The Isabelle Reference Manual

Lawrence C. Paulson
Computer Laboratory
University of Cambridge
lcp@cl.cam.ac.uk

With Contributions by Tobias Nipkow and Markus Wenzel

1 October 2005

Note: this document is part of the earlier Isabelle documentation, which
is somewhat superseded by the Isabelle/HOL Tutorial [11]. Much of it is
concerned with the old-style theory syntax and the primitives for conducting
proofs using the ML top level. This style of interaction is largely obsolete:
most Isabelle proofs are now written using the Isar language and the Proof
General interface. However, this is the only comprehensive Isabelle reference
manual.

See also the Introduction to Isabelle, which has tutorial examples on con-
ducting proofs using the ML top-level.

Acknowledgements

Tobias Nipkow, of T. U. Munich, wrote most of Chapters 7 and 10, and part of
Chapter 6. Carsten Clasohm also contributed to Chapter 6. Markus Wenzel
contributed to Chapter 8. Jeremy Dawson, Sara Kalvala, Martin Simons
and others suggested changes and corrections. The research has been funded
by the EPSRC (grants GR/G53279, GR/H40570, GR/K57381, GR/K77051,
GR/M75440) and by ESPRIT (projects 3245: Logical Frameworks, and 6453:
Types), and by the DFG Schwerpunktprogramm Deduktion.

Contents

1 Basic Use of Isabelle 1
1.1 Basic interaction with Isabelle 1
1.2 Ending asessiono 3
1.3 Reading ML files 3
1.4 Reading theories oL 4
1.5 Setting flagso 5
1.6 Printing of terms and theorems 5)

1.6.1 Printing limits 0oL 5
1.6.2 Printing of hypotheses, brackets, types etc. 5)
1.6.3 Eta-contraction before printing 6
1.7 Diagnostic messageso 7
1.8 Displaying exceptions as error messages 7

2 Proof Management: The Subgoal Module 9

2.1 Basic commands 9
2.1.1 Starting a backward proof 9
2.1.2 Applying a tactic 10
2.1.3 Extracting and storing the proved theorem 11
2.1.4 Extracting axioms and stored theorems 12
2.1.5 Retrieving theorems 13
2.1.6 Undoing and backtracking 14
2.1.7 Printing the proof state 15
21.8 Timing L 15

2.2 Shortcuts for applying tactics 15
2.2.1 Refining a given subgoal 15
2.2.2 Scanning shortcuts 16
2.2.3 Other shortcuts 17

2.3 Executing batch proofso 17

2.4 Imternal proofs 18

2.5 Managing multiple proofs 19
2.5.1 The stack of proof states 19
2.5.2 Saving and restoring proof states 20

2.6 *Debugging and inspecting 20

i

CONTENTS

2.6.1 Reading and printing terms
2.6.2 Inspecting the proof state

2.6.3 Filtering listsof rules
3 Tactics
3.1 Resolution and assumption tactics

3.2

3.3

3.4

3.5

3.6

3.1.1 Resolution tactics
3.1.2 Assumption tactics,
3.1.3 Matching tactics 0oL
3.1.4 Explicit instantiation
Other basic tactics
3.2.1 Tactic shortcutso
3.2.2 Inserting premises and facts
3.2.3 “Putting off” asubgoal
3.2.4 Definitions and meta-level rewriting
3.2.5 Theorems useful with tactics
Obscure tacticso
3.3.1 Renaming parameters ina goal
3.3.2 Manipulating assumptions L.
3.3.3 Tidying the proof state
3.3.4 Composition: resolution without lifting
*Managing lots of rules
3.4.1 Combined resolution and elim-resolution
3.4.2 Discrimination nets for fast resolution.
Programming tools for proof strategies
3.5.1 Operations on tactics
3.5.2 Tracing
¥Sequences
3.6.1 Basic operations on sequences
3.6.2 Converting between sequences and lists
3.6.3 Combining sequences

4 Tacticals

4.1

4.2

The basic tacticals L.
4.1.1 Joining two tactics
4.1.2 Joining a list of tactics
4.1.3 Repetition tacticals
4.1.4 Identities for tacticals
Control and search tacticals
4.2.1 Filtering a tactic’s results
4.2.2 Depth-first search

111

20
20
21

22
22
22
23
23
24
25
25
26
26
27
27
28
28
28
29
29
30
30
31
32
32
33
33
33
34
34

CONTENTS iv

4.2.3 Other search strategies 39
4.2.4 Auxiliary tacticals for searching 39
4.2.5 Predicates and functions useful for searching 40

4.3 Tacticals for subgoal numbering 40
4.3.1 Restricting a tactic to one subgoal 41
4.3.2 Scanning for a subgoal by number 42
4.3.3 Joining tactic functionso 43
4.3.4 Applying a list of tacticsto 1 43

5 Theorems and Forward Proof 44
5.1 Basic operations on theorems 44
5.1.1 Pretty-printing a theorem 44
5.1.2 Forward proof: joining rules by resolution 45
5.1.3 Expanding definitions in theorems 46
5.1.4 Instantiating unknowns in a theorem 46
5.1.5 Miscellaneous forward rules 47
5.1.6 Taking a theorem apart 48
5.1.7 *Sort hypotheses 49
5.1.8 Tracing flags for unification 20

5.2 *Primitive meta-level inference rules 50
5.2.1 Assumptionrule 52
5.2.2 Implication ruleso 52
5.2.3 Logical equivalence rules 52
5.24 Equalityrules o oo 53
5.2.5 The A-conversion rules 53
5.2.6 Forall introduction rules 53
5.2.7 Forall elimination rules 54
5.2.8 Instantiation of unknowns 54
5.2.9 Freezing/thawing type unknowns 95

5.3 Derived rules for goal-directed proof 55
5.3.1 Proof by assumption 95
5.3.2 Resolutiono 55
5.3.3 Composition: resolution without lifting 56
5.3.4 Other meta-rules 56

54 Proof terms o7
5.4.1 Reconstructing and checking proof terms 59

5.4.2 Parsing and printing proof terms 60

CONTENTS

6 Theories, Terms and Types
6.1 Defining theories
6.1.1 Definitions
6.1.2 *Classes and arities
6.2 The theory loader oo
6.3 Locales.
6.3.1 Declaring Locales
6.3.2 Locale Scope
6.3.3 Functions for Locales
6.4 Basic operations on theories
6.4.1 *Theory inclusion
6.4.2 *Primitive theories
6.4.3 Inspecting a theory L.
6.5 Terms
6.6 *Variable binding L
6.7 Certified terms
6.7.1 Printing terms
6.7.2 Making and inspecting certified terms
6.8 Types
6.9 Certified types.
6.9.1 Printing typeso
6.9.2 Making and inspecting certified types
6.10 Oracles: calling trusted external reasoners
Defining Logics
7.1 Priority grammars
7.2 The Puresyntax,
7.2.1 Logical types and default syntax.
7.2.2 Lexical matters
7.2.3 *Inspecting the syntax
7.3 Mixfix declarations 0oL
7.3.1 The general mixfix form
7.3.2 Example: arithmetic expressions
7.3.3 The mixfix template
734 Infixes
7.3.5 Binderso o
7.4 *Alternative print modes L.
7.5 Ambiguity of parsed expressions

7.6 Example: some minimal logics

62
62
65
66
66
68
68
70
72
73
73
73
74
74
75
76
77
77
78
78
78
79
79

CONTENTS vi

8 Syntax Transformations 98
8.1 Abstract syntax treeso 98
8.2 Transforming parse trees to ASTs 99
8.3 Transforming ASTs to terms 101
8.4 Printing of terms 102
8.5 Macros: syntactic rewritingo 103

8.5.1 Specifying macros 105
85.2 Applyingrules. 106
8.5.3 Example: the syntax of finitesets 108
8.5.4 Example: a parse macro for dependent types 109
8.6 Translation functions L. 110
8.6.1 Declaring translation functions 110
8.6.2 The translation strategy 111
8.6.3 Example: a print translation for dependent types . . . 112
8.7 Token translations o0 113

9 Substitution Tactics 115
9.1 Substitution rules 115
9.2 Substitution in the hypotheses 116
9.3 Setting up the package oL 117

10 Simplification 120
10.1 Simplification for dummies L. 120

10.1.1 Simplification tactics 120
10.1.2 Modifying the current simpset 122
10.2 Simplification setso oL 123
10.2.1 Inspecting simpsets 124
10.2.2 Building simpsetso L 124
10.2.3 Accessing the current simpset 125
10.2.4 Rewriteruleso 125
10.2.5 *Simplification procedures 126
10.2.6 *Congruence rules 127
10.2.7 *The subgoaler 128
10.2.8 *The solver 129
10.2.9 *The looper 131
10.3 The simplification tactics 132
10.4 Forward rules and conversions 133
10.5 Examples of using the Simplifier 134
10.5.1 A trivial example 134
10.5.2 An example of tracing 135

10.5.3 Free variables and simplification 136

CONTENTS

10.6 Permutative rewrite rules
10.6.1 Example: sums of natural numbers . .
10.6.2 Re-orienting equalities

10.7 *Coding simplification procedures

10.8 *Setting up the Simplifier
10.8.1 A collection of standard rewrite rules .

10.8.2 Functions for preprocessing the rewrite rules

10.8.3 Making the initial simpset
10.8.4 Splitter setup

11 The Classical Reasoner
11.1 The sequent calculus
11.2 Simulating sequents by natural deduction . . .
11.3 Extra rules for the sequent calculus
11.4 Classical rulesets
11.4.1 Adding rules to classical sets
11.4.2 Modifying the search step
11.5 The classical tactics
11.5.1 The tableau prover
11.5.2 Automatic tactics
11.5.3 Semi-automatic tactics
11.5.4 Other classical tactics
11.5.5 Depth-limited automatic tactics
11.5.6 Single-step tactics
11.5.7 The current claset
11.5.8 Accessing the current claset
11.5.9 Other useful tactics
11.5.10 Creating swapped rules
11.6 Setting up the classical reasoner
11.7 Setting up the combination with the simplifier

A Syntax of Isabelle Theories

Vil

137
138
139
140
141
142
142
144
145

147
148
149
150
151
152
154
155
155
156
157
158
158
159
159
160
161
161
161
162

165

CONTENTS viii

Chapter 1

Basic Use of Isabelle

The Reference Manual is a comprehensive description of Isabelle proper,
including all ML commands, functions and packages. It really is intended
for reference, perhaps for browsing, but not for reading through. It is not a
tutorial, but assumes familiarity with the basic logical concepts of Isabelle.

When you are looking for a way of performing some task, scan the Table
of Contents for a relevant heading. Functions are organized by their purpose,
by their operands (subgoals, tactics, theorems), and by their usefulness. In
each section, basic functions appear first, then advanced functions, and finally
esoteric functions. Use the Index when you are looking for the definition of
a particular Isabelle function.

A few examples are presented. Many example files are distributed with
[sabelle, however; please experiment interactively.

1.1 Basic interaction with Isabelle

We assume that your local Isabelle administrator (this might be you!) has
already installed the Isabelle system together with appropriate object-logics
— otherwise see the README and INSTALL files in the top-level directory of
the distribution on how to do this.

Let (isabellehome) denote the location where the distribution has been
installed. To run Isabelle from a the shell prompt within an ordinary text
terminal session, simply type

(isabellehome)/bin/isabelle

This should start an interactive ML session with the default object-logic (usu-
ally HOL) already pre-loaded.

Subsequently, we assume that the isabelle executable is determined
automatically by the shell, e.g. by adding (isabellehome)/bin to your search
path.!

!Depending on your installation, there may be stand-alone binaries located in some
global directory such as /usr/bin. Do not attempt to copy (isabellehome)/bin/isabelle,
though! See isatool install in The Isabelle System Manual of how to do this properly.

CHAPTER 1. BASIC USE OF ISABELLE 2

The object-logic image to load may be also specified explicitly as an
argument to the isabelle command, e.g.

isabelle FOL

This should put you into the world of polymorphic first-order logic (assuming
that an image of FOL has been pre-built).

Isabelle provides no means of storing theorems or internal proof objects
on files. Theorems are simply part of the ML state. To save your work
between sessions, you may dump the ML system state to a file. This is done
automatically when ending the session normally (e.g. by typing control-D),
provided that the image has been opened writable in the first place. The
standard object-logic images are usually read-only, so you have to create a
private working copy first. For example, the following shell command puts
you into a writable Isabelle session of name Foo that initially contains just
plain HOL:

isabelle HOL Foo

Ending the Foo session with control-D will cause the complete ML-world to
be saved somewhere in your home directory?. Make sure there is enough
space available! Then one may later continue at exactly the same point by
running

isabelle Foo

Saving the ML state is not enough. Record, on a file, the top-level com-
mands that generate your theories and proofs. Such a record allows you to
replay the proofs whenever required, for instance after making minor changes
to the axioms. Ideally, these sources will be somewhat intelligible to others
as a formal description of your work.

It is good practice to put all source files that constitute a separate Isabelle
session into an individual directory, together with an ML file called ROOT . ML
that contains appropriate commands to load all other files required. Run-
ning isabelle with option -u automatically loads ROOT.ML on entering the
session. The isatool usedir utility provides some more options to manage
[sabelle sessions, such as automatic generation of theory browsing informa-
tion.

More details about the isabelle and isatool commands may be found
in The Isabelle System Manual.

2The default location is in ~/isabelle/heaps, but this depends on your local config-
uration.

CHAPTER 1. BASIC USE OF ISABELLE 3

There are more comfortable user interfaces than the bare-bones ML top-
level run from a text terminal. The Isabelle executable (note the capital
I) runs one such interface, depending on your local configuration. Again, see
The Isabelle System Manual for more information.

1.2 Ending a session

quit : unit -> unit
exit : int -> unit
commit : unit -> bool

quit(); ends the Isabelle session, without saving the state.
exit ¢; similar to quit, passing return code 7 to the operating system.

commit () ; saves the current state without ending the session, provided that
the logic image is opened read-write; return value false indicates an
error.

Typing control-D also finishes the session in essentially the same way as
the sequence commit (); quit(); would.

1.3 Reading ML files

cd : string -> unit
pwd : unit -> string
use : string -> unit
time_use : string -> unit

cd "dir"; changes the current directory to dir. This is the default directory
for reading files.

pwd () ; returns the full path of the current directory.

use "file"; reads the given file as input to the ML session. Reading a file of
[sabelle commands is the usual way of replaying a proof.

time_use "file"; performs use "file" and prints the total execution time.

The dir and file specifications of the cd and use commands may contain
path variables (e.g. $ISABELLE_HOME) that are expanded appropriately. Note
that ~ abbreviates $HOME, and ~~ abbreviates $ISABELLE_HOME. The syntax
for path specifications follows Unix conventions.

