(* Title: ZF/ex/Natsum.thy
ID: $Id: NatSum.thy,v 1.3 2005/06/17 14:15:11 haftmann Exp $
Author: Tobias Nipkow & Lawrence C Paulson
A summation operator. sum(f,n+1) is the sum of all f(i), i=0...n.
Note: n is a natural number but the sum is an integer,
and f maps integers to integers
Summing natural numbers, squares, cubes, etc.
Originally demonstrated permutative rewriting, but add_ac is no longer needed
thanks to new simprocs.
Thanks to Sloane's On-Line Encyclopedia of Integer Sequences,
http://www.research.att.com/~njas/sequences/
*)
theory NatSum imports Main begin
consts sum :: "[i=>i, i] => i"
primrec
"sum (f,0) = #0"
"sum (f, succ(n)) = f($#n) $+ sum(f,n)"
declare zadd_zmult_distrib [simp] zadd_zmult_distrib2 [simp]
declare zdiff_zmult_distrib [simp] zdiff_zmult_distrib2 [simp]
(*The sum of the first n odd numbers equals n squared.*)
lemma sum_of_odds: "n ∈ nat ==> sum (%i. i $+ i $+ #1, n) = $#n $* $#n"
by (induct_tac "n", auto)
(*The sum of the first n odd squares*)
lemma sum_of_odd_squares:
"n ∈ nat ==> #3 $* sum (%i. (i $+ i $+ #1) $* (i $+ i $+ #1), n) =
$#n $* (#4 $* $#n $* $#n $- #1)"
by (induct_tac "n", auto)
(*The sum of the first n odd cubes*)
lemma sum_of_odd_cubes:
"n ∈ nat
==> sum (%i. (i $+ i $+ #1) $* (i $+ i $+ #1) $* (i $+ i $+ #1), n) =
$#n $* $#n $* (#2 $* $#n $* $#n $- #1)"
by (induct_tac "n", auto)
(*The sum of the first n positive integers equals n(n+1)/2.*)
lemma sum_of_naturals:
"n ∈ nat ==> #2 $* sum(%i. i, succ(n)) = $#n $* $#succ(n)"
by (induct_tac "n", auto)
lemma sum_of_squares:
"n ∈ nat ==> #6 $* sum (%i. i$*i, succ(n)) =
$#n $* ($#n $+ #1) $* (#2 $* $#n $+ #1)"
by (induct_tac "n", auto)
lemma sum_of_cubes:
"n ∈ nat ==> #4 $* sum (%i. i$*i$*i, succ(n)) =
$#n $* $#n $* ($#n $+ #1) $* ($#n $+ #1)"
by (induct_tac "n", auto)
(** Sum of fourth powers **)
lemma sum_of_fourth_powers:
"n ∈ nat ==> #30 $* sum (%i. i$*i$*i$*i, succ(n)) =
$#n $* ($#n $+ #1) $* (#2 $* $#n $+ #1) $*
(#3 $* $#n $* $#n $+ #3 $* $#n $- #1)"
by (induct_tac "n", auto)
end
lemma sum_of_odds:
n ∈ nat ==> NatSum.sum(%i. i $+ i $+ #1, n) = $# n $× $# n
lemma sum_of_odd_squares:
n ∈ nat ==> #3 $× NatSum.sum(%i. (i $+ i $+ #1) $× (i $+ i $+ #1), n) = $# n $× (#4 $× $# n $× $# n $- #1)
lemma sum_of_odd_cubes:
n ∈ nat ==> NatSum.sum(%i. (i $+ i $+ #1) $× (i $+ i $+ #1) $× (i $+ i $+ #1), n) = $# n $× $# n $× (#2 $× $# n $× $# n $- #1)
lemma sum_of_naturals:
n ∈ nat ==> #2 $× NatSum.sum(%i. i, succ(n)) = $# n $× $# succ(n)
lemma sum_of_squares:
n ∈ nat ==> #6 $× NatSum.sum(%i. i $× i, succ(n)) = $# n $× ($# n $+ #1) $× (#2 $× $# n $+ #1)
lemma sum_of_cubes:
n ∈ nat ==> #4 $× NatSum.sum(%i. i $× i $× i, succ(n)) = $# n $× $# n $× ($# n $+ #1) $× ($# n $+ #1)
lemma sum_of_fourth_powers:
n ∈ nat ==> #30 $× NatSum.sum(%i. i $× i $× i $× i, succ(n)) = $# n $× ($# n $+ #1) $× (#2 $× $# n $+ #1) $× (#3 $× $# n $× $# n $+ #3 $× $# n $- #1)