ x ·G invG x = \<one>G
lemma inv_closed:
[| group(G); x ∈ carrier(G) |] ==> invG x ∈ carrier(G)
lemma l_inv:
[| group(G); x ∈ carrier(G) |] ==> invG x ·G x = \<one>G
lemma r_inv:
[| group(G); x ∈ carrier(G) |] ==> x ·G invG x = \<one>G
lemma l_cancel:
[| group(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> x ·G y = x ·G z <-> y = z
lemma r_cancel:
[| group(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> y ·G x = z ·G x <-> y = z
lemma inv_comm:
[| group(G); x ·G y = \<one>G; x ∈ carrier(G); y ∈ carrier(G) |] ==> y ·G x = \<one>G
lemma inv_equality:
[| group(G); y ·G x = \<one>G; x ∈ carrier(G); y ∈ carrier(G) |] ==> invG x = y
lemma inv_one:
group(G) ==> invG \<one>G = \<one>G
lemma inv_inv:
[| group(G); x ∈ carrier(G) |] ==> invG (invG x) = x
lemma inv_mult_group:
[| group(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> invG (x ·G y) = invG y ·G invG x
lemma mem_carrier:
[| subgroup(H, G); x ∈ H |] ==> x ∈ carrier(G)
lemma subgroup_imp_subset:
subgroup(H, G) ==> H ⊆ carrier(G)
lemma group_axiomsI:
[| subgroup(H, G); group(G) |] ==> group_axioms(update_carrier(G, H))
lemma is_group:
[| subgroup(H, G); group(G) |] ==> group(update_carrier(G, H))
lemma one_in_subset:
[| group(G); H ⊆ carrier(G); H ≠ 0; ∀a∈H. invG a ∈ H; ∀a∈H. ∀b∈H. a ·G b ∈ H |] ==> \<one>G ∈ H
lemma subgroup_nonempty:
¬ subgroup(0, G)
lemma DirProdGroup_group:
[| group(G); group(H) |] ==> group(G \<Otimes> H)
lemma carrier_DirProdGroup:
carrier(G \<Otimes> H) = carrier(G) × carrier(H)
lemma one_DirProdGroup:
\<one>G \<Otimes> H = 〈\<one>G, \<one>H〉
lemma mult_DirProdGroup:
[| g ∈ carrier(G); h ∈ carrier(H); g' ∈ carrier(G); h' ∈ carrier(H) |] ==> 〈g, h〉 ·G \<Otimes> H 〈g', h'〉 = 〈g ·G g', h ·H h'〉
lemma inv_DirProdGroup:
[| group(G); group(H); g ∈ carrier(G); h ∈ carrier(H) |] ==> invG \<Otimes> H 〈g, h〉 = 〈invG g, invH h〉
lemma hom_mult:
[| h ∈ hom(G, H); x ∈ carrier(G); y ∈ carrier(G) |] ==> h ` (x ·G y) = h ` x ·H h ` y
lemma hom_closed:
[| h ∈ hom(G, H); x ∈ carrier(G) |] ==> h ` x ∈ carrier(H)
lemma hom_compose:
[| group(G); h ∈ hom(G, H); i ∈ hom(H, I) |] ==> i O h ∈ hom(G, I)
lemma hom_is_fun:
h ∈ hom(G, H) ==> h ∈ carrier(G) -> carrier(H)
lemma iso_refl:
group(G) ==> id(carrier(G)) ∈ G ≅ G
lemma iso_sym:
[| group(G); h ∈ G ≅ H |] ==> converse(h) ∈ H ≅ G
lemma iso_trans:
[| group(G); h ∈ G ≅ H; i ∈ H ≅ I |] ==> i O h ∈ G ≅ I
lemma DirProdGroup_commute_iso:
[| group(G); group(H) |] ==> (λ〈x,y〉∈carrier(G \<Otimes> H). 〈y, x〉) ∈ G \<Otimes> H ≅ H \<Otimes> G
lemma DirProdGroup_assoc_iso:
[| group(G); group(H); group(I) |] ==> (λ〈〈x,y〉,z〉∈carrier((G \<Otimes> H) \<Otimes> I). 〈x, y, z〉) ∈ (G \<Otimes> H) \<Otimes> I ≅ G \<Otimes> H \<Otimes> I
lemma one_closed:
group_hom(G, H, h) ==> h ` \<one>G ∈ carrier(H)
lemma hom_one:
group_hom(G, H, h) ==> h ` \<one>G = \<one>H
lemma inv_closed:
[| group_hom(G, H, h); x ∈ carrier(G) |] ==> h ` (invG x) ∈ carrier(H)
lemma hom_inv:
[| group_hom(G, H, h); x ∈ carrier(G) |] ==> h ` (invG x) = invH h ` x
lemma m_lcomm:
[| comm_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> x ·G (y ·G z) = y ·G (x ·G z)
lemmas m_ac:
[| comm_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> x ·G y ·G z = x ·G (y ·G z)
[| comm_monoid(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> x ·G y = y ·G x
[| comm_monoid(G); x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> x ·G (y ·G z) = y ·G (x ·G z)
lemma inv_mult:
[| comm_group(G); x ∈ carrier(G); y ∈ carrier(G) |] ==> invG (x ·G y) = invG x ·G invG y
lemma subgroup_self:
group(G) ==> subgroup(carrier(G), G)
lemma subgroup_imp_group:
[| group(G); subgroup(H, G) |] ==> group(update_carrier(G, H))
lemma subgroupI:
[| group(G); H ⊆ carrier(G); H ≠ 0; !!a. a ∈ H ==> invG a ∈ H; !!a b. [| a ∈ H; b ∈ H |] ==> a ·G b ∈ H |] ==> subgroup(H, G)
theorem group_BijGroup:
group(BijGroup(S))
lemma Bij_Inv_mem:
[| f ∈ bij(S, S); x ∈ S |] ==> converse(f) ` x ∈ S
lemma inv_BijGroup:
f ∈ bij(S, S) ==> invBijGroup(S) f = converse(f)
lemma iso_is_bij:
h ∈ G ≅ H ==> h ∈ bij(carrier(G), carrier(H))
lemma id_in_auto:
group(G) ==> id(carrier(G)) ∈ auto(G)
lemma subgroup_auto:
group(G) ==> subgroup(auto(G), BijGroup(carrier(G)))
theorem AutoGroup:
group(G) ==> group(AutoGroup(G))
lemma coset_mult_assoc:
[| group(G); M ⊆ carrier(G); g ∈ carrier(G); h ∈ carrier(G) |] ==> M #>G g #>G h = M #>G g ·G h
lemma coset_mult_one:
[| group(G); M ⊆ carrier(G) |] ==> M #>G \<one>G = M
lemma solve_equation:
[| group(G); subgroup(H, G); x ∈ H; y ∈ H |] ==> ∃h∈H. y = h ·G x
lemma repr_independence:
[| group(G); y ∈ H #>G x; x ∈ carrier(G); subgroup(H, G) |] ==> H #>G x = H #>G y
lemma coset_join2:
[| group(G); x ∈ carrier(G); subgroup(H, G); x ∈ H |] ==> H #>G x = H
lemma r_coset_subset_G:
[| group(G); H ⊆ carrier(G); x ∈ carrier(G) |] ==> H #>G x ⊆ carrier(G)
lemma rcosI:
[| group(G); h ∈ H; H ⊆ carrier(G); x ∈ carrier(G) |] ==> h ·G x ∈ H #>G x
lemma rcosetsI:
[| group(G); H ⊆ carrier(G); x ∈ carrier(G) |] ==> H #>G x ∈ rcosetsG H
lemma transpose_inv:
[| group(G); x ·G y = z; x ∈ carrier(G); y ∈ carrier(G); z ∈ carrier(G) |] ==> invG x ·G z = y
lemma normal_imp_subgroup:
H \<lhd> G ==> subgroup(H, G)
lemma normalI:
[| group(G); subgroup(H, G); ∀x∈carrier(G). H #>G x = x <#G H |] ==> H \<lhd> G
lemma inv_op_closed1:
[| H \<lhd> G; x ∈ carrier(G); h ∈ H |] ==> invG x ·G h ·G x ∈ H
lemma inv_op_closed2:
[| H \<lhd> G; x ∈ carrier(G); h ∈ H |] ==> x ·G h ·G invG x ∈ H
lemma normal_inv_iff:
group(G) ==> N \<lhd> G <-> subgroup(N, G) ∧ (∀x∈carrier(G). ∀h∈N. x ·G h ·G invG x ∈ N)
lemma l_coset_subset_G:
[| group(G); H ⊆ carrier(G); x ∈ carrier(G) |] ==> x <#G H ⊆ carrier(G)
lemma l_coset_swap:
[| group(G); y ∈ x <#G H; x ∈ carrier(G); subgroup(H, G) |] ==> x ∈ y <#G H
lemma l_coset_carrier:
[| group(G); y ∈ x <#G H; x ∈ carrier(G); subgroup(H, G) |] ==> y ∈ carrier(G)
lemma l_repr_imp_subset:
[| group(G); y ∈ x <#G H; x ∈ carrier(G); subgroup(H, G) |] ==> y <#G H ⊆ x <#G H
lemma l_repr_independence:
[| group(G); y ∈ x <#G H; x ∈ carrier(G); subgroup(H, G) |] ==> x <#G H = y <#G H
lemma setmult_subset_G:
[| group(G); H ⊆ carrier(G); K ⊆ carrier(G) |] ==> H <#>G K ⊆ carrier(G)
lemma subgroup_mult_id:
[| group(G); subgroup(H, G) |] ==> H <#>G H = H
lemma rcos_inv:
[| H \<lhd> G; x ∈ carrier(G) |] ==> set_invG (H #>G x) = H #>G invG x
lemma setmult_rcos_assoc:
[| group(G); H ⊆ carrier(G); K ⊆ carrier(G); x ∈ carrier(G) |] ==> H <#>G (K #>G x) = H <#>G K #>G x
lemma rcos_assoc_lcos:
[| group(G); H ⊆ carrier(G); K ⊆ carrier(G); x ∈ carrier(G) |] ==> H #>G x <#>G K = H <#>G (x <#G K)
lemma rcos_mult_step1:
[| H \<lhd> G; x ∈ carrier(G); y ∈ carrier(G) |] ==> H #>G x <#>G (H #>G y) = H <#>G (x <#G H) #>G y
lemma rcos_mult_step2:
[| H \<lhd> G; x ∈ carrier(G); y ∈ carrier(G) |] ==> H <#>G (x <#G H) #>G y = H <#>G (H #>G x) #>G y
lemma rcos_mult_step3:
[| H \<lhd> G; x ∈ carrier(G); y ∈ carrier(G) |] ==> H <#>G (H #>G x) #>G y = H #>G x ·G y
lemma rcos_sum:
[| H \<lhd> G; x ∈ carrier(G); y ∈ carrier(G) |] ==> H #>G x <#>G (H #>G y) = H #>G x ·G y
lemma rcosets_mult_eq:
[| H \<lhd> G; M ∈ rcosetsG H |] ==> H <#>G M = M
lemma equiv_rcong:
[| subgroup(H, G); group(G) |] ==> equiv(carrier(G), rcongG H)
lemma l_coset_eq_rcong:
[| subgroup(H, G); group(G); a ∈ carrier(G) |] ==> a <#G H = (rcongG H) `` {a}
lemma rcos_equation:
[| group(G); subgroup(H, G); ha ·G a = h ·G b; a ∈ carrier(G); b ∈ carrier(G); h ∈ H; ha ∈ H; hb ∈ H |] ==> hb ·G a ∈ (\<Union>h∈H. {h ·G b})
lemma rcos_disjoint:
[| group(G); subgroup(H, G); a ∈ rcosetsG H; b ∈ rcosetsG H; a ≠ b |] ==> a ∩ b = 0
lemma rcos_self:
[| group(G); subgroup(H, G); x ∈ carrier(G) |] ==> x ∈ H #>G x
lemma rcosets_part_G:
[| group(G); subgroup(H, G) |] ==> \<Union>(rcosetsG H) = carrier(G)
lemma cosets_finite:
[| group(G); c ∈ rcosetsG H; H ⊆ carrier(G); Finite(carrier(G)) |] ==> Finite(c)
lemma card_cosets_equal:
[| group(G); H ⊆ carrier(G); c ∈ rcosetsG H |] ==> |c| = |H|
lemma rcosets_subset_PowG:
[| group(G); subgroup(H, G) |] ==> rcosetsG H ⊆ Pow(carrier(G))
theorem lagrange:
[| group(G); Finite(carrier(G)); subgroup(H, G) |] ==> |rcosetsG H| #× |H| = order(G)
lemma setmult_closed:
[| H \<lhd> G; K1.0 ∈ rcosetsG H; K2.0 ∈ rcosetsG H |] ==> K1.0 <#>G K2.0 ∈ rcosetsG H
lemma setinv_closed:
[| H \<lhd> G; K ∈ rcosetsG H |] ==> set_invG K ∈ rcosetsG H
lemma rcosets_assoc:
[| H \<lhd> G; M1.0 ∈ rcosetsG H; M2.0 ∈ rcosetsG H; M3.0 ∈ rcosetsG H |] ==> M1.0 <#>G M2.0 <#>G M3.0 = M1.0 <#>G (M2.0 <#>G M3.0)
lemma subgroup_in_rcosets:
[| subgroup(H, G); group(G) |] ==> H ∈ rcosetsG H
lemma rcosets_inv_mult_group_eq:
[| H \<lhd> G; M ∈ rcosetsG H |] ==> set_invG M <#>G M = H
theorem factorgroup_is_group:
H \<lhd> G ==> group(G Mod H)
lemma inv_FactGroup:
[| H \<lhd> G; X ∈ carrier(G Mod H) |] ==> invG Mod H X = set_invG X
lemma r_coset_hom_Mod:
H \<lhd> G ==> (λa∈carrier(G). H #>G a) ∈ hom(G, G Mod H)
lemma subgroup_kernel:
group_hom(G, H, h) ==> subgroup(kernel(G, H, h), G)
lemma normal_kernel:
group_hom(G, H, h) ==> kernel(G, H, h) \<lhd> G
lemma FactGroup_nonempty:
[| group_hom(G, H, h); X ∈ carrier(G Mod kernel(G, H, h)) |] ==> X ≠ 0
lemma FactGroup_contents_mem:
[| group_hom(G, H, h); X ∈ carrier(G Mod kernel(G, H, h)) |] ==> contents(h `` X) ∈ carrier(H)
lemma mult_FactGroup:
[| X ∈ carrier(G Mod H); X' ∈ carrier(G Mod H) |] ==> X ·G Mod H X' = X <#>G X'
lemma FactGroup_m_closed:
[| H \<lhd> G; X ∈ carrier(G Mod H); X' ∈ carrier(G Mod H) |] ==> X <#>G X' ∈ carrier(G Mod H)
lemma FactGroup_hom:
group_hom(G, H, h) ==> (λX∈carrier(G Mod kernel(G, H, h)). contents(h `` X)) ∈ hom(G Mod kernel(G, H, h), H)
lemma FactGroup_subset:
[| group_hom(G, H, h); g ∈ carrier(G); g' ∈ carrier(G); h ` g = h ` g' |] ==> kernel(G, H, h) #>G g ⊆ kernel(G, H, h) #>G g'
lemma FactGroup_inj:
group_hom(G, H, h) ==> (λX∈carrier(G Mod kernel(G, H, h)). contents(h `` X)) ∈ inj(carrier(G Mod kernel(G, H, h)), carrier(H))
lemma kernel_rcoset_subset:
[| group_hom(G, H, h); g ∈ carrier(G) |] ==> kernel(G, H, h) #>G g ⊆ carrier(G)
lemma FactGroup_surj:
[| group_hom(G, H, h); h ∈ surj(carrier(G), carrier(H)) |] ==> (λX∈carrier(G Mod kernel(G, H, h)). contents(h `` X)) ∈ surj(carrier(G Mod kernel(G, H, h)), carrier(H))
theorem FactGroup_iso:
[| group_hom(G, H, h); h ∈ surj(carrier(G), carrier(H)) |] ==> (λX∈carrier(G Mod kernel(G, H, h)). contents(h `` X)) ∈ G Mod kernel(G, H, h) ≅ H