CHAPTER 1. BASIC USE OF ISABELLE 4

1.4 Reading theories

In Isabelle, any kind of declarations, definitions, etc. are organized around
named theory objects. Logical reasoning always takes place within a certain
theory context, which may be switched at any time. Theory name is defined
by a theory file name .thy, containing declarations of consts, types, defs,
etc. (see §6.1 for more details on concrete syntax). Furthermore, there may
be an associated ML file name.ML with proof scripts that are to be run in
the context of the theory.

context : theory -> unit
the_context : unit -> theory
theory : string -> theory
use_thy : string -> unit
time_use_thy : string -> unit
update_thy : string -> unit

context thy; switches the current theory context. Any subsequent com-
mand with “implicit theory argument” (e.g. Goal) will refer to thy as
its theory.

the_context(); obtains the current theory context, or raises an error if
absent.

theory "name"; retrieves the theory called name from the internal data-
base of loaded theories, raising an error if absent.

use_thy "name"; reads theory name from the file system, looking for
name.thy and name.ML (the latter being optional). It also ensures
that all parent theories are loaded as well. In case some older versions
have already been present, use_thy only tries to reload name itself,
but is content with any version of its ancestors.

time_use_thy "name"; same as use_thy, but reports the time taken to
process the actual theory parts and ML files separately.

update_thy "name"; is similar to use_thy, but ensures that theory name
is fully up-to-date with respect to the file system — apart from theory
name itself, any of its ancestors may be reloaded as well.

Note that theories of pre-built logic images (e.g. HOL) are marked as
finished and cannot be updated any more. See §6.2 for further information
on Isabelle’s theory loader.

CHAPTER 1. BASIC USE OF ISABELLE 5

1.5 Setting flags

set : bool ref -> bool
reset : bool ref -> bool
toggle : bool ref -> bool

These are some shorthands for manipulating boolean references. The new
value is returned.

1.6 Printing of terms and theorems

[sabelle’s pretty printer is controlled by a number of parameters.

1.6.1 Printing limits

Pretty.setdepth : int -> unit
Pretty.setmargin : int -> unit
print_depth : int -> unit

These set limits for terminal output. See also goals_limit, which limits the
number of subgoals printed (§2.1.7).

Pretty.setdepth d; tells Isabelle’s pretty printer to limit the printing
depth to d. This affects the display of theorems and terms. The default
value is 0, which permits printing to an arbitrary depth. Useful values
for d are 10 and 20.

Pretty.setmargin m; tells Isabelle’s pretty printer to assume a right mar-
gin (page width) of m. The initial margin is 76.

print_depth n; limits the printing depth of complex ML values, such as
theorems and terms. This command affects the ML top level and its
effect is compiler-dependent. Typically n should be less than 10.

1.6.2 Printing of hypotheses, brackets, types etc.

show_hyps : bool ref initially false
show_tags : bool ref initially false
show_brackets : bool ref initially false
show_types : bool ref initially false
show_sorts : bool ref initially false
show_consts : bool ref initially false
long_names : bool ref initially false

These flags allow you to control how much information is displayed for types,
terms and theorems. The hypotheses of theorems are normally shown. Su-

CHAPTER 1. BASIC USE OF ISABELLE 6

perfluous parentheses of types and terms are not. Types and sorts of variables
are normally hidden.

Note that displaying types and sorts may explain why a polymorphic
inference rule fails to resolve with some goal, or why a rewrite rule does not
apply as expected.

reset show_hyps; makes Isabelle show each meta-level hypothesis as a dot.

set show_tags; makes [sabelle show tags of theorems (which are basically
just comments that may be attached by some tools).

set show_brackets; makes Isabelle show full bracketing. In particular, this
reveals the grouping of infix operators.

set show_types; makes [sabelle show types when printing a term or theo-
rem.

set show_sorts; makes Isabelle show both types and the sorts of type vari-
ables, independently of the value of show_types.

set show_consts; makes Isabelle show types of constants when printing
proof states. Note that the output can be enormous as polymorphic
constants often occur at several different type instances.

set long_names; forces names of all objects (types, constants, theorems,
etc.) to be printed in their fully qualified internal form.

1.6.3 Eta-contraction before printing

eta_contract: bool ref

The n-contraction law asserts (Az . f(z)) = f, provided z is not free in
f. Tt asserts extensionality of functions: f = g if f(z) = g(x) for all z.
Higher-order unification frequently puts terms into a fully n-expanded form.
For example, if I’ has type (7 = 7) = 7 then its expanded form is Ah. F/(Az .
h(z)). By default, the user sees this expanded form.

set eta_contract; makes Isabelle perform n-contractions before printing,
so that Ak . F(Az . h(x)) appears simply as F. The distinction between
a term and its n-expanded form occasionally matters.

CHAPTER 1. BASIC USE OF ISABELLE 7

1.7 Diagnostic messages

Isabelle conceptually provides three output channels for different kinds of
messages: ordinary text, warnings, errors. Depending on the user interface
involved, these messages may appear in different text styles or colours.

The default setup of an isabelle terminal session is as follows: plain
output of ordinary text, warnings prefixed by ###’s, errors prefixed by **x*’s.
For example, a typical warning would look like this:

Beware the Jabberwock, my son!
The jaws that bite, the claws that catch!

Beware the Jubjub Bird, and shun
The frumious Bandersnatch!

ML programs may output diagnostic messages using the following func-
tions:
writeln : string -> unit
warning : string -> unit
error : string -> ’a

Note that error fails by raising exception ERROR after having output the
text, while writeln and warning resume normal program execution.

1.8 Displaying exceptions as error messages
print_exn: exn -> ’a

Certain Isabelle primitives, such as the forward proof functions RS and RSN,
are called both interactively and from programs. They indicate errors not
by printing messages, but by raising exceptions. For interactive use, ML’s
reporting of an uncaught exception may be uninformative. The Poly/ML
function exception_trace can generate a backtrace.

print_exn e displays the exception e in a readable manner, and then re-
raises e. Typical usage is FXP handle e => print_exn e;, where
EXP is an expression that may raise an exception.

print_exn can display the following common exceptions, which con-
cern types, terms, theorems and theories, respectively. Each carries a
message and related information.

exception TYPE of string
exception TERM of string
exception THM of string
exception THEQORY of string

typ list * term list
term list
int * thm list

*
*
*
* theory list

CHAPTER 1. BASIC USE OF ISABELLE 8

' print_exn prints terms by calling prin, which obtains pretty printing infor-
mation from the proof state last stored in the subgoal module. The appearance
of the output thus depends upon the theory used in the last interactive proof.

Chapter 2

Proof Management: The
Subgoal Module

The subgoal module stores the current proof state and many previous states;
commands can produce new states or return to previous ones. The state list
at level n is a list of pairs

[(¢n>an)a (¢n—17\11n—1)’ SR (¢07H)]

where 1, is the current proof state, 1,,_; is the previous one, ..., and
is the initial proof state. The ¥, are sequences (lazy lists) of proof states,
storing branch points where a tactic returned a list longer than one. The
state lists permit various forms of backtracking.

Chopping elements from the state list reverts to previous proof states.
Besides this, the undo command keeps a list of state lists. The module
actually maintains a stack of state lists, to support several proofs at the
same time.

The subgoal module always contains some proof state. At the start of
the Isabelle session, this state consists of a dummy formula.

2.1 Basic commands

Most proofs begin with Goal or Goalw and require no other commands than
by, chop and undo. They typically end with a call to ged.

2.1.1 Starting a backward proof

Goal : string -> thm list
Goalw : thm list -> string -> thm list
goal : theory -> string -> thm list
goalw : theory -> thm list -> string -> thm list
goalw_cterm : thm list -> cterm -> thm list
premises : unit -> thm list

The goal commands start a new proof by setting the goal. They replace
the current state list by a new one consisting of the initial proof state. They

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 10

also empty the undo list; this command cannot be undone!

They all return a list of meta-hypotheses taken from the main goal. If
this list is non-empty, bind its value to an ML identifier by typing something
like

val prems = goal theory formula;

These assumptions typically serve as the premises when you are deriving
a rule. They are also stored internally and can be retrieved later by the
function premises. When the proof is finished, ged compares the stored
assumptions with the actual assumptions in the proof state.

The capital versions of Goal are the basic user level commands and should
be preferred over the more primitive lowercase goal commands. Apart from
taking the current theory context as implicit argument, the former ones try
to be smart in handling meta-hypotheses when deriving rules. Thus prems
have to be seldom bound explicitly, the effect is as if cut_facts_tac had
been called automatically.

Some of the commands unfold definitions using meta-rewrite rules. This
expansion affects both the initial subgoal and the premises, which would
otherwise require use of rewrite_goals_tac and rewrite_rule.

Goal formula; begins a new proof, where formula is written as an ML string.

Goalw defs formula; is like Goal but also applies the list of defs as meta-
rewrite rules to the first subgoal and the premises.

goal theory formula; begins a new proof, where theory is usually an ML
identifier and the formula is written as an ML string.

goalw theory defs formula; is like goal but also applies the list of defs as
meta-rewrite rules to the first subgoal and the premises.

goalw_cterm defs ct; is a version of goalw intended for programming.
The main goal is supplied as a cterm, not as a string. See also
prove_goalw_cterm, §2.3.

premises() returns the list of meta-hypotheses associated with the current
proof (in case you forgot to bind them to an ML identifier).

2.1.2 Applying a tactic

by : tactic -> unit
byev : tactic list -> unit

These commands extend the state list. They apply a tactic to the current
proof state. If the tactic succeeds, it returns a non-empty sequence of next

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 11

states. The head of the sequence becomes the next state, while the tail is
retained for backtracking (see back).

by tactic; applies the tactic to the proof state.

byev tactics; applies the list of tactics, one at a time. It is useful for testing
calls to prove_goal, and abbreviates by (EVERY tactics).

Error indications:

® "by: tactic failed" means that the tactic returned an empty sequence
when applied to the current proof state.

® "Warning: same as previous level" means that the new proof state is
identical to the previous state.

® "Warning: signature of proof state has changed" means that some rule
was applied whose theory is outside the theory of the initial proof state.
This could signify a mistake such as expressing the goal in intuitionistic
logic and proving it using classical logic.

2.1.3 Extracting and storing the proved theorem

qed : string -> unit

no_qged : unit -> unit

result : unit -> thm

uresult : unit -> thm

bind_thm : string * thm -> unit
bind_thms : string * thm list -> unit
store_thm : string * thm -> thm
store_thms : string * thm list -> thm list

qged name; is the usual way of ending a proof. It combines result and
bind_thm: it gets the theorem using result () and stores it the theorem
database associated with its theory. See below for details.

no_ged(); indicates that the proof is not concluded by a proper ged com-
mand. This is a do-nothing operation, it merely helps user interfaces
such as Proof General [1] to figure out the structure of the ML text.

result () returns the final theorem, after converting the free variables to
schematics. It discharges the assumptions supplied to the matching
goal command.

It raises an exception unless the proof state passes certain checks. There
must be no assumptions other than those supplied to goal. There must

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 12

be no subgoals. The theorem proved must be a (first-order) instance of
the original goal, as stated in the goal command. This allows answer
extraction — instantiation of variables — but no other changes to the
main goal. The theorem proved must have the same signature as the
initial proof state.

These checks are needed because an Isabelle tactic can return any proof
state at all.

uresult () is like result() but omits the checks. It is needed when the
initial goal contains function unknowns, when definitions are unfolded
in the main goal (by calling rewrite_tac), or when assume_ax has
been used.

bind_thm (name, thm); stores standard thm (see §5.1.5) in the theorem
database associated with its theory and in the ML variable name. The
theorem can be retrieved from the database using get_thm (see §6.4).

store_thm (name, thm) stores thm in the theorem database associated
with its theory and returns that theorem.

bind_thms and store_thms are similar to bind_thm and store_thm, but
store lists of theorems.

The name argument of ged, bind_thm etc. may be the empty string as
well; in that case the result is not stored, but proper checks and presentation
of the result still apply.

2.1.4 Extracting axioms and stored theorems

thm : xstring -> thm

thms : xstring -> thm list
get_axiom : theory -> xstring -> thm
get_thm : theory -> xstring -> thm

get_thms : theory -> xstring -> thm list
axioms_of : theory -> (string * thm) list
thms_of : theory -> (string * thm) list
assume_ax : theory -> string -> thm

thm name is the basic user function for extracting stored theorems from the
current theory context.

thms name is like thm, but returns a whole list associated with name rather
than a single theorem. Typically this will be collections stored by
packages, e.g. list.simps.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 13

get_axiom thy name returns an axiom with the given name from thy or
any of its ancestors, raising exception THEORY if none exists. Merging
theories can cause several axioms to have the same name; get_axiom
returns an arbitrary one. Usually, axioms are also stored as theorems
and may be retrieved via get_thm as well.

get_thm thy name is analogous to get_axiom, but looks for a theorem
stored in the theory’s database. Like get_axiom it searches all par-
ents of a theory if the theorem is not found directly in thy.

get_thms thy name is like get_thm for retrieving theorem lists stored
within the theory. It returns a singleton list if name actually refers
to a theorem rather than a theorem list.

axioms_of thy returns the axioms of this theory node, not including the
ones of its ancestors.

thms_of thy returns all theorems stored within the database of this theory
node, not including the ones of its ancestors.

assume_ax thy formula reads the formula using the syntax of thy, following
the same conventions as axioms in a theory definition. You can thus
pretend that formula is an axiom and use the resulting theorem like an
axiom. Actually assume_ax returns an assumption; ged and result
complain about additional assumptions, but uresult does not.

For example, if formula is a=b ==> b=a then the resulting theorem has
the form ?a=7b ==> ?b=7a [!'a b. a=b ==> b=a]

2.1.5 Retrieving theorems

The following functions retrieve theorems (together with their names) from
the theorem database that is associated with the current proof state’s theory.
They can only find theorems that have explicitly been stored in the database
using ged, bind_thm or related functions.

findI : int -> (string * thm) list
findE : int -> int -> (string * thm) list
findEs : int -> (string * thm) list
thms_containing : xstring list -> (string * thm) list

findI ¢ returns all “introduction rules” applicable to subgoal i — all the-
orems whose conclusion matches (rather than unifies with) subgoal i.
Useful in connection with resolve_tac.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 14

findE n ¢ returns all “elimination rules” applicable to premise n of subgoal
1 — all those theorems whose first premise matches premise n of subgoal
1. Useful in connection with eresolve_tac and dresolve_tac.

findEs ¢ returns all “elimination rules” applicable to subgoal ¢ — all those
theorems whose first premise matches some premise of subgoal 7. Useful
in connection with eresolve_tac and dresolve_tac.

thms_containing consts returns all theorems that contain all of the given
constants.

2.1.6 Undoing and backtracking

chop : unit -> unit
choplev : int -> unit
back : unit -> unit
undo : unit -> unit

chop(); deletes the top level of the state list, cancelling the last by com-
mand. It provides a limited undo facility, and the undo command can
cancel it.

choplev n; truncates the state list to level n, if n > 0. A negative value
of n refers to the nth previous level: choplev ~1 has the same effect
as chop.

back(); searches the state list for a non-empty branch point, starting from
the top level. The first one found becomes the current proof state —
the most recent alternative branch is taken. This is a form of interactive
backtracking.

undo () ; cancels the most recent change to the proof state by the commands
by, chop, choplev, and back. It cannot cancel goal or undo itself. It
can be repeated to cancel a series of commands.

Error indications for back:

® "Warning: same as previous choice at this level" means back found a
non-empty branch point, but that it contained the same proof state as
the current one.

® "Warning: signature of proof state has changed" means the signature
of the alternative proof state differs from that of the current state.

® "back: no alternatives" means back could find no alternative proof
state.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 15

2.1.7 Printing the proof state
pr : unit -> unit
prlev : int -> unit
prlim : int -> unit
goals_limit: int ref initially 10

See also the printing control options described in §1.6.
pr(); prints the current proof state.

prlev n; prints the proof state at level n, if n > 0. A negative value of n
refers to the nth previous level. This command allows you to review
earlier stages of the proof.

prlim k; prints the current proof state, limiting the number of subgoals
to k. It updates goals_limit (see below) and is helpful when there
are many subgoals.

goals_limit := k; specifies k as the maximum number of subgoals to print.
2.1.8 Timing
timing: bool ref initially false

set timing; enables global timing in Isabelle. In particular, this makes the
by and prove_goal commands display how much processor time was
spent. This information is compiler-dependent.

2.2 Shortcuts for applying tactics
These commands call by with common tactics. Their chief purpose is to

minimise typing, although the scanning shortcuts are useful in their own
right. Chapter 3 explains the tactics themselves.

2.2.1 Refining a given subgoal

ba : int -> unit
br : thm -> int -> unit
be : thm -> int -> unit
bd : thm -> int -> unit

brs : thm list -> int -> unit
bes : thm list -> int -> unit
bds : thm list -> int -> unit

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 16

ba i; performs by (assume_tac 1) ;

br thm i; performs by (resolve_tac [thm] %) ;

be thm i; performs by (eresolve_tac [thm] 1) ;
bd thm 4; performs by (dresolve_tac [thm]);
brs thms i; performs by (resolve_tac thms 17);
bes thms i; performs by (eresolve_tac thms 1) ;

bds thms i; performs by (dresolve_tac thms 1) ;

2.2.2 Scanning shortcuts

These shortcuts scan for a suitable subgoal (starting from subgoal 1). They
refine the first subgoal for which the tactic succeeds. Thus, they require
less typing than br, etc. They display the selected subgoal’s number; please
watch this, for it may not be what you expect!

fa : unit -> unit
fr : thm -> unit
fe : thm -> unit
fd : thm -> unit

frs : thm list -> unit
fes : thm list -> unit
fds : thm list -> unit

fa(); solves some subgoal by assumption.

fr thm; refines some subgoal using resolve_tac [thm]
fe thm; refines some subgoal using eresolve_tac [thm]
fd thm; refines some subgoal using dresolve_tac [thml]
frs thms; refines some subgoal using resolve_tac thms
fes thms; refines some subgoal using eresolve_tac thms

fds thms; refines some subgoal using dresolve_tac thms

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 17

2.2.3 Other shortcuts

bw : thm -> unit
bws : thm list -> unit
ren : string -> int -> unit

bw def; performs by (rewrite_goals_tac [def]); It unfolds definitions in
the subgoals (but not the main goal), by meta-rewriting with the given
definition (see also §3.2.4).

bws is like bw but takes a list of definitions.

ren names 4; performsby (rename_tac names 7); it renames parameters
in subgoal 7. (Ignore the message Warning: same as previous 1eve1)

2.3 Executing batch proofs

To save space below, let type tacfn abbreviate thm 1list -> tactic list,
which is the type of a tactical proof.

prove_goal : theory -> string -> tacfn -> thm
qed_goal : string -> theory -> string -> tacfn -> unit
prove_goalw: theory -> thm list -> string -> tacfn -> thm
qed_goalw : string -> theory -> thm list -> string -> tacfn -> unit
prove_goalw_cterm: thm list -> cterm -> tacfn -> thm

These batch functions create an initial proof state, then apply a tactic to
it, yielding a sequence of final proof states. The head of the sequence is
returned, provided it is an instance of the theorem originally proposed. The
forms prove_goal, prove_goalw and prove_goalw_cterm are analogous to
goal, goalw and goalw_cterm.

The tactic is specified by a function from theorem lists to tactic lists. The
function is applied to the list of meta-assumptions taken from the main goal.
The resulting tactics are applied in sequence (using EVERY). For example, a
proof consisting of the commands

val prems = goal theory formula;

by taci; ... Dby tac,;
qed "my_thm";

can be transformed to an expression as follows:

ged_goal "my_thm" theory formula
(fn prems=> [tacy, ..., tac, 1);

The methods perform identical processing of the initial formula and the final
proof state. But prove_goal executes the tactic as a atomic operation,
bypassing the subgoal module; the current interactive proof is unaffected.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 18

prove_goal theory formula tacsf; executes a proof of the formula in the
given theory, using the given tactic function.

qged_goal name theory formula tacsf; acts like prove_goal but it also
stores the resulting theorem in the theorem database associated with
its theory and in the ML variable name (see §2.1.3).

prove_goalw theory defs formula tacsf; is like prove_goal but also ap-
plies the list of defs as meta-rewrite rules to the first subgoal and the
premises.

qged_goalw name theory defs formula tacsf; is analogous to qed_goal.

prove_goalw_cterm defs ct tacsf; is a version of prove_goalw intended
for programming. The main goal is supplied as a cterm, not as a
string. A cterm carries a theory with it, and can be created from a
term t by

cterm_of (sign_of thy) ¢

2.4 Internal proofs

Tactic.prove: Sign.sg -> string list -> term list -> term ->
(thm list -> tactic) -> thm

Tactic.prove_standard: Sign.sg —-> string list -> term list -> term —>
(thm list -> tactic) -> thm

These functions provide a clean internal interface for programmed proofs.
The special overhead of top-level statements (cf. prove_goalw_cterm) is
omitted. Statements may be established within a local contexts of fixed
variables and assumptions, which are the only hypotheses to be discharged
in the result.

Tactic.prove sg xs As C tacf establishes the result Azs. As = C via
the given tactic (which is a function taking the assumptions as local
premises).

Tactic.prove_standard is simular to Tactic.prove, but performs the
standard operation on the result, essentially turning it into a top-level
statement. Never do this for local proofs within other proof tools!

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 19

2.5 Managing multiple proofs

You may save the current state of the subgoal module and resume work on
it later. This serves two purposes.

1. At some point, you may be uncertain of the next step, and wish to
experiment.

2. During a proof, you may see that a lemma should be proved first.

Each saved proof state consists of a list of levels; chop behaves independently
for each of the saved proofs. In addition, each saved state carries a separate
undo list.

2.5.1 The stack of proof states

push_proof : unit -> unit
pop_proof : unit -> thm list
rotate_proof : unit -> thm list

The subgoal module maintains a stack of proof states. Most subgoal com-
mands affect only the top of the stack. The Goal command replaces the
top of the stack; the only command that pushes a proof on the stack is
push_proof.

To save some point of the proof, call push_proof. You may now state a
lemma using goal, or simply continue to apply tactics. Later, you can return
to the saved point by calling pop_proof or rotate_proof.

To view the entire stack, call rotate_proof repeatedly; as it rotates the
stack, it prints the new top element.

push_proof (); duplicates the top element of the stack, pushing a copy of
the current proof state on to the stack.

pop_proof () ; discards the top element of the stack. It returns the list of
assumptions associated with the new proof; you should bind these to
an ML identifier. They can also be obtained by calling premises.

rotate_proof (); rotates the stack, moving the top element to the bottom.
It returns the list of assumptions associated with the new proof.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 20

2.5.2 Saving and restoring proof states

save_proof : unit -> proof
restore_proof : proof -> thm list

States of the subgoal module may be saved as ML values of type proof, and
later restored.

save_proof () ; returns the current state, which is on top of the stack.

restore_proof prf; replaces the top of the stack by prf. It returns the list
of assumptions associated with the new proof.

2.6 *Debugging and inspecting

These functions can be useful when you are debugging a tactic. They refer to
the current proof state stored in the subgoal module. A tactic should never
call them; it should operate on the proof state supplied as its argument.

2.6.1 Reading and printing terms

read : string -> term
prin : term -> unit
printyp : typ -> unit

These read and print terms (or types) using the syntax associated with the
proof state.

read string reads the string as a term, without type-checking.
prin t¢; prints the term ¢ at the terminal.

printyp 7'; prints the type T at the terminal.

2.6.2 Inspecting the proof state

topthm : unit -> thm
getgoal : int -> term
gethyps : int -> thm list

topthm() returns the proof state as an Isabelle theorem. This is what by
would supply to a tactic at this point. It omits the post-processing of
result and uresult.

CHAPTER 2. PROOF MANAGEMENT: THE SUBGOAL MODULE 21

getgoal i returns subgoal i of the proof state, as a term. You may print
this using prin, though you may have to examine the internal data
structure in order to locate the problem!

gethyps ¢ returns the hypotheses of subgoal ¢ as meta-level assumptions. In
these theorems, the subgoal’s parameters become free variables. This
command is supplied for debugging uses of METAHYPS.

2.6.3 Filtering lists of rules
filter_goal: (term*term->bool) -> thm list -> int -> thm list

filter_goal could ths i applies filter_thms could to subgoal i of the
proof state and returns the list of theorems that survive the filtering.

Chapter 3

Tactics

Tactics have type tactic. This is just an abbreviation for functions from
theorems to theorem sequences, where the theorems represent states of a
backward proof. Tactics seldom need to be coded from scratch, as functions;
instead they are expressed using basic tactics and tacticals.

This chapter only presents the primitive tactics. Substantial proofs re-
quire the power of automatic tools like simplification (Chapter 10) and clas-
sical tableau reasoning (Chapter 11).

3.1 Resolution and assumption tactics

Resolution is Isabelle’s basic mechanism for refining a subgoal using a rule.
Elim-resolution is particularly suited for elimination rules, while destruct-
resolution is particularly suited for destruction rules. The r, e, d naming
convention is maintained for several different kinds of resolution tactics, as
well as the shortcuts in the subgoal module.

All the tactics in this section act on a subgoal designated by a positive
integer i. They fail (by returning the empty sequence) if i is out of range.

3.1.1 Resolution tactics

resolve_tac : thm list -> int -> tactic
eresolve_tac : thm list -> int -> tactic
dresolve_tac : thm list -> int -> tactic
forward_tac : thm list -> int -> tactic

These perform resolution on a list of theorems, thms, representing a list of
object-rules. When generating next states, they take each of the rules in the
order given. Each rule may yield several next states, or none: higher-order
resolution may yield multiple resolvents.

resolve_tac thms i refines the proof state using the rules, which should
normally be introduction rules. It resolves a rule’s conclusion with
subgoal 7 of the proof state.

22

CHAPTER 3. TACTICS 23

eresolve_tac thms i performs elim-resolution with the rules, which should
normally be elimination rules. It resolves with a rule, proves its
first premise by assumption, and finally deletes that assumption from
any new subgoals. (To rotate a rule’s premises, see rotate_prems
in §5.1.5.)

dresolve_tac thms i performs destruct-resolution with the rules, which
normally should be destruction rules. This replaces an assumption
by the result of applying one of the rules.

forward_tac is like dresolve_tac except that the selected assumption is
not deleted. It applies a rule to an assumption, adding the result as a
new assumption.

3.1.2 Assumption tactics

assume_tac : int -> tactic
eq_assume_tac : int -> tactic

assume_tac ¢ attempts to solve subgoal ¢ by assumption.

eq_assume_tac is like assume_tac but does not use unification. It succeeds
(with a unique next state) if one of the assumptions is identical to the
subgoal’s conclusion. Since it does not instantiate variables, it cannot
make other subgoals unprovable. It is intended to be called from proof
strategies, not interactively.

3.1.3 Matching tactics

match_tac : thm list -> int -> tactic
ematch_tac : thm list -> int -> tactic
dmatch_tac : thm list -> int -> tactic

These are just like the resolution tactics except that they never instantiate
unknowns in the proof state. Flexible subgoals are not updated willy-nilly,
but are left alone. Matching — strictly speaking — means treating the
unknowns in the proof state as constants; these tactics merely discard unifiers
that would update the proof state.

match_tac thms i refines the proof state using the rules, matching a rule’s
conclusion with subgoal 7 of the proof state.

ematch_tac is like match_tac, but performs elim-resolution.

dmatch_tac is like match_tac, but performs destruct-resolution.

CHAPTER 3. TACTICS 24

3.1.4 Explicit instantiation

res_inst_tac : (string*string)list -> thm -> int -> tactic
eres_inst_tac : (string#string)list -> thm -> int -> tactic
dres_inst_tac : (string*string)list -> thm -> int -> tactic
forw_inst_tac : (string*string)list -> thm -> int -> tactic

instantiate_tac : (string*string)list -> tactic

The first four of these tactics are designed for applying rules by resolution
such as substitution and induction, which cause difficulties for higher-order
unification. The tactics accept explicit instantiations for unknowns in the
rule —typically, in the rule’s conclusion. The last one, instantiate_tac,
may be used to instantiate unknowns in the proof state, independently of
rule application.

Each instantiation is a pair (v,e), where v is an unknown without its
leading question mark!

e If v is the type unknown ’a, then the rule must contain a type unknown
7’a of some sort s, and e should be a type of sort s.

e If v is the unknown P, then the rule must contain an unknown 7P of
some type 7, and e should be a term of some type o such that 7 and
o are unifiable. If the unification of 7 and ¢ instantiates any type
unknowns in 7, these instantiations are recorded for application to the
rule.

Types are instantiated before terms are. Because type instantiations are in-
ferred from term instantiations, explicit type instantiations are seldom nec-
essary — if 7t has type 7’a, then the instantiation list [("’a","bool"),
("t","True")] may be simplified to [("t","True")]. Type unknowns in
the proof state may cause failure because the tactics cannot instantiate them.

The first four instantiation tactics act on a given subgoal. Terms in the
instantiations are type-checked in the context of that subgoal — in particular,
they may refer to that subgoal’s parameters. Any unknowns in the terms
receive subscripts and are lifted over the parameters; thus, you may not refer
to unknowns in the subgoal.

res_inst_tac insts thm 1 instantiates the rule thm with the instantiations
insts, as described above, and then performs resolution on subgoal 1.
Resolution typically causes further instantiations; you need not give
explicit instantiations for every unknown in the rule.

eres_inst_tac is like res_inst_tac, but performs elim-resolution.

CHAPTER 3. TACTICS 25

dres_inst_tac is like res_inst_tac, but performs destruct-resolution.

forw_inst_tac is like dres_inst_tac except that the selected assumption
is not deleted. It applies the instantiated rule to an assumption, adding
the result as a new assumption.

instantiate_tac insts instantiates unknowns in the proof state. This af-
fects the main goal as well as all subgoals.

3.2 Other basic tactics

3.2.1 Tactic shortcuts

rtac : thm -> int -> tactic
etac : thm -> int -> tactic
dtac : thm -> int -> tactic
ftac : thm -> int -> tactic
atac : int -> tactic
eatac : thm -> int -> int -> tactic
datac : thm -> int -> int -> tactic
fatac : thm -> int -> int -> tactic
ares_tac : thm list -> int -> tactic
rewtac : thm -> tactic

These abbreviate common uses of tactics.

rtac thm i abbreviates resolve_tac [thm] i, doing resolution.

etac thm i abbreviates eresolve_tac [thm] i, doing elim-resolution.
dtac thm 1 abbreviates dresolve_tac [thm] i, doing destruct-resolution.

ftac thm i abbreviates forward_tac [thm] i, doing destruct-resolution
without deleting the assumption.

atac i abbreviates assume_tac 4, doing proof by assumption.

eatac thm j i performs etac thm and then j times atac, solving addition-
ally 7 premises of the rule thm by assumption.

datac thm j i performs dtac thm and then j times atac, solving addition-
ally 7 premises of the rule thm by assumption.

fatac thm j i performs ftac thm and then j times atac, solving addition-
ally 7 premises of the rule thm by assumption.

CHAPTER 3. TACTICS 26

ares_tac thms i tries proof by assumption and resolution; it abbreviates

assume_tac 4 ORELSE resolve_tac thms 1

rewtac def abbreviates rewrite_goals_tac [def], unfolding a definition.

3.2.2 Inserting premises and facts

cut_facts_tac : thm list -> int -> tactic

cut_inst_tac : (string*string)list -> thm -> int -> tactic
subgoal_tac : string -> int -> tactic
subgoals_tac : string list -> int -> tactic

These tactics add assumptions to a subgoal.

cut_facts_tac thms i adds the thms as new assumptions to subgoal 1.
Once they have been inserted as assumptions, they become subject
to tactics such as eresolve_tac and rewrite_goals_tac. Only rules
with no premises are inserted: Isabelle cannot use assumptions that
contain = or /. Sometimes the theorems are premises of a rule being
derived, returned by goal; instead of calling this tactic, you could state
the goal with an outermost meta-quantifier.

cut_inst_tac insts thm 4 instantiates the thm with the instantiations in-
sts, as described in §3.1.4. It adds the resulting theorem as a new
assumption to subgoal .

subgoal_tac formula i adds the formula as an assumption to subgoal 1,
and inserts the same formula as a new subgoal, ¢ + 1.

subgoals_tac formulae ¢ uses subgoal_tac to add the members of the list
of formulae as assumptions to subgoal .

3.2.3 “Putting off” a subgoal

defer_tac : int -> tactic

defer_tac i moves subgoal i to the last position in the proof state. It can
be useful when correcting a proof script: if the tactic given for subgoal ¢
fails, calling defer_tac instead will let you continue with the rest of
the script.

The tactic fails if subgoal ¢ does not exist or if the proof state contains
type unknowns.

CHAPTER 3. TACTICS 27

3.2.4 Definitions and meta-level rewriting

Definitions in Isabelle have the form ¢t = wu, where t is typically a constant
or a constant applied to a list of variables, for example sqr(n) = n x n.
Conditional definitions, ¢ = t = wu, are also supported. Unfolding the
definition ¢t = u means using it as a rewrite rule, replacing ¢ by u throughout
a theorem. Folding ¢ = u means replacing u by ¢t. Rewriting continues until
no rewrites are applicable to any subterm.

There are rules for unfolding and folding definitions; Isabelle does not do
this automatically. The corresponding tactics rewrite the proof state, yielding
a single next state. See also the goalw command, which is the easiest way of
handling definitions.

rewrite_goals_tac : thm list -> tactic

rewrite_tac : thm list -> tactic
fold_goals_tac : thm list -> tactic
fold_tac : thm list -> tactic

rewrite_goals_tac defs unfolds the defs throughout the subgoals of the
proof state, while leaving the main goal unchanged. Use SELECT_GOAL
to restrict it to a particular subgoal.

rewrite_tac defs unfolds the defs throughout the proof state, including the
main goal — not normally desirable!

fold_goals_tac defs folds the defs throughout the subgoals of the proof
state, while leaving the main goal unchanged.

fold_tac defs folds the defs throughout the proof state.

' These tactics only cope with definitions expressed as meta-level equalities (=).
More general equivalences are handled by the simplifier, provided that it is set
up appropriately for your logic (see Chapter 10).

3.2.5 Theorems useful with tactics

asm_rl: thm
cut_rl: thm

asm_rl is ¢» = 9. Under elim-resolution it does proof by assumption, and
eresolve_tac (asm_rl::thms) i is equivalent to

assume_tac 4 ORELSE eresolve_tac thms 1

cut_rl is [y = 0,¢] = 6. Tt is useful for inserting assumptions; it
underlies forward_tac, cut_facts_tac and subgoal_tac.

CHAPTER 3. TACTICS 28

3.3 Obscure tactics

3.3.1 Renaming parameters in a goal

rename_tac : string -> int -> tactic

rename_last_tac : string -> string list -> int -> tactic
Logic.set_rename_prefix : string -> unit

Logic.auto_rename : bool ref initially false

When creating a parameter, Isabelle chooses its name by matching variable
names via the object-rule. Given the rule (V/) formalized as (Az . P(z)) =
V. P(z), Isabelle will note that the A-bound variable in the premise has the
same name as the V-bound variable in the conclusion.

Sometimes there is insufficient information and Isabelle chooses an arbi-
trary name. The renaming tactics let you override Isabelle’s choice. Because
renaming parameters has no logical effect on the proof state, the by command
prints the message Warning: same as previous level.

Alternatively, you can suppress the naming mechanism described above
and have Isabelle generate uniform names for parameters. These names have
the form pa, pb, pc, ..., where p is any desired prefix. They are ugly but
predictable.

rename_tac str ¢ interprets the string str as a series of blank-separated vari-
able names, and uses them to rename the parameters of subgoal 7. The
names must be distinct. If there are fewer names than parameters,
then the tactic renames the innermost parameters and may modify the
remaining ones to ensure that all the parameters are distinct.

rename_last_tac prefix suffives ¢ generates a list of names by attaching
each of the suffizes to the prefiz. It is intended for coding structural
induction tactics, where several of the new parameters should have
related names.

Logic.set_rename_prefix prefir; sets the prefix for uniform renaming
to prefixz. The default prefix is "k".

set Logic.auto_rename; makes Isabelle generate uniform names for pa-
rameters.

3.3.2 DManipulating assumptions

thin_tac : string -> int -> tactic
rotate_tac : int -> int -> tactic

CHAPTER 3. TACTICS 29

thin_tac formula i deletes the specified assumption from subgoal i. Of-
ten the assumption can be abbreviated, replacing subformulae by un-
knowns; the first matching assumption will be deleted. Removing use-
less assumptions from a subgoal increases its readability and can make
search tactics run faster.

rotate_tac n ¢ rotates the assumptions of subgoal ¢ by n positions: from
right to left if n is positive, and from left to right if n is negative. This
is sometimes necessary in connection with asm_full_simp_tac, which
processes assumptions from left to right.

3.3.3 Tidying the proof state

distinct_subgoals_tac : tactic
prune_params_tac : tactic
flexflex_tac : tactic

distinct_subgoals_tac removes duplicate subgoals from a proof state.
(These arise especially in ZF, where the subgoals are essentially type
constraints.)

prune_params_tac removes unused parameters from all subgoals of the
proof state. It works by rewriting with the theorem (Az . V) = V.
This tactic can make the proof state more readable. It is used with
rule_by_tactic to simplify the resulting theorem.

flexflex_tac removes all flex-flex pairs from the proof state by applying
the trivial unifier. This drastic step loses information, and should only
be done as the last step of a proof.

Flex-flex constraints arise from difficult cases of higher-order unifica-
tion. To prevent this, use res_inst_tac to instantiate some variables
in a rule (§3.1.4). Normally flex-flex constraints can be ignored; they
often disappear as unknowns get instantiated.

3.3.4 Composition: resolution without lifting

compose_tac: (bool * thm * int) -> int -> tactic

Composing two rules means resolving them without prior lifting or renam-
ing of unknowns. This low-level operation, which underlies the resolution
tactics, may occasionally be useful for special effects. A typical application
is res_inst_tac, which lifts and instantiates a rule, then passes the result
to compose_tac.

CHAPTER 3. TACTICS 30

compose_tac (flag, rule, m) ¢ refines subgoal i using rule, without lift-
ing. The rule is taken to have the form [¢y;...;v¥,] = 9, where ¥
need not be atomic; thus m determines the number of new subgoals.
If flag is true then it performs elim-resolution — it solves the first
premise of rule by assumption and deletes that assumption.

3.4 *Managing lots of rules

These operations are not intended for interactive use. They are concerned
with the processing of large numbers of rules in automatic proof strategies.
Higher-order resolution involving a long list of rules is slow. Filtering tech-
niques can shorten the list of rules given to resolution, and can also detect
whether a subgoal is too flexible, with too many rules applicable.

3.4.1 Combined resolution and elim-resolution

biresolve_tac : (bool*thm)list -> int -> tactic
bimatch_tac : (bool*thm)list -> int -> tactic
subgoals_of_brl : bool*thm -> int

lessb : (bool*thm) * (bool*thm) -> bool

Bi-resolution takes a list of (flag, rule) pairs. For each pair, it applies
resolution if the flag is false and elim-resolution if the flag is true. A single
tactic call handles a mixture of introduction and elimination rules.

biresolve_tac bris ¢ refines the proof state by resolution or elim-resolution
on each rule, as indicated by its flag. It affects subgoal i of the proof
state.

bimatch_tac is like biresolve_tac, but performs matching: unknowns in
the proof state are never updated (see §3.1.3).

subgoals_of_brl(flag,rule) returns the number of new subgoals that bi-
resolution would yield for the pair (if applied to a suitable subgoal).
This is n if the flag is false and n — 1 if the flag is true, where n is
the number of premises of the rule. Elim-resolution yields one fewer
subgoal than ordinary resolution because it solves the major premise
by assumption.

lessb (brll,brl2) returns the result of

subgoals_of_brl bril < subgoals_of_brl bri2

CHAPTER 3. TACTICS 31

Note that sort lessb bris sorts a list of (flag, rule) pairs by the number
of new subgoals they will yield. Thus, those that yield the fewest subgoals
should be tried first.

3.4.2 Discrimination nets for fast resolution

net_resolve_tac : thm list -> int -> tactic

net_match_tac : thm list -> int -> tactic

net_biresolve_tac: (bool*thm) list -> int -> tactic

net_bimatch_tac : (bool*thm) list -> int -> tactic

filt_resolve_tac : thm list -> int -> int -> tactic

could_unify : term*term—>bool

filter_thms : (term*term->bool) -> int*term*thm list -> thmlist

The module Net implements a discrimination net data structure for fast selec-
tion of rules [4, Chapter 14]. A term is classified by the symbol list obtained
by flattening it in preorder. The flattening takes account of function appli-
cations, constants, and free and bound variables; it identifies all unknowns
and also regards A-abstractions as unknowns, since they could n-contract to
anything.

A discrimination net serves as a polymorphic dictionary indexed by terms.
The module provides various functions for inserting and removing items from
nets. It provides functions for returning all items whose term could match or
unify with a target term. The matching and unification tests are overly lax
(due to the identifications mentioned above) but they serve as useful filters.

A net can store introduction rules indexed by their conclusion, and elim-
ination rules indexed by their major premise. Isabelle provides several func-
tions for ‘compiling’ long lists of rules into fast resolution tactics. When
supplied with a list of theorems, these functions build a discrimination net;
the net is used when the tactic is applied to a goal. To avoid repeatedly con-
structing the nets, use currying: bind the resulting tactics to ML identifiers.

net_resolve_tac thms builds a discrimination net to obtain the effect of a
similar call to resolve_tac.

net_match_tac thms builds a discrimination net to obtain the effect of a
similar call to match_tac.

net_biresolve_tac brils builds a discrimination net to obtain the effect of
a similar call to biresolve_tac.

net_bimatch_tac brils builds a discrimination net to obtain the effect of a
similar call to bimatch_tac.

CHAPTER 3. TACTICS 32

filt_resolve_tac thms maxr ¢ uses discrimination nets to extract the
thms that are applicable to subgoal 7. If more than maxr theorems
are applicable then the tactic fails. Otherwise it calls resolve_tac.

This tactic helps avoid runaway instantiation of unknowns, for example
in type inference.

could_unify (¢,u) returns false if ¢ and u are ‘obviously’ non-unifiable,
and otherwise returns true. It assumes all variables are distinct, re-
porting that ?7a=7a may unify with 0=1.

filter_thms could (limit, prem, thms) returns the list of potentially resolv-
able rules (in thms) for the subgoal prem, using the predicate could to
compare the conclusion of the subgoal with the conclusion of each rule.
The resulting list is no longer than limit.

3.5 Programming tools for proof strategies

Do not consider using the primitives discussed in this section unless you really
need to code tactics from scratch.

3.5.1 Operations on tactics

A tactic maps theorems to sequences of theorems. The type constructor for
sequences (lazy lists) is called Seq.seq. To simplify the types of tactics and
tacticals, Isabelle defines a type abbreviation:

type tactic = thm -> thm Seq.seq

The following operations provide means for coding tactics in a clean style.

PRIMITIVE : (thm -> thm) -> tactic
SUBGOAL : ((term*int) -> tactic) -> int -> tactic

PRIMITIVE [packages the meta-rule f as a tactic that applies f to the proof
state and returns the result as a one-element sequence. If f raises an
exception, then the tactic’s result is the empty sequence.

SUBGOAL f i extracts subgoal ¢ from the proof state as a term ¢, and com-
putes a tactic by calling f(¢,¢). It applies the resulting tactic to the
same state. The tactic body is expressed using tactics and tacticals,
but may peek at a particular subgoal:

SUBGOAL (fn (t,i) => tactic-valued expression)

CHAPTER 3. TACTICS 33

3.5.2 Tracing

pause_tac: tactic
print_tac: tactic

These tactics print tracing information when they are applied to a proof
state. Their output may be difficult to interpret. Note that certain of the
searching tacticals, such as REPEAT, have built-in tracing options.

pause_tac prints *x Press RETURN to continue: and then reads a line from
the terminal. If this line is blank then it returns the proof state un-
changed; otherwise it fails (which may terminate a repetition).

print_tac returns the proof state unchanged, with the side effect of printing
it at the terminal.

3.6 *Sequences

The module Seq declares a type of lazy lists. It uses Isabelle’s type option
to represent the possible presence (Some) or absence (None) of a value:

datatype ’a option = None | Some of ’a;

The Seq structure is supposed to be accessed via fully qualified names and
should not be open.

3.6.1 Basic operations on sequences

Seq.empty : ’a seq

Seq.make ¢ (unit -> (’a * ’a seq) option) -> ’a seq
Seq.single : ’a -> ’a seq

Seq.pull : ’a seq -> (a * ’a seq) option

Seq.empty is the empty sequence.

Seq.make (fn () => Some (z, zq)) constructs the sequence with head z
and tail zq, neither of which is evaluated.

Seq.single z constructs the sequence containing the single element z.

Seq.pull zq returns None if the sequence is empty and Some (z, zq') if
the sequence has head z and tail z¢’. Warning: calling Seq.pull zq
again will recompute the value of x; it is not stored!

CHAPTER 3. TACTICS 34

3.6.2 Converting between sequences and lists

Seq.chop : int * ’a seq —-> ’a list * ’a seq
Seq.list_of : ’a seq -> ’a list
Seq.of_list : ’a list -> ’a seq

Seq.chop (n, zq) returns the first n elements of zq as a list, paired with
the remaining elements of zq. If zq has fewer than n elements, then so
will the list.

Seq.list_of zq returns the elements of zq, which must be finite, as a list.

Seq.of_list xs creates a sequence containing the elements of zs.

3.6.3 Combining sequences

Seq.append : ’a seq * ’a seq —> ’a seq
Seq.interleave : ’a seq * ’a seq —-> ’a seq
Seq.flat : ’a seq seq —> ’a seq

Seq.map : (’a -> ’b) -> ’a seq -> ’b seq
Seq.filter : (°’a -> bool) -> ’a seq -> ’a seq

Seq.append (zgq, yq) concatenates zq to yq.

Seq.interleave (xq, ygq) joins zq with yq by interleaving their elements.
The result contains all the elements of the sequences, even if both are
infinite.

Seq.flat zqq concatenates a sequence of sequences.

Seq.map f xq applies f to every element of xq = 1,2, ..., yielding the
sequence f(x), f(z2),.. ..

Seq.filter p zq returns the sequence consisting of all elements z of zq
such that p(z) is true.

Chapter 4

Tacticals

Tacticals are operations on tactics. Their implementation makes use of func-
tional programming techniques, especially for sequences. Most of the time,
you may forget about this and regard tacticals as high-level control struc-
tures.

4.1 The basic tacticals

4.1.1 Joining two tactics

The tacticals THEN and ORELSE, which provide sequencing and alterna-
tion, underlie most of the other control structures in Isabelle. APPEND and
INTLEAVE provide more sophisticated forms of alternation.

THEN : tactic * tactic -> tactic infix 1
ORELSE : tactic * tactic -> tactic infix
APPEND : tactic * tactic -> tactic infix
INTLEAVE : tactic * tactic -> tactic infix

tac; THEN taco is the sequential composition of the two tactics. Applied to
a proof state, it returns all states reachable in two steps by applying
tac; followed by tacy. First, it applies tac; to the proof state, getting
a sequence of next states; then, it applies tacy to each of these and
concatenates the results.

tac; ORELSE tacy; makes a choice between the two tactics. Applied to a
state, it tries tac; and returns the result if non-empty; if tac; fails then
it uses tacy,. This is a deterministic choice: if tac; succeeds then tac, is
excluded.

tac; APPEND tac, concatenates the results of tac; and tac,. By not making a
commitment to either tactic, APPEND helps avoid incompleteness during
search.

35

CHAPTER 4. TACTICALS 36

tac; INTLEAVE tacy interleaves the results of tac; and tacy. Thus, it includes
all possible next states, even if one of the tactics returns an infinite
sequence.

4.1.2 Joining a list of tactics

EVERY : tactic list -> tactic
FIRST : tactic list -> tactic

EVERY and FIRST are block structured versions of THEN and ORELSE.

EVERY [tacy,...,tac,| abbreviates tac; THEN ... THEN tac,. It is useful
for writing a series of tactics to be executed in sequence.

FIRST [tacy,...,tac,] abbreviates tac; ORELSE ... ORELSE tac,. It is
useful for writing a series of tactics to be attempted one after another.

4.1.3 Repetition tacticals

TRY : tactic -> tactic

REPEAT_DETERM : tactic -> tactic

REPEAT_DETERM_N : int -> tactic -> tactic

REPEAT : tactic -> tactic

REPEAT1 : tactic -> tactic

DETERM_UNTIL : (thm -> bool) -> tactic -> tactic

trace_REPEAT : bool ref initially false

TRY tac applies tac to the proof state and returns the resulting sequence, if
non-empty; otherwise it returns the original state. Thus, it applies tac
at most once.

REPEAT_DETERM tac applies tac to the proof state and, recursively, to the
head of the resulting sequence. It returns the first state to make tac
fail. It is deterministic, discarding alternative outcomes.

REPEAT_DETERM_N n tac is like REPEAT_DETERM tac but the number of repi-
titions is bound by n (unless negative).

REPEAT tac applies tac to the proof state and, recursively, to each element of
the resulting sequence. The resulting sequence consists of those states
that make tac fail. Thus, it applies tac as many times as possible
(including zero times), and allows backtracking over each invocation of
tac. It is more general than REPEAT_DETERM, but requires more space.

CHAPTER 4. TACTICALS 37

REPEAT1 tac is like REPEAT tac but it always applies tac at least once, failing
if this is impossible.

DETERM_UNTIL p tac applies tac to the proof state and, recursively, to the
head of the resulting sequence, until the predicate p (applied on the
proof state) yields true. It fails if tac fails on any of the intermediate
states. It is deterministic, discarding alternative outcomes.

set trace_REPEAT; enables an interactive tracing mode for the tacticals
REPEAT_DETERM and REPEAT. To view the tracing options, type h at the
prompt.

4.1.4 Identities for tacticals

all_tac : tactic
no_tac : tactic

all_tac maps any proof state to the one-element sequence containing that
state. Thus, it succeeds for all states. It is the identity element of the
tactical THEN.

no_tac maps any proof state to the empty sequence. Thus it succeeds for
no state. It is the identity element of ORELSE, APPEND, and INTLEAVE.
Also, it is a zero element for THEN, which means that tac THEN no_tac
is equivalent to no_tac.

These primitive tactics are useful when writing tacticals. For example, TRY
and REPEAT (ignoring tracing) can be coded as follows:

fun TRY tac = tac ORELSE all_tac;

fun REPEAT tac =
(fn state => ((tac THEN REPEAT tac) ORELSE all_tac) state);

If tac can return multiple outcomes then so can REPEAT tac. Since REPEAT
uses ORELSE and not APPEND or INTLEAVE, it applies tac as many times as
possible in each outcome.

| Note REPEAT’s explicit abstraction over the proof state. Recursive tacticals
®* must be coded in this awkward fashion to avoid infinite recursion. With the
following definition, REPEAT tac would loop due to ML’s eager evaluation strategy:

fun REPEAT tac = (tac THEN REPEAT tac) ORELSE all_tac;
The built-in REPEAT avoids THEN, handling sequences explicitly and using tail re-

cursion. This sacrifices clarity, but saves much space by discarding intermediate
proof states.

CHAPTER 4. TACTICALS 38

4.2 Control and search tacticals

A predicate on theorems, namely a function of type thm->bool, can test
whether a proof state enjoys some desirable property — such as having no
subgoals. Tactics that search for satisfactory states are easy to express. The
main search procedures, depth-first, breadth-first and best-first, are provided
as tacticals. They generate the search tree by repeatedly applying a given
tactic.

4.2.1 Filtering a tactic’s results
FILTER : (thm -> bool) -> tactic —-> tactic
CHANGED : tactic -> tactic

FILTER p tac applies tac to the proof state and returns a sequence consisting
of those result states that satisfy p.

CHANGED tac applies tac to the proof state and returns precisely those states
that differ from the original state. Thus, CHANGED tac always has some
effect on the state.

4.2.2 Depth-first search

DEPTH_FIRST : (thm->bool) -> tactic -> tactic
DEPTH_SOLVE : tactic -> tactic
DEPTH_SOLVE_1 : tactic -> tactic
trace_DEPTH_FIRST: bool ref initially false

DEPTH_FIRST satp tac returns the proof state if satp returns true. Other-
wise it applies tac, then recursively searches from each element of the
resulting sequence. The code uses a stack for efficiency, in effect apply-
ing tac THEN DEPTH_FIRST salp tac to the state.

DEPTH_SOLVE tac uses DEPTH_FIRST to search for states having no subgoals.

DEPTH_SOLVE_1 tac uses DEPTH_FIRST to search for states having fewer sub-
goals than the given state. Thus, it insists upon solving at least one
subgoal.

set trace_DEPTH_FIRST; enables interactive tracing for DEPTH_FIRST. To
view the tracing options, type h at the prompt.

CHAPTER 4. TACTICALS 39

4.2.3 Other search strategies

BREADTH_FIRST : (thm->bool) -> tactic -> tactic
BEST_FIRST : (thm->bool) * (thm->int) -> tactic -> tactic
THEN_BEST_FIRST : tactic * ((thm->bool) * (thm->int) * tactic)

-> tactic infix 1
trace_BEST_FIRST: bool ref initially false

These search strategies will find a solution if one exists. However, they do
not enumerate all solutions; they terminate after the first satisfactory result
from tac.

BREADTH_FIRST satp tac uses breadth-first search to find states for which
satp is true. For most applications, it is too slow.

BEST_FIRST (satp, distf) tac does a heuristic search, using distf to estimate
the distance from a satisfactory state. It maintains a list of states or-
dered by distance. It applies tac to the head of this list; if the re-
sult contains any satisfactory states, then it returns them. Otherwise,
BEST_FIRST adds the new states to the list, and continues.

The distance function is typically size_of_thm, which computes the
size of the state. The smaller the state, the fewer and simpler subgoals
it has.

tac, THEN_BEST_FIRST (salp, distf, tac) is like BEST_FIRST, except that the
priority queue initially contains the result of applying tacy to the proof
state. This tactical permits separate tactics for starting the search and
continuing the search.

set trace_BEST_FIRST; enables an interactive tracing mode for the tactical
BEST_FIRST. To view the tracing options, type h at the prompt.

4.2.4 Auxiliary tacticals for searching

COND : (thm->bool) -> tactic -> tactic -> tactic
IF_UNSOLVED : tactic -> tactic
SOLVE : tactic -> tactic
DETERM : tactic -> tactic

DETERM_UNTIL_SOLVED : tactic -> tactic

COND p tac; tacy applies tac; to the proof state if it satisfies p, and applies
tacy otherwise. It is a conditional tactical in that only one of tac;
and tacy is applied to a proof state. However, both tac; and tac, are
evaluated because ML uses eager evaluation.

CHAPTER 4. TACTICALS 40

IF_UNSOLVED tac applies tac to the proof state if it has any subgoals, and
simply returns the proof state otherwise. Many common tactics, such
as resolve_tac, fail if applied to a proof state that has no subgoals.

SOLVE tac applies tac to the proof state and then fails iff there are subgoals
left.

DETERM tac applies tac to the proof state and returns the head of the result-
ing sequence. DETERM limits the search space by making its argument
deterministic.

DETERM_UNTIL_SOLVED tac forces repeated deterministic application of tac
to the proof state until the goal is solved completely.

4.2.5 Predicates and functions useful for searching

has_fewer_prems : int -> thm -> bool

eq_thm : thm * thm -> bool
eq_thm_prop : thm * thm -> bool
size_of_thm : thm -> int

has_fewer_prems n thm reports whether thm has fewer than n premises.
By currying, has_fewer_prems n is a predicate on theorems; it may
be given to the searching tacticals.

eq_thm (thmy, thmy) reports whether thm; and thmsy are equal. Both the-
orems must have compatible signatures. Both theorems must have the
same conclusions, the same hypotheses (in the same order), and the
same set of sort hypotheses. Names of bound variables are ignored.

eq_thm_prop (thm;, thmy) reports whether the propositions of thm; and
thmy are equal. Names of bound variables are ignored.

size_of_thm thm computes the size of thm, namely the number of variables,
constants and abstractions in its conclusion. It may serve as a distance
function for BEST_FIRST.

4.3 Tacticals for subgoal numbering

When conducting a backward proof, we normally consider one goal at a
time. A tactic can affect the entire proof state, but many tactics — such
as resolve_tac and assume_tac — work on a single subgoal. Subgoals are
designated by a positive integer, so Isabelle provides tacticals for combining
values of type int->tactic.

CHAPTER 4. TACTICALS 41

4.3.1 Restricting a tactic to one subgoal

SELECT_GOAL : tactic -> int -> tactic
METAHYPS : (thm list -> tactic) -> int -> tactic

SELECT_GOAL tac i restricts the effect of tac to subgoal 7 of the proof state.
It fails if there is no subgoal i, or if tac changes the main goal (do
not use rewrite_tac). It applies tac to a dummy proof state and uses
the result to refine the original proof state at subgoal 7. If tac returns
multiple results then so does SELECT_GOAL tac 1.

SELECT_GOAL works by creating a state of the form ¢ = ¢, with
the one subgoal ¢. If subgoal i has the form ¢y = 6 then (¢ —
0) = (¢ = 0) is in fact [y = 6; Y] = 0, a proof state with two
subgoals. Such a proof state might cause tactics to go astray. Therefore
SELECT_GOAL inserts a quantifier to create the state

/\x Yp=0)= (Nz.¢v=10).

METAHYPS tacf ¢ takes subgoal i, of the form

/\ZEl 91,...;9kﬂ:>(9,
and creates the list 6, ..., 92 of meta-level assumptions. In these
theorems, the subgoal’s parameters (1, ..., ;) become free variables.

It supplies the assumptions to tacf and applies the resulting tactic to
the proof state § = 6.

If the resulting proof state is [¢1;...;¢n] = ¢, possibly containing
01, ..., 0 as assumptions, then it is lifted back into the original context,
yielding n subgoals.

Meta-level assumptions may not contain unknowns. Unknowns in the
hypotheses 6y, ...,0; become free variables in 61, ..., 0, and are re-
stored afterwards; the METAHYPS call cannot instantiate them. Un-
knowns in # may be instantiated. New unknowns in ¢y, ..., ¢, are
lifted over the parameters.

Here is a typical application. Calling hyp_res_tac ¢ resolves subgoal i
with one of its own assumptions, which may itself have the form of an
inference rule (these are called higher-level assumptions).

val hyp_res_tac = METAHYPS (fn prems => resolve_tac prems 1);

The function gethyps is useful for debugging applications of METAHYPS.

| METAHYPS fails if the context or new subgoals contain type unknowns. In
principle, the tactical could treat these like ordinary unknowns.

CHAPTER 4. TACTICALS 42

4.3.2 Scanning for a subgoal by number

ALLGOALS : (int -> tactic) -> tactic
TRYALL : (int -> tactic) -> tactic
SOMEGOAL : (int -> tactic) -> tactic
FIRSTGOAL : (int -> tactic) -> tactic
REPEAT_SOME : (int -> tactic) -> tactic
REPEAT_FIRST : (int -> tactic) -> tactic

trace_goalno_tac : (int -> tactic) -> int -> tactic

These apply a tactic function of type int -> tactic to all the subgoal num-
bers of a proof state, and join the resulting tactics using THEN or ORELSE.
Thus, they apply the tactic to all the subgoals, or to one subgoal.

Suppose that the original proof state has n subgoals.

ALLGOALS tacf is equivalent to tacf(n) THEN ... THEN tacf(1).

It applies tacf to all the subgoals, counting downwards (to avoid prob-
lems when subgoals are added or deleted).

TRYALL tacf is equivalent to TRY(tacf(n)) THEN ... THEN TRY(tacf(1)).
It attempts to apply tacf to all the subgoals. For instance, the tactic
TRYALL assume_tac attempts to solve all the subgoals by assumption.

SOMEGOAL tacf is equivalent to tacf(n) ORELSE ... ORELSE tacf(1).

It applies tacf to one subgoal, counting downwards. For instance, the
tactic SOMEGOAL assume_tac solves one subgoal by assumption, failing
if this is impossible.

FIRSTGOAL tacf is equivalent to tacf(1) ORELSE ... ORELSE tacf(n).
It applies tacf to one subgoal, counting upwards.

REPEAT_SOME tacf applies tacf once or more to a subgoal, counting down-
wards.

REPEAT_FIRST tacf applies tacfonce or more to a subgoal, counting upwards.

trace_goalno_tac tac ¢ applies tac ¢ to the proof state. If the resulting
sequence is non-empty, then it is returned, with the side-effect of print-
ing Subgoal i selected. Otherwise, trace_goalno_tac returns the
empty sequence and prints nothing.

It indicates that ‘the tactic worked for subgoal ¢’ and is mainly used
with SOMEGOAL and FIRSTGOAL.

CHAPTER 4. TACTICALS 43

4.3.3 Joining tactic functions

THEN’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix 1
ORELSE’ (’a => tactic) * (’a —-> tactic) -> ’a -> tactic infix
APPEND’ (’a -> tactic) * (’a —-> tactic) -> ’a -> tactic infix
INTLEAVE’ : (’a -> tactic) * (’a -> tactic) -> ’a -> tactic infix
EVERY’ (’a -> tactic) list -> ’a -> tactic
FIRST’ (’a -> tactic) list -> ’a -> tactic

These help to express tactics that specify subgoal numbers. The tactic

SOMEGOAL (fn i => resolve_tac rls i ORELSE eresolve_tac erls i)

can be simplified to

SOMEGOAL (resolve_tac rls ORELSE’ eresolve_tac erls)

Note that TRY’, REPEAT’, DEPTH_FIRST’, etc. are not provided, because func-
tion composition accomplishes the same purpose. The tactic

ALLGOALS (fn i => REPEAT (etac exE i ORELSE atac i))

can be simplified to

ALLGOALS (REPEAT o (etac exE ORELSE’ atac))

These tacticals are polymorphic; z need not be an integer.

(tacfi THEN’ tacfy)(z) yields tacfi(z))

(tacf; ORELSE’ tacfy)(z) yields tacfi(z) ORELSE tacfo(x

(tacfi APPEND’ tacfy)(z) yields tacfi(z) APPEND tacfy(x)
(tacfy INTLEAVE’ tacfy)(xz) yields tacfi(z) INTLEAVE tacfo(z)
EVERY’ [tacfi,...,tacf,] (z) yields EVERY [tacfi(z),...,tacf,(z)]
FIRST’ [tacfi,...,tacf,] (x) (

THEN tacfy(x

yields FIRST [tacfi(z),...,tacf,

z)]

4.3.4 Applying a list of tactics to 1

EVERY1: (int -> tactic) list -> tactic
FIRST1: (int -> tactic) list -> tactic

A common proof style is to treat the subgoals as a stack, always restricting
attention to the first subgoal. Such proofs contain long lists of tactics, each
applied to 1. These can be simplified using EVERY1 and FIRST1:

EVERY1 [tacfi,...,tacf,] abbreviates EVERY [tacfi(1),...,tacf,(1)]
FIRST1 [tacfi,...,tacf,] abbreviates FIRST [tacfi(1),...,tacf,(1)]

Chapter 5

Theorems and Forward Proof

Theorems, which represent the axioms, theorems and rules of object-logics,
have type thm. This chapter begins by describing operations that print the-
orems and that join them in forward proof. Most theorem operations are
intended for advanced applications, such as programming new proof pro-
cedures. Many of these operations refer to signatures, certified terms and
certified types, which have the ML types Sign.sg, cterm and ctyp and are
discussed in Chapter 6. Beginning users should ignore such complexities —
and skip all but the first section of this chapter.

The theorem operations do not print error messages. Instead, they raise
exception THM. Use print_exn to display exceptions nicely:

alll RS mp handle e => print_exn e;
Exception THM raised:
RSN: no unifiers -- premise 1
(!I'!'x. ?P(x)) ==> ALL x. 7P(x)
[l ?P —=> ?7Q; 7P |] ==> 7Q

uncaught exception THM

5.1 Basic operations on theorems

5.1.1 Pretty-printing a theorem

prth : thm -> thm

prths : thm list -> thm list

prthq : thm Seq.seq -> thm Seq.seq
print_thm : thm -> unit

print_goals : int -> thm -> unit

string_of_thm : thm -> string

The first three commands are for interactive use. They are identity functions
that display, then return, their argument. The ML identifier it will refer to
the value just displayed.

The others are for use in programs. Functions with result type unit are
convenient for imperative programming.

44

CHAPTER 5. THEOREMS AND FORWARD PROOF 45

prth thm prints thm at the terminal.
prths thms prints thms, a list of theorems.

prthq thmg prints thmg, a sequence of theorems. It is useful for inspecting
the output of a tactic.

print_thm thm prints thm at the terminal.

print_goals [limit thm prints thm in goal style, with the premises as sub-
goals. It prints at most [imit subgoals. The subgoal module calls
print_goals to display proof states.

string_of_thm thm converts thm to a string.

5.1.2 Forward proof: joining rules by resolution

RSN : thm * (int * thm) -> thm infix
RS : thm * thm -> thm infix
MRS : thm list * thm -> thm infix
OF : thm * thm list -> thm infix
RLN : thm list * (int * thm list) -> thm list infix
RL : thm list * thm list -> thm list infix
MRL : thm list list * thm list -> thm list infix

Joining rules together is a simple way of deriving new rules. These functions
are especially useful with destruction rules. To store the result in the theorem
database, use bind_thm (§2.1.3).

thmy RSN (i, thmy) resolves the conclusion of thm; with the i¢th premise
of thmsy. Unless there is precisely one resolvent it raises exception THM;
in that case, use RLN.

thmy RS thmy abbreviates thm; RSN (1, thmsg). Thus, it resolves the conclu-
sion of thm; with the first premise of thms.

[thmy, ..., thm,] MRS thm uses RSN to resolve thm; against premise i of thm,
for © = n, ..., 1. This applies thm,, ..., thm; to the first n premises
of thm. Because the theorems are used from right to left, it does not
matter if the thm; create new premises. MRS is useful for expressing
proof trees.

thm QOF [thmy,...,thm,] is the same as [thmy,..., thm,| MRS thm, with
slightly more readable argument order, though.

CHAPTER 5. THEOREMS AND FORWARD PROOF 46

thms; RLN (i, thmsy) joins lists of theorems. For every thm, in thms, and
thms in thmss, it resolves the conclusion of thm; with the ith premise
of thmy, accumulating the results.

thms; RL thms, abbreviates thms; RLN (1, thmss).
[thmsy, ..., thms,] MRL thms isanalogous to MRS, but combines theorem lists

rather than theorems. It too is useful for expressing proof trees.

5.1.3 Expanding definitions in theorems

rewrite_rule : thm list -> thm -> thm
rewrite_goals_rule : thm list -> thm -> thm

rewrite_rule defs thm unfolds the defs throughout the theorem thm.

rewrite_goals_rule defs thm unfolds the defs in the premises of thm,
but it leaves the conclusion unchanged. This rule is the basis for
rewrite_goals_tac, but it serves little purpose in forward proof.

5.1.4 Instantiating unknowns in a theorem

read_instantiate : (string*string) list -> thm -> thm
read_instantiate_sg : Sign.sg -> (string*string) list -> thm -> thm
cterm_instantiate : (cterm*cterm) list -> thm -> thm
instantiate’ : ctyp option list -> cterm option list -> thm -> thm

These meta-rules instantiate type and term unknowns in a theorem. They
are occasionally useful. They can prevent difficulties with higher-order uni-
fication, and define specialized versions of rules.

read_instantiate insts thm processes the instantiations insts and instan-
tiates the rule thm. The processing of instantiations is described in
§3.1.4, under res_inst_tac.

Use res_inst_tac, not read_instantiate, to instantiate a rule and
refine a particular subgoal. The tactic allows instantiation by the sub-
goal’s parameters, and reads the instantiations using the signature as-
sociated with the proof state.

Use read_instantiate_sg below if insts appears to be treated incor-
rectly.

CHAPTER 5. THEOREMS AND FORWARD PROOF 47

read_instantiate_sg sg insts thm is like read_instantiate insts thm,
but it reads the instantiations under signature sg. This is necessary to
instantiate a rule from a general theory, such as first-order logic, using
the notation of some specialized theory. Use the function sign_of to
get a theory’s signature.

cterm_instantiate ctpairs thm is similar to read_instantiate, but the
instantiations are provided as pairs of certified terms, not as strings to
be read.

instantiate’ ctyps cterms thm instantiates thm according to the posi-
tional arguments ctyps and cterms. Counting from left to right,
schematic variables ?x are either replaced by ¢ for any argument Some £,
or left unchanged in case of None or if the end of the argument list is
encountered. Types are instantiated before terms.

5.1.5 Miscellaneous forward rules

standard : thm -> thm
zero_var_indexes : thm -> thm
make_elim : thm -> thm
rule_by_tactic : tactic -> thm -> thm
rotate_prems : int -> thm -> thm
permute_prems : int -> int -> thm -> thm
rearrange_prems int list -> thm -> thm

standard thm puts thm into the standard form of object-rules. It discharges
all meta-assumptions, replaces free variables by schematic variables,
renames schematic variables to have subscript zero, also strips outer
(meta) quantifiers and removes dangling sort hypotheses.

zero_var_indexes thm makes all schematic variables have subscript zero,
renaming them to avoid clashes.

make_elim thm converts thm, which should be a destruction rule of the form
[P1;...; Pn] = @, to the elimination rule [Py;...; Py; @ = R] =
R. This is the basis for destruct-resolution: dresolve_tac, etc.

rule_by_tactic tac thm applies tac to the thm, freezing its variables first,
then yields the proof state returned by the tactic. In typical usage,
the thm represents an instance of a rule with several premises, some
with contradictory assumptions (because of the instantiation). The
tactic proves those subgoals and does whatever else it can, and returns
whatever is left.

CHAPTER 5. THEOREMS AND FORWARD PROOF 48

rotate_prems k thm rotates the premises of thm to the left by k positions
(to the right if £ < 0). It simply calls permute_prems, below, with
j = 0. Used with eresolve_tac, it gives the effect of applying the
tactic to some other premise of thm than the first.

permute_prems j k thm rotates the premises of thm leaving the first j
premises unchanged. It requires 0 < j < n, where n is the num-
ber of premises. If k is positive then it rotates the remaining n — j
premises to the left; if k£ is negative then it rotates the premises to the
right.

rearrange_prems ps thm permutes the premises of thm where the value
at the i-th position (counting from 0) in the list ps gives the position
within the original thm to be transferred to position 7. Any remaining
trailing positions are left unchanged.

5.1.6 Taking a theorem apart

cprop_of : thm -> cterm

concl_of : thm -> term

prems_of : thm -> term list
cprems_of : thm -> cterm list
nprems_of : thm -> int

tpairs_of : thm -> (term*term) list
sign_of_thm : thm -> Sign.sg

theory_of_thm : thm -> theory
dest_state : thm * int -> (term¥term) list * term list * term * term

rep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx:

shyps: sort list, hyps: term list, prop: term}

crep_thm : thm -> {sign_ref: Sign.sg_ref, der: bool * deriv, maxidx:

shyps: sort list, hyps: cterm list, prop: cterm}

cprop_of thm returns the statement of thm as a certified term.
concl_of thm returns the conclusion of thm as a term.

prems_of thm returns the premises of thm as a list of terms.
cprems_of thm returns the premises of thm as a list of certified terms.

nprems_of thm returns the number of premises in thm, and is equivalent to
length (prems_of thm).

tpairs_of thm returns the flex-flex constraints of thm.

sign_of_thm thm returns the signature associated with thm.

int,

int,

CHAPTER 5. THEOREMS AND FORWARD PROOF 49

theory_of_thm thm returns the theory associated with thm. Note that this
does a lookup in Isabelle’s global database of loaded theories.

dest_state (thm,i) decomposes thm as a tuple containing a list of flex-flex
constraints, a list of the subgoals 1 to ¢ — 1, subgoal i, and the rest
of the theorem (this will be an implication if there are more than i
subgoals).

rep_thm thm decomposes thm as a record containing the statement of thm
(prop), its list of meta-assumptions (hyps), its derivation (der), a
bound on the maximum subscript of its unknowns (maxidx), and a
reference to its signature (sign_ref). The shyps field is discussed
below.

crep_thm thm like rep_thm, but returns the hypotheses and statement as
certified terms.

5.1.7 *Sort hypotheses

strip_shyps : thm -> thm
strip_shyps_warning : thm -> thm

Isabelle’s type variables are decorated with sorts, constraining them to
certain ranges of types. This has little impact when sorts only serve for
syntactic classification of types — for example, FOL distinguishes between
terms and other types. But when type classes are introduced through axioms,
this may result in some sorts becoming empty: where one cannot exhibit a
type belonging to it because certain sets of axioms are unsatisfiable.

If a theorem contains a type variable that is constrained by an empty sort,
then that theorem has no instances. It is basically an instance of ex falso
quodlibet. But what if it is used to prove another theorem that no longer
involves that sort? The latter theorem holds only if under an additional
non-emptiness assumption.

Therefore, Isabelle’s theorems carry around sort hypotheses. The shyps
field is a list of sorts occurring in type variables in the current prop and hyps
fields. It may also includes sorts used in the theorem’s proof that no longer
appear in the prop or hyps fields — so-called dangling sort constraints. These
are the critical ones, asserting non-emptiness of the corresponding sorts.

Isabelle automatically removes extraneous sorts from the shyps field at
the end of a proof, provided that non-emptiness can be established by looking
at the theorem’s signature: from the classes and arities information. This
operation is performed by strip_shyps and strip_shyps_warning.

CHAPTER 5. THEOREMS AND FORWARD PROOF 20

strip_shyps thm removes any extraneous sort hypotheses that can be wit-
nessed from the type signature.

strip_shyps_warning is like strip_shyps, but issues a warning message of
any pending sort hypotheses that do not have a (syntactic) witness.

5.1.8 Tracing flags for unification

Unify.trace_simp : bool ref initially false
Unify.trace_types : bool ref initially false
Unify.trace_bound : int ref initially 10
Unify.search_bound : int ref initially 20

Tracing the search may be useful when higher-order unification behaves un-
expectedly. Letting res_inst_tac circumvent the problem is easier, though.

set Unify.trace_simp; causes tracing of the simplification phase.

set Unify.trace_types; generates warnings of incompleteness, when uni-
fication is not considering all possible instantiations of type unknowns.

Unify.trace_bound := n; causes unification to print tracing information
once it reaches depth n. Use n = 0 for full tracing. At the default
value of 10, tracing information is almost never printed.

Unify.search_bound := n; prevents unification from searching past the
depth n. Because of this bound, higher-order unification cannot return
an infinite sequence, though it can return an exponentially long one.
The search rarely approaches the default value of 20. If the search is
cut off, unification prints a warning Unification bound exceeded.

5.2 *Primitive meta-level inference rules

These implement the meta-logic in the style of the LCF system, as functions
from theorems to theorems. They are, rarely, useful for deriving results in
the pure theory. Mainly, they are included for completeness, and most users
should not bother with them. The meta-rules raise exception THM to signal
malformed premises, incompatible signatures and similar errors.

The meta-logic uses natural deduction. Each theorem may depend on
meta-level assumptions. Certain rules, such as (=), discharge assump-
tions; in most other rules, the conclusion depends on all of the assumptions
of the premises. Formally, the system works with assertions of the form

¢ [gbl?"'vgbn]a

CHAPTER 5. THEOREMS AND FORWARD PROOF 51

where ¢q, ..., ¢, are the assumptions. This can be also read as a single
conclusion sequent ¢q,...,¢, = ¢. Do not confuse meta-level assumptions
with the object-level assumptions in a subgoal, which are represented in the
meta-logic using =-.

Each theorem has a signature. Certified terms have a signature. When
a rule takes several premises and certified terms, it merges the signatures to
make a signature for the conclusion. This fails if the signatures are incom-
patible.

The following presentation of primitive rules ignores sort hypotheses (see
also §5.1.7). These are handled transparently by the logic implementation.

The implication rules are (=I) and (= E):

9]
b o= o
o (=) 2 (=p)
Equality of truth values means logical equivalence:
b= b=—¢ _ . b=v ¢ _
e B

The equality rules are reflexivity, symmetry, and transitivity:

a = a(refl) Z a (sym) s Eab bcE ¢ (trans)

The A-conversions are a-conversion, (3-conversion, and extensionality:!

f(z) = g(2) (cat)
(Az.a)=(Ay.aly/z]) ((Az.a)(b)) = a[b/z] f=y
The abstraction and combination rules let conversions be applied to
subterms:?

a=b f=g a=0b
Do o) =0w. 0) =g o)
The universal quantification rules are (A) and (A E):?
) ANz . ¢
I ANE
oo N gy M)
L a-conversion holds if y is not free in a; (ext) holds if z is not free in the assumptions,

f,org.
2 Abstraction holds if z is not free in the assumptions.
3(AI) holds if z is not free in the assumptions.

CHAPTER 5. THEOREMS AND FORWARD PROOF 52

5.2.1 Assumption rule
assume: cterm -> thm

assume cl makes the theorem ¢ [¢], where ¢ is the value of ct. The rule
checks that ct has type prop and contains no unknowns, which are not
allowed in assumptions.

5.2.2 Implication rules

implies_intr : cterm -> thm -> thm
implies_intr_list : cterm list -> thm -> thm
implies_intr_hyps : thm -> thm
implies_elim : thm -> thm -> thm
implies_elim_list : thm -> thm list -> thm
implies_intr ct thm is (=1), where ct is the assumption to discharge,
say ¢. It maps the premise ¢ to the conclusion ¢ = 1, removing all
occurrences of ¢ from the assumptions. The rule checks that ct has

type prop.

implies_intr_list cts thm applies (=1) repeatedly, on every element
of the list cts.

implies_intr_hyps thm applies (=) to discharge all the hypotheses (as-
sumptions) of thm. It maps the premise ¢ [¢1, ..., @,] to the conclusion

1, .. 0u] = o.

implies_elim thm; thmsy applies (=F) to thm; and thms. It maps the
premises ¢ = 1) and ¢ to the conclusion .

implies_elim_list thm thms applies (= F) repeatedly to thm, using
each element of thms in turn. It maps the premises [¢y, ..., ¢,] = ¥
and ¢1,...,¢, to the conclusion .

5.2.3 Logical equivalence rules

equal_intr : thm -> thm -> thm
equal_elim : thm -> thm -> thm

equal_intr thm; thmy applies (=I) to thm; and thm,. It maps the
premises 1 and ¢ to the conclusion ¢ = 1; the assumptions are those

of the first premise with ¢ removed, plus those of the second premise
with 1) removed.

equal_elim thm; thmy applies (=F) to thm; and thme. It maps the
premises ¢ = ¢ and ¢ to the conclusion).

CHAPTER 5. THEOREMS AND FORWARD PROOF 23

5.2.4 Equality rules

reflexive : cterm -> thm
symmetric : thm -> thm
transitive : thm -> thm -> thm

reflexive ct makes the theorem ct = ct.
symmetric thm maps the premise a = b to the conclusion b = a.
transitive thmy thms maps the premises a = b and b = ¢ to the conclu-

sion a = c.

5.2.5 The \-conversion rules

beta_conversion : cterm -> thm

extensional : thm -> thm
abstract_rule : string -> cterm -> thm -> thm
combination : thm -> thm -> thm

There is no rule for a-conversion because Isabelle regards a-convertible the-
orems as equal.

beta_conversion ct makes the theorem ((Az . a)(b)) = a[b/z], where ct is
the term (Az . a)(b).

extensional thm maps the premise f(z) = g(z) to the conclusion f = g.
Parameter z is taken from the premise. It may be an unknown or a
free variable (provided it does not occur in the assumptions); it must
not occur in f or g.

abstract_rule v z thm maps the premise a = b to the conclusion (Az .
a) = (Az . b), abstracting over all occurrences (if any!) of z. Parame-
ter z is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions). In the conclusion, the
bound variable is named v.

combination thm; thmy maps the premises f = g and ¢ = b to the conclu-
sion f(a) = g(b).

5.2.6 Forall introduction rules

forall_intr : cterm => thm -> thm
forall_intr_list : cterm list -> thm -> thm
forall_intr_frees : thm -> thm

CHAPTER 5. THEOREMS AND FORWARD PROOF o4

forall_intr z thm applies (AI), abstracting over all occurrences (if any!)
of x. The rule maps the premise ¢ to the conclusion A x . ¢. Parame-
ter z is supplied as a cterm. It may be an unknown or a free variable
(provided it does not occur in the assumptions).

forall_intr_list xs thm applies (A) repeatedly, on every element of the
list zs.

forall_intr_frees thm applies (AI) repeatedly, generalizing over all the
free variables of the premise.

5.2.7 Forall elimination rules

forall_elim : cterm -> thm -> thm
forall_elim_list : cterm list -> thm -> thm
forall_elim_var : int -> thm -> thm
forall_elim_vars : int -> thm -> thm

forall_elim ct thm applies (AFE), mapping the premise A z . ¢ to the con-
clusion ¢[ct/z]. The rule checks that ¢t and x have the same type.

forall_elim_list cts thm applies (AFE) repeatedly, on every element of
the list cts.

forall_elim_var k thm applies (AF), mapping the premise Az . ¢ to the
conclusion ¢[?zy, /x]. Thus, it replaces the outermost A-bound variable
by an unknown having subscript k.

forall_elim_vars k thm applies forall_elim_var k repeatedly until the
theorem no longer has the form Az . ¢.

5.2.8 Instantiation of unknowns

instantiate: (indexname * ctyp) list * (cterm * cterm) list -> thm -> thm

There are two versions of this rule. The primitive one is Thm.instantiate,
which merely performs the instantiation and can produce a conclusion not
in normal form. A derived version is Drule. instantiate, which normalizes
its conclusion.

instantiate (tyinsts,insts) thm simultaneously substitutes types for type
unknowns (the tyinsts) and terms for term unknowns (the insts). In-
stantiations are given as (v, t) pairs, where v is an unknown and ¢ is a

CHAPTER 5. THEOREMS AND FORWARD PROOF 25

term (of the same type as v) or a type (of the same sort as v). All the
unknowns must be distinct.

In some cases, instantiate’ (see §5.1.4) provides a more convenient
interface to this rule.

5.2.9 Freezing/thawing type unknowns

freezeT: thm -> thm
varifyT: thm -> thm

freezeT thm converts all the type unknowns in thm to free type variables.

varifyT thm converts all the free type variables in thm to type unknowns.

5.3 Derived rules for goal-directed proof

Most of these rules have the sole purpose of implementing particular tactics.
There are few occasions for applying them directly to a theorem.

5.3.1 Proof by assumption
assumption : int -> thm -> thm Seq.seq

eq_assumption : int -> thm -> thm

assumption ¢ thm attempts to solve premise i of thm by assumption.

eq_assumption is like assumption but does not use unification.

5.3.2 Resolution

biresolution : bool -> (bool*thm)list -> int -> thm
-> thm Seq.seq

biresolution match rules i state performs bi-resolution on subgoal ¢ of
state, using the list of (flag, rule) pairs. For each pair, it applies res-
olution if the flag is false and elim-resolution if the flag is true. If
match is true, the state is not instantiated.

CHAPTER 5. THEOREMS AND FORWARD PROOF 26

5.3.3 Composition: resolution without lifting

compose : thm * int * thm -> thm list

COMP : thm * thm -> thm

bicompose : bool -> bool * thm * int -> int -> thm
-> thm Seq.seq

In forward proof, a typical use of composition is to regard an assertion of the
form ¢ = 1 as atomic. Schematic variables are not renamed, so beware of
clashes!

compose (thmy, i, thmy) uses thm;, regarded as an atomic formula, to
solve premise ¢ of thmy. Let thmy and thmy be ¢ and [¢y;. .. ¢,] = ¢.
For each s that unifies v and ¢;, the result list contains the theorem

([o15 .- Bic1; Big1s -5 On] = @)s.

thmy COMP thms calls compose (thmy, 1, thmy) and returns the result, if
unique; otherwise, it raises exception THM. It is analogous to RS.

For example, suppose that thm; is a = b = b = a, a symmetry
rule, and that thmy is [P = @; Q] = —P, which is the principle
of contrapositives. Then the result would be the derived rule —(b =
a) = —(a = b).

bicompose match (flag, rule, m) i state refines subgoal ¢ of state us-
ing rule, without lifting. The rule is taken to have the form
[th1; ... ;] = 1, where ¢ need not be atomic; thus m determines the
number of new subgoals. If flag is true then it performs elim-resolution
— it solves the first premise of rule by assumption and deletes that as-
sumption. If match is true, the state is not instantiated.

5.3.4 Other meta-rules

trivial : cterm -> thm

lift_rule : (thm * int) -> thm -> thm
rename_params_rule : string list * int -> thm -> thm
flexflex_rule : thm -> thm Seq.seq

trivial ct makes the theorem ¢ = ¢, where ¢ is the value of ct. This is
the initial state for a goal-directed proof of ¢. The rule checks that ct
has type prop.

lift_rule (state, @) rule prepares rule for resolution by lifting it over the
parameters and assumptions of subgoal i of state.

CHAPTER 5. THEOREMS AND FORWARD PROOF o7

rename_params_rule (names, %) thm uses the names to rename the pa-
rameters of premise ¢ of thm. The names must be distinct. If there
are fewer names than parameters, then the rule renames the innermost
parameters and may modify the remaining ones to ensure that all the
parameters are distinct.

flexflex_rule thm removes all flex-flex pairs from thm using the trivial
unifier.

5.4 Proof terms

Isabelle can record the full meta-level proof of each theorem. The proof term
contains all logical inferences in detail. Resolution and rewriting steps are
broken down to primitive rules of the meta-logic. The proof term can be
inspected by a separate proof-checker, for example.

According to the well-known Curry-Howard isomorphism, a proof can be
viewed as a A-term. Following this idea, proofs in Isabelle are internally
represented by a datatype similar to the one for terms described in §6.5.

infix 8 % %%;

datatype proof =

PBound of int

Abst of string * typ option * proof

AbsP of string * term option * proof

op % of proof * term option

op %% of proof * proof

Hyp of term

PThm of (string * (string * string list) list) *
proof * term * typ list option

| PAxm of string * term * typ list option

| Oracle of string * term * typ list option

| MinProof of proof list;

Abst (a, 7, prf) is the abstraction over a term wvariable of type 7 in the
body prf. Logically, this corresponds to A introduction. The name a
is used only for parsing and printing.

AbsP (a, ¢, prf) is the abstraction over a proof variable standing for a
proof of proposition ¢ in the body prf. This corresponds to = intro-
duction.

prf % t is the application of proof prf to term ¢ which corresponds to A
elimination.

CHAPTER 5. THEOREMS AND FORWARD PROOF o8

prfi Wk prfo is the application of proof prf; to proof prf; which corresponds
to = elimination.

PBound i is a proof variable with de Bruijn [5] index 1.
Hyp ¢ corresponds to the use of a meta level hypothesis .

PThm ((name, tags), prf, ¢, T) stands for a pre-proved theorem, where
name is the name of the theorem, prf is its actual proof, ¢ is the proven
proposition, and 7 is a type assignment for the type variables occurring
in the proposition.

PAxm (name, @, T) corresponds to the use of an axiom with name name
and proposition ¢, where T is a type assignment for the type variables
occurring in the proposition.

Oracle (name, ¢, T) denotes the invocation of an oracle with name name
which produced a proposition ¢, where 7 is a type assignment for the
type variables occurring in the proposition.

MinProof prfs represents a minimal proof where prfs is a list of theorems,
axioms or oracles.

Note that there are no separate constructors for abstraction and application
on the level of types, since instantiation of type variables is accomplished via
the type assignments attached to Thm, Axm and Oracle.

Each theorem’s derivation is stored as the der field of its internal record:

#2 (#der (rep_thm conjI));
PThm (("HOL.conjI", [1),
AbsP ("H", None, AbsP ("H", None, ...)), ..., None)
None 7, None : Proofterm.proof

This proof term identifies a labelled theorem, conjI of theory HOL, whose
underlying proof is AbsP ("H", None, AbsP ("H", None, ...)). The the-
orem is applied to two (implicit) term arguments, which correspond to the
two variables occurring in its proposition.

Isabelle’s inference kernel can produce proof objects with different levels
of detail. This is controlled via the global reference variable proofs:

proofs := 0; only record uses of oracles

proofs := 1; record uses of oracles as well as dependencies on other theo-
rems and axioms

CHAPTER 5. THEOREMS AND FORWARD PROOF 29

proofs := 2; record inferences in full detail

Reconstruction and checking of proofs as described in §5.4.1 will not work for
proofs constructed with proofs set to 0 or 1. Theorems involving oracles will
be printed with a suffixed [!] to point out the different quality of confidence
achieved.

The dependencies of theorems can be viewed using the function thm_deps:

thm_deps [thmy, ..., thm,];

generates the dependency graph of the theorems thmy, ..., thm, and displays
it using Isabelle’s graph browser. For this to work properly, the theorems in
question have to be proved with proofs set to a value greater than 0. You
can use

ThmDeps.enable : unit -> unit
ThmDeps.disable : unit -> unit

to set proofs appropriately.

5.4.1 Reconstructing and checking proof terms

When looking at the above datatype of proofs more closely, one notices that
some arguments of constructors are optional. The reason for this is that
keeping a full proof term for each theorem would result in enormous memory
requirements. Fortunately, typical proof terms usually contain quite a lot of
redundant information that can be reconstructed from the context. There-
fore, Isabelle’s inference kernel creates only partial (or implicit) proof terms,
in which all typing information in terms, all term and type labels of abstrac-
tions AbsP and Abst, and (if possible) some argument terms of % are omitted.
The following functions are available for reconstructing and checking proof
terms:

Reconstruct.reconstruct_proof :

Sign.sg -> term -> Proofterm.proof -> Proofterm.proof
Reconstruct.expand_proof :

Sign.sg -> string list -> Proofterm.proof -> Proofterm.proof
ProofChecker.thm_of_proof : theory -> Proofterm.proof -> thm

Reconstruct.reconstruct_proof sg t prf turns the partial proof prf
into a full proof of the proposition denoted by ¢, with respect to sig-
nature sg. Reconstruction will fail with an error message if prf is not
a proof of t, is ill-formed, or does not contain sufficient information
for reconstruction by higher order pattern unification [10, 2]. The lat-
ter may only happen for proofs built up “by hand” but not for those
produced automatically by Isabelle’s inference kernel.

CHAPTER 5. THEOREMS AND FORWARD PROOF 60

proof = Lam params. proof | Aparams. proof
| proof % any | proof - any
| proof W% proof | proof - proof
| id | longid
param = idt | idt : prop | (param)
params = param | param params
Figure 5.1: Proof term syntax
Reconstruct.expand_proof sg [name;, ..., name,] prf expands and
reconstructs the proofs of all theorems with names namey, ..., name,

in the (full) proof prf.

ProofChecker.thm_of_proof thy prf turns the (full) proof prf into a the-
orem with respect to theory thy by replaying it using only primitive
rules from Isabelle’s inference kernel.

5.4.2 Parsing and printing proof terms

[sabelle offers several functions for parsing and printing proof terms. The
concrete syntax for proof terms is described in Fig.5.1. Implicit term argu-
ments in partial proofs are indicated by “_”. Type arguments for theorems
and axioms may be specified using % or with an argument of the form
TYPE (type) (see §7.2). They must appear before any other term argument
of a theorem or axiom. In contrast to term arguments, type arguments may
be completely omitted.

(13X

ProofSyntax.read_proof : theory -> bool -> string -> Proofterm.proof
ProofSyntax.pretty_proof : Sign.sg -> Proofterm.proof -> Pretty.T
ProofSyntax.pretty_proof_of : bool -> thm -> Pretty.T
ProofSyntax.print_proof_of : bool -> thm -> unit

The function read_proof reads in a proof term with respect to a given
theory. The boolean flag indicates whether the proof term to be parsed
contains explicit typing information to be taken into account. Usually, typing
information is left implicit and is inferred during proof reconstruction. The
pretty printing functions operating on theorems take a boolean flag as an
argument which indicates whether the proof term should be reconstructed
before printing.

CHAPTER 5. THEOREMS AND FORWARD PROOF 61

The following example (based on Isabelle/HOL) illustrates how to parse
and check proof terms. We start by parsing a partial proof term

val prf = ProofSyntax.read_proof Main.thy false

"impI % _ %h _ %% (Lam H : _. conjE % _ % _ % _ %k H %%
(Lam (H1 : _) H2 : _. conjI % _ % _ %% H2 %% H1))";
val prf = PThm (("HOL.impI", []), ., ..., None) J, None J, None //

AbsP ("H", None, PThm (("HOL.conjE", [1),
None J, None J, None /i PBound 0 //
AbsP ("H1", None, AbsP ("H2", None, ...)))

., ..., None) %
: Proofterm.proof
The statement to be established by this proof is

val t = term_of

(read_cterm (sign_of Main.thy) ("A & B --> B & A"

, propT));
val t = Const ("Trueprop", "bool => prop") $
(Const ("op -->", "[bool, bool] => bool") $
... $... : Term.term
Using t we can reconstruct the full proof
val prf’ = Reconstruct.reconstruct_proof (sign_of Main.thy) t prf;
val prf’ = PThm (("HOL.impI", []), ., ..., Some []) ¥
Some (Const ("op &", ...) $ Free ("A", ...) $ Free ("B", ...)) 1
Some (Const ("op &", ...) $ Free ("B", ...) $ Free ("A", ...)) I/
AbsP ("H", Some (Const ("Trueprop", ...) $...), ...)

: Proofterm.proof

This proof can finally be turned into a theorem

val thm = ProofChecker.thm_of_proof Main.thy prf’;
val thm = "A & B ——> B & A" : Thm.thm

Chapter 6

Theories, Terms and Types

Theories organize the syntax, declarations and axioms of a mathematical
development. They are built, starting from the Pure or CPure theory, by
extending and merging existing theories. They have the ML type theory.
Theory operations signal errors by raising exception THEORY, returning a
message and a list of theories.

Signatures, which contain information about sorts, types, constants and
syntax, have the ML type Sign.sg. For identification, each signature carries
a unique list of stamps, which are ML references to strings. The strings serve
as human-readable names; the references serve as unique identifiers. Each
primitive signature has a single stamp. When two signatures are merged,
their lists of stamps are also merged. Every theory carries a unique signature.

Terms and types are the underlying representation of logical syntax.
Their ML definitions are irrelevant to naive Isabelle users. Programmers
who wish to extend Isabelle may need to know such details, say to code a
tactic that looks for subgoals of a particular form. Terms and types may be
‘certified’ to be well-formed with respect to a given signature.

6.1 Defining theories

Theories are defined via theory files name . thy (there are also ML-level inter-
faces which are only intended for people building advanced theory definition
packages). Appendix A presents the concrete syntax for theory files; here
follows an explanation of the constituent parts.

theoryDef is the full definition. The new theory is called id. It is the union of
the named parent theories, possibly extended with new components.
Pure and CPure are the basic theories, which contain only the meta-
logic. They differ just in their concrete syntax for function applications.

The new theory begins as a merge of its parents.

62

CHAPTER 6. THEORIES, TERMS AND TYPES 63

Attempt to merge different versions of theories: "Ty", ..., "T,"

This error may especially occur when a theory is redeclared — say
to change an inappropriate definition — and bindings to old versions
persist. Isabelle ensures that old and new theories of the same name
are not involved in a proof.

classes is a series of class declarations. Declaring id < id; ... id, makes
1d a subclass of the existing classes id; ... id,. This rules out cyclic
class structures. Isabelle automatically computes the transitive closure
of subclass hierarchies; it is not necessary to declare ¢ < e in addition
toc < dand d < e.

default introduces sort as the new default sort for type variables. This ap-
plies to unconstrained type variables in an input string but not to type
variables created internally. If omitted, the default sort is the listwise
union of the default sorts of the parent theories (i.e. their logical inter-
section).

sort is a finite set of classes. A single class id abbreviates the sort {id}.

types is a series of type declarations. Each declares a new type construc-
tor or type synonym. An n-place type constructor is specified by

(v, ..., an)name, where the type variables serve only to indicate the
number n.
A type synonym is an abbreviation (a,...,a,)name = 7, where

name and T can be strings.

infir declares a type or constant to be an infix operator having pri-
ority mat and associating to the left (infixl) or right (infixr).
Only 2-place type constructors can have infix status; an example is
(’a,’b) "x" (infixr 20), which may express binary product types.

arities is a series of type arity declarations. Each assigns arities to type
constructors. The name must be an existing type constructor, which
is given the additional arity arity.

nonterminals declares purely syntactic types to be used as nonterminal sym-
bols of the context free grammar.

consts is a series of constant declarations. Each new constant name is given
the specified type. The optional mizfiz annotations may attach con-
crete syntax to the constant.

CHAPTER 6. THEORIES, TERMS AND TYPES 64

syntax is a variant of consts which adds just syntax without actually declar-
ing logical constants. This gives full control over a theory’s context free
grammar. The optional mode specifies the print mode where the mixfix
productions should be added. If there is no output option given, all
productions are also added to the input syntax (regardless of the print
mode).

mixfir annotations can take three forms:

e A mixfix template given as a string of the form "..._..._... "
where the i-th underscore indicates the position where the i-th
argument should go. The list of numbers gives the priority of
each argument. The final number gives the priority of the whole
construct.

e A constant f of type 11 = (72 = 7) can be given infix status.

e A constant f of type (11 = 73) = 7 can be given binder status.
The declaration binder Q p causes Qz . F'(x) to be treated like
f(F), where p is the priority.

trans specifies syntactic translation rules (macros). There are three forms:
parse rules (=>), print rules (<=), and parse/print rules (==).

rules is a series of rule declarations. Each has a name id and the formula
is given by the string. Rule names must be distinct within any single
theory.

defs is a series of definitions. They are just like rules, except that every
string must be a definition (see below for details).

constdefs combines the declaration of constants and their definition. The
first string is the type, the second the definition.

azclass defines an axiomatic type class [16] as the intersection of existing
classes, with additional axioms holding. Class axioms may not con-
tain more than one type variable. The class axioms (with implicit
sort constraints added) are bound to the given names. Furthermore a
class introduction rule is generated, which is automatically employed
by instance to prove instantiations of this class.

instance proves class inclusions or type arities at the logical level and then
transfers these to the type signature. The instantiation is proven and
checked properly. The user has to supply sufficient witness information:

CHAPTER 6. THEORIES, TERMS AND TYPES 65

theorems (longident), axioms (string), or even arbitrary ML tactic code
verbatim.

oracle links the theory to a trusted external reasoner. It is allowed to create
theorems, but each theorem carries a proof object describing the oracle
invocation. See §6.10 for details.

local, global change the current name declaration mode. Initially, theories
start in local mode, causing all names of types, constants, axioms etc.
to be automatically qualified by the theory name. Changing this to
global causes all names to be declared as short base names only.

The local and global declarations act like switches, affecting all following
theory sections until changed again explicitly. Also note that the final
state at the end of the theory will persist. In particular, this determines
how the names of theorems stored later on are handled.

setup applies a list of ML functions to the theory. The argument should de-
note a value of type (theory -> theory) list. Typically, ML pack-
ages are initialized in this way.

ml consists of ML code, typically for parse and print translation functions.

Chapters 7 and 8 explain mixfix declarations, translation rules and the ML
section in more detail.

6.1.1 Definitions

Definitions are intended to express abbreviations. The simplest form of
a definition is f = ¢, where f is a constant. Isabelle also allows a derived
forms where the arguments of f appear on the left, abbreviating a string of
A-abstractions.

Isabelle makes the following checks on definitions:

e Arguments (on the left-hand side) must be distinct variables.

e All variables on the right-hand side must also appear on the left-hand
side.

e All type variables on the right-hand side must also appear on the left-
hand side; this prohibits definitions such as (zero::nat) == length
([1::’a list).

e The definition must not be recursive. Most object-logics provide defi-
nitional principles that can be used to express recursion safely.

CHAPTER 6. THEORIES, TERMS AND TYPES 66

These checks are intended to catch the sort of errors that might be made
accidentally. Misspellings, for instance, might result in additional variables
appearing on the right-hand side. More elaborate checks could be made, but
the cost might be overly strict rules on declaration order, etc.

6.1.2 *Classes and arities

In order to guarantee principal types [12], arity declarations must obey two
conditions:

e There must not be any two declarations ty :: (7)c and ty :: (S)c with
7 # §. For example, this excludes the following:

arities
foo :: ({logic}) logic
foo :: ({Plogic
e If there are two declarations ty :: (s1,...,s,)c and ty == (s],...,s,)c
such that ¢’ < ¢ then s/ < 's; must hold for i = 1,...,n. The relation-
ship =<, defined as

§$<s <= Vees.3ddes. / <e,

expresses that the set of types represented by s’ is a subset of the set
of types represented by s. Assuming term =< logic, the following is
forbidden:

arities
foo :: ({logic})logic
foo :: ({}P)term

6.2 The theory loader

[sabelle’s theory loader manages dependencies of the internal graph of theory
nodes (the theory database) and the external view of the file system. See
§1.4 for its most basic commands, such as use_thy. There are a few more
operations available.

use_thy_only : string -> unit
update_thy_only : string -> unit
touch_thy : string -> unit
remove_thy : string -> unit

delete_tmpfiles : bool ref initially true

CHAPTER 6. THEORIES, TERMS AND TYPES 67

use_thy_only "name"; issimilar to use_thy, but processes the actual the-
ory file name .thy only, ignoring name .ML. This might be useful in re-
playing proof scripts by hand from the very beginning, starting with
the fresh theory.

update_thy_only "name"; is similar to update_thy, but processes the ac-
tual theory file name.thy only, ignoring name . ML.

touch_thy "name"; marks theory node name of the internal graph as out-
dated. While the theory remains usable, subsequent operations such
as use_thy may cause a reload.

remove_thy "name"; deletes theory node name, including all of its de-
scendants. Beware! This is a quick way to dispose a large number of
theories at once. Note that ML bindings to theorems etc. of removed
theories may still persist.

reset delete_tmpfiles; processing theory files usually involves tempo-
rary ML files to be created. By default, these are deleted afterwards.
Resetting the delete_tmpfiles flag inhibits this, leaving the gener-
ated code for debugging purposes. The basic location for temporary
files is determined by the ISABELLE_TMP environment variable (which is
private to the running Isabelle process and may be retrieved by getenv
from ML).

Theory and ML files are located by skimming through the directories listed
in Isabelle’s internal load path, which merely contains the current directory
“.” by default. The load path may be accessed by the following operations.

show_path: unit -> string list

add_path: string -> unit

del_path: string -> unit

reset_path: unit -> unit

with_path: string -> (’a -> ’b) -> ’a -> ’b
no_document: (’a -> ’b) -> ’a -> ’b

show_path(); displays the load path components in canonical string repre-
sentation (which is always according to Unix rules).

add_path "dir"; adds component dir to the beginning of the load path.

del_path "dir"; removes any occurrences of component dir from the load
path.

CHAPTER 6. THEORIES, TERMS AND TYPES 68

W o»

reset_path(); resets the load path to (current directory) only.

with_path "dir" f z; temporarily adds component dir to the beginning
of the load path while executing (f z).

no_document f x; temporarily disables IfTEