
λ →

∀
=Isa

be
lle

β
α

Isar

Using Axiomatic Type Classes in Isabelle

Markus Wenzel
TU München

1 October 2005

Abstract

Isabelle offers order-sorted type classes on top of the simple types of plain
Higher-Order Logic. The resulting type system is similar to that of the
programming language Haskell. Its interpretation within the logic enables
further application, though, apart from restricting polymorphism syntacti-
cally. In particular, the concept of Axiomatic Type Classes provides a useful
light-weight mechanism for hierarchically-structured abstract theories. Sub-
sequently, we demonstrate typical uses of Isabelle’s axiomatic type classes to
model basic algebraic structures.

This document describes axiomatic type classes using Isabelle/Isar theo-
ries, with proofs expressed via Isar proof language elements. The new theory
format greatly simplifies the arrangement of the overall development, since
definitions and proofs may be freely intermixed. Users who prefer tactic
scripts over structured proofs do not need to fall back on separate ML scripts,
though, but may refer to Isar’s tactic emulation commands.

Contents

1 Introduction 1

2 Examples 2
2.1 Semigroups . 2
2.2 Basic group theory . 3

2.2.1 Monoids and Groups 3
2.2.2 Abstract reasoning . 4
2.2.3 Abstract instantiation 5
2.2.4 Concrete instantiation 6
2.2.5 Lifting and Functors 8

2.3 Syntactic classes . 8
2.4 Defining natural numbers in FOL 10

i

CONTENTS ii

Chapter 1

Introduction

A Haskell-style type-system [1] with ordered type-classes has been present
in Isabelle since 1991 already [2]. Initially, classes have mainly served as a
purely syntactic tool to formulate polymorphic object-logics in a clean way,
such as the standard Isabelle formulation of many-sorted FOL [5].

Applying classes at the logical level to provide a simple notion of abstract
theories and instantiations to concrete ones, has been long proposed as well
[3, 2]. At that time, Isabelle still lacked built-in support for these axiomatic
type classes. More importantly, their semantics was not yet fully fleshed out
(and unnecessarily complicated, too).

Since Isabelle94, actual axiomatic type classes have been an integral part
of Isabelle’s meta-logic. This very simple implementation is based on a
straight-forward extension of traditional simply-typed Higher-Order Logic,
by including types qualified by logical predicates and overloaded constant
definitions (see [7] for further details).

Yet even until Isabelle99, there used to be still a fundamental method-
ological problem in using axiomatic type classes conveniently, due to the
traditional distinction of Isabelle theory files vs. ML proof scripts. This has
been finally overcome with the advent of Isabelle/Isar theories [6]: now defi-
nitions and proofs may be freely intermixed. This nicely accommodates the
usual procedure of defining axiomatic type classes, proving abstract proper-
ties, defining operations on concrete types, proving concrete properties for
instantiation of classes etc.

So to cut a long story short, the present version of axiomatic type classes
now provides an even more useful and convenient mechanism for light-weight
abstract theories, without any special technical provisions to be observed by
the user.

1

Chapter 2

Examples

Axiomatic type classes are a concept of Isabelle’s meta-logic [5, 7]. They
may be applied to any object-logic that directly uses the meta type system,
such as Isabelle/HOL [4]. Subsequently, we present various examples that
are all formulated within HOL, except the one of §2.4 which is in FOL. See
also http://isabelle.in.tum.de/library/HOL/AxClasses/ and http://isabelle.
in.tum.de/library/FOL/ex/NatClass.html.

2.1 Semigroups

theory Semigroups imports Main begin

An axiomatic type class is simply a class of types that all meet certain prop-
erties, which are also called class axioms. Thus, type classes may be also
understood as type predicates — i.e. abstractions over a single type argu-
ment ′a. Class axioms typically contain polymorphic constants that depend
on this type ′a. These characteristic constants behave like operations asso-
ciated with the “carrier” type ′a.

We illustrate these basic concepts by the following formulation of semi-
groups.

consts
times :: ′a ⇒ ′a ⇒ ′a (infixl � 70)

axclass semigroup ⊆ type
assoc: (x � y) � z = x � (y � z)

Above we have first declared a polymorphic constant � :: ′a ⇒ ′a ⇒ ′a
and then defined the class semigroup of all types τ such that � :: τ ⇒ τ
⇒ τ is indeed an associative operator. The assoc axiom contains exactly
one type variable, which is invisible in the above presentation, though. Also
note that free term variables (like x, y, z) are allowed for user convenience
— conceptually all of these are bound by outermost universal quantifiers.

In general, type classes may be used to describe structures with exactly
one carrier ′a and a fixed signature. Different signatures require different

2

http://isabelle.in.tum.de/library/HOL/AxClasses/
http://isabelle.in.tum.de/library/FOL/ex/NatClass.html
http://isabelle.in.tum.de/library/FOL/ex/NatClass.html

CHAPTER 2. EXAMPLES 3

classes. Below, class plus-semigroup represents semigroups (τ , ⊕τ), while
the original semigroup would correspond to semigroups of the form (τ , �τ).

consts
plus :: ′a ⇒ ′a ⇒ ′a (infixl ⊕ 70)

axclass plus-semigroup ⊆ type
assoc: (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z)

Even if classes plus-semigroup and semigroup both represent semigroups in
a sense, they are certainly not quite the same.

end

2.2 Basic group theory

theory Group imports Main begin

The meta-level type system of Isabelle supports intersections and inclusions
of type classes. These directly correspond to intersections and inclusions of
type predicates in a purely set theoretic sense. This is sufficient as a means
to describe simple hierarchies of structures. As an illustration, we use the
well-known example of semigroups, monoids, general groups and Abelian
groups.

2.2.1 Monoids and Groups

First we declare some polymorphic constants required later for the signature
parts of our structures.

consts
times :: ′a ⇒ ′a ⇒ ′a (infixl � 70)
invers :: ′a ⇒ ′a ((-−1) [1000] 999)
one :: ′a (1)

Next we define class monoid of monoids with operations � and 1. Note
that multiple class axioms are allowed for user convenience — they simply
represent the conjunction of their respective universal closures.

axclass monoid ⊆ type
assoc: (x � y) � z = x � (y � z)
left-unit : 1 � x = x
right-unit : x � 1 = x

So class monoid contains exactly those types τ where � :: τ ⇒ τ ⇒ τ and 1
:: τ are specified appropriately, such that � is associative and 1 is a left and
right unit element for the � operation.

CHAPTER 2. EXAMPLES 4

Independently of monoid, we now define a linear hierarchy of semigroups,
general groups and Abelian groups. Note that the names of class axioms
are automatically qualified with each class name, so we may re-use common
names such as assoc.

axclass semigroup ⊆ type
assoc: (x � y) � z = x � (y � z)

axclass group ⊆ semigroup
left-unit : 1 � x = x
left-inverse: x−1 � x = 1

axclass agroup ⊆ group
commute: x � y = y � x

Class group inherits associativity of � from semigroup and adds two further
group axioms. Similarly, agroup is defined as the subset of group such that
for all of its elements τ , the operation � :: τ ⇒ τ ⇒ τ is even commutative.

2.2.2 Abstract reasoning

In a sense, axiomatic type classes may be viewed as abstract theories. Above
class definitions gives rise to abstract axioms assoc, left-unit, left-inverse,
commute, where any of these contain a type variable ′a :: c that is restricted
to types of the corresponding class c. Sort constraints like this express a
logical precondition for the whole formula. For example, assoc states that
for all τ , provided that τ :: semigroup, the operation � :: τ ⇒ τ ⇒ τ is
associative.

From a technical point of view, abstract axioms are just ordinary Isabelle
theorems, which may be used in proofs without special treatment. Such
“abstract proofs” usually yield new “abstract theorems”. For example, we
may now derive the following well-known laws of general groups.

theorem group-right-inverse: x � x−1 = (1:: ′a::group)
proof −
have x � x−1 = 1 � (x � x−1)
by (simp only : group-class.left-unit)

also have ... = 1 � x � x−1

by (simp only : semigroup-class.assoc)
also have ... = (x−1)−1 � x−1 � x � x−1

by (simp only : group-class.left-inverse)
also have ... = (x−1)−1 � (x−1 � x) � x−1

by (simp only : semigroup-class.assoc)

CHAPTER 2. EXAMPLES 5

also have ... = (x−1)−1 � 1 � x−1

by (simp only : group-class.left-inverse)
also have ... = (x−1)−1 � (1 � x−1)
by (simp only : semigroup-class.assoc)

also have ... = (x−1)−1 � x−1

by (simp only : group-class.left-unit)
also have ... = 1
by (simp only : group-class.left-inverse)

finally show ?thesis .
qed

With group-right-inverse already available, group-right-unit is now estab-
lished much easier.

theorem group-right-unit : x � 1 = (x :: ′a::group)
proof −
have x � 1 = x � (x−1 � x)
by (simp only : group-class.left-inverse)

also have ... = x � x−1 � x
by (simp only : semigroup-class.assoc)

also have ... = 1 � x
by (simp only : group-right-inverse)

also have ... = x
by (simp only : group-class.left-unit)

finally show ?thesis .
qed

Abstract theorems may be instantiated to only those types τ where the
appropriate class membership τ :: c is known at Isabelle’s type signature
level. Since we have agroup ⊆ group ⊆ semigroup by definition, all theorems
of semigroup and group are automatically inherited by group and agroup.

2.2.3 Abstract instantiation

From the definition, the monoid and group classes have been independent.
Note that for monoids, right-unit had to be included as an axiom, but for
groups both right-unit and right-inverse are derivable from the other axioms.
With group-right-unit derived as a theorem of group theory (see page 5), we
may now instantiate monoid ⊆ semigroup and group ⊆ monoid properly as
follows (cf. figure 2.1).

instance monoid ⊆ semigroup
proof
fix x y z :: ′a::monoid

CHAPTER 2. EXAMPLES 6

�
� @

@

agroup

group

semigroup

type

monoid

agroup

group

monoid

semigroup

type

Figure 2.1: Monoids and groups: according to definition, and by proof

show x � y � z = x � (y � z)
by (rule monoid-class.assoc)

qed

instance group ⊆ monoid
proof
fix x y z :: ′a::group
show x � y � z = x � (y � z)
by (rule semigroup-class.assoc)

show 1 � x = x
by (rule group-class.left-unit)

show x � 1 = x
by (rule group-right-unit)

qed

The instance command sets up an appropriate goal that represents the
class inclusion (or type arity, see §2.2.4) to be proven (see also [6]). The initial
proof step causes back-chaining of class membership statements wrt. the
hierarchy of any classes defined in the current theory; the effect is to reduce
to the initial statement to a number of goals that directly correspond to any
class axioms encountered on the path upwards through the class hierarchy.

2.2.4 Concrete instantiation

So far we have covered the case of the form instance c1 ⊆ c2, namely
abstract instantiation — c1 is more special than c1 and thus an instance of c2.
Even more interesting for practical applications are concrete instantiations of

CHAPTER 2. EXAMPLES 7

axiomatic type classes. That is, certain simple schemes (α1, . . ., αn) t :: c of
class membership may be established at the logical level and then transferred
to Isabelle’s type signature level.

As a typical example, we show that type bool with exclusive-or as �
operation, identity as −1, and False as 1 forms an Abelian group.

defs (overloaded)
times-bool-def : x � y ≡ x 6= (y ::bool)
inverse-bool-def : x−1 ≡ x ::bool
unit-bool-def : 1 ≡ False

It is important to note that above defs are just overloaded meta-level
constant definitions, where type classes are not yet involved at all. This form
of constant definition with overloading (and optional recursion over the syn-
tactic structure of simple types) are admissible as definitional extensions of
plain HOL [7]. The Haskell-style type system is not required for overloading.
Nevertheless, overloaded definitions are best applied in the context of type
classes.

Since we have chosen above defs of the generic group operations on type
bool appropriately, the class membership bool :: agroup may be now derived
as follows.

instance bool :: agroup
proof (intro-classes,

unfold times-bool-def inverse-bool-def unit-bool-def)
fix x y z
show ((x 6= y) 6= z) = (x 6= (y 6= z)) by blast
show (False 6= x) = x by blast
show (x 6= x) = False by blast
show (x 6= y) = (y 6= x) by blast

qed

The result of an instance statement is both expressed as a theorem of
Isabelle’s meta-logic, and as a type arity of the type signature. The latter
enables type-inference system to take care of this new instance automatically.

We could now also instantiate our group theory classes to many other
concrete types. For example, int :: agroup (e.g. by defining � as addition,
−1 as negation and 1 as zero) or list :: (type) semigroup (e.g. if � is defined
as list append). Thus, the characteristic constants �, −1, 1 really become
overloaded, i.e. have different meanings on different types.

CHAPTER 2. EXAMPLES 8

2.2.5 Lifting and Functors

As already mentioned above, overloading in the simply-typed HOL systems
may include recursion over the syntactic structure of types. That is, def-
initional equations cτ ≡ t may also contain constants of name c on the
right-hand side — if these have types that are structurally simpler than τ .

This feature enables us to lift operations, say to Cartesian products, direct
sums or function spaces. Subsequently we lift � component-wise to binary
products ′a × ′b.

defs (overloaded)
times-prod-def : p � q ≡ (fst p � fst q , snd p � snd q)

It is very easy to see that associativity of � on ′a and � on ′b transfers
to � on ′a × ′b. Hence the binary type constructor � maps semigroups to
semigroups. This may be established formally as follows.

instance ∗ :: (semigroup, semigroup) semigroup
proof (intro-classes, unfold times-prod-def)
fix p q r :: ′a::semigroup × ′b::semigroup
show

(fst (fst p � fst q , snd p � snd q) � fst r ,
snd (fst p � fst q , snd p � snd q) � snd r) =
(fst p � fst (fst q � fst r , snd q � snd r),
snd p � snd (fst q � fst r , snd q � snd r))

by (simp add : semigroup-class.assoc)
qed

Thus, if we view class instances as “structures”, then overloaded con-
stant definitions with recursion over types indirectly provide some kind of
“functors” — i.e. mappings between abstract theories.

end

2.3 Syntactic classes

theory Product imports Main begin

There is still a feature of Isabelle’s type system left that we have not yet
discussed. When declaring polymorphic constants c :: σ, the type variables
occurring in σ may be constrained by type classes (or even general sorts) in
an arbitrary way. Note that by default, in Isabelle/HOL the declaration �
:: ′a ⇒ ′a ⇒ ′a is actually an abbreviation for � :: ′a::type ⇒ ′a ⇒ ′a Since
class type is the universal class of HOL, this is not really a constraint at all.

CHAPTER 2. EXAMPLES 9

The product class below provides a less degenerate example of syntactic
type classes.

axclass
product ⊆ type

consts
product :: ′a::product ⇒ ′a ⇒ ′a (infixl � 70)

Here class product is defined as subclass of type without any additional
axioms. This effects in logical equivalence of product and type, as is reflected
by the trivial introduction rule generated for this definition.

So what is the difference of declaring � :: ′a::product ⇒ ′a ⇒ ′a vs.
declaring � :: ′a::type ⇒ ′a ⇒ ′a anyway? In this particular case where
product ≡ type, it should be obvious that both declarations are the same
from the logic’s point of view. It even makes the most sense to remove sort
constraints from constant declarations, as far as the purely logical meaning
is concerned [7].

On the other hand there are syntactic differences, of course. Constants �
on some type τ are rejected by the type-checker, unless the arity τ :: product
is part of the type signature. In our example, this arity may be always added
when required by means of an instance with the default proof . ..

Thus, we may observe the following discipline of using syntactic classes.
Overloaded polymorphic constants have their type arguments restricted to
an associated (logically trivial) class c. Only immediately before specifying
these constants on a certain type τ do we instantiate τ :: c.

This is done for class product and type bool as follows.

instance bool :: product ..
defs (overloaded)

product-bool-def : x � y ≡ x ∧ y

The definition prod-bool-def becomes syntactically well-formed only after
the arity bool :: product is made known to the type checker.

It is very important to see that above defs are not directly connected
with instance at all! We were just following our convention to specify � on
bool after having instantiated bool :: product. Isabelle does not require these
definitions, which is in contrast to programming languages like Haskell [1].

While Isabelle type classes and those of Haskell are almost the same as
far as type-checking and type inference are concerned, there are important
semantic differences. Haskell classes require their instances to provide oper-
ations of certain names. Therefore, its instance has a where part that tells
the system what these “member functions” should be.

CHAPTER 2. EXAMPLES 10

This style of instance would not make much sense in Isabelle’s meta-
logic, because there is no internal notion of “providing operations” or even
“names of functions”.

end

2.4 Defining natural numbers in FOL

theory NatClass imports FOL begin

Axiomatic type classes abstract over exactly one type argument. Thus, any
axiomatic theory extension where each axiom refers to at most one type
variable, may be trivially turned into a definitional one.

We illustrate this with the natural numbers in Isabelle/FOL.1

consts
zero :: ′a (0)
Suc :: ′a ⇒ ′a
rec :: ′a ⇒ ′a ⇒ (′a ⇒ ′a ⇒ ′a) ⇒ ′a

axclass nat ⊆ term
induct : P(0) =⇒ (

∧
x . P(x) =⇒ P(Suc(x))) =⇒ P(n)

Suc-inject : Suc(m) = Suc(n) =⇒ m = n
Suc-neq-0 : Suc(m) = 0 =⇒ R
rec-0 : rec(0, a, f) = a
rec-Suc: rec(Suc(m), a, f) = f (m, rec(m, a, f))

constdefs
add :: ′a::nat ⇒ ′a ⇒ ′a (infixl + 60)
m + n ≡ rec(m, n, λx y . Suc(y))

This is an abstract version of the plain Nat theory in FOL.2 Basically,
we have just replaced all occurrences of type nat by ′a and used the natural
number axioms to define class nat. There is only a minor snag, that the
original recursion operator rec had to be made monomorphic.

Thus class nat contains exactly those types τ that are isomorphic to “the”
natural numbers (with signature 0, Suc, rec).

What we have done here can be also viewed as type specification. Of
course, it still remains open if there is some type at all that meets the class
axioms. Now a very nice property of axiomatic type classes is that abstract

1See also http://isabelle.in.tum.de/library/FOL/ex/NatClass.html
2See http://isabelle.in.tum.de/library/FOL/ex/Nat.html

http://isabelle.in.tum.de/library/FOL/ex/NatClass.html
http://isabelle.in.tum.de/library/FOL/ex/Nat.html

CHAPTER 2. EXAMPLES 11

reasoning is always possible — independent of satisfiability. The meta-logic
won’t break, even if some classes (or general sorts) turns out to be empty
later — “inconsistent” class definitions may be useless, but do not cause any
harm.

Theorems of the abstract natural numbers may be derived in the same
way as for the concrete version. The original proof scripts may be re-used
with some trivial changes only (mostly adding some type constraints).

end

Bibliography

[1] Paul Hudak, Simon Peyton Jones, and Philip Wadler. Report on the
programming language Haskell: A non-strict, purely functional language.
SIGPLAN Notices, 27(5), May 1992. Version 1.2.

[2] T. Nipkow. Order-sorted polymorphism in Isabelle. In G. Huet and
G. Plotkin, editors, Logical Environments, pages 164–188. Cambridge
University Press, 1993.

[3] Tobias Nipkow. Axiomatic type classes (in Isabelle). Presentation at the
workshop Types for Proof and Programs, Nijmegen, 1993.

[4] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle’s Logics:
HOL. http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[5] Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Springer, 1994.
LNCS 828.

[6] Markus Wenzel. The Isabelle/Isar Reference Manual.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

[7] Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[8] Markus Wenzel. Isar — a generic interpretative approach to readable formal
proof documents. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin, and
L. Thery, editors, Theorem Proving in Higher Order Logics: TPHOLs ’99,
volume 1690 of Lecture Notes in Computer Science. Springer-Verlag, 1999.

12

http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

	Introduction
	Examples
	Semigroups
	Basic group theory
	Monoids and Groups
	Abstract reasoning
	Abstract instantiation
	Concrete instantiation
	Lifting and Functors

	Syntactic classes
	Defining natural numbers in FOL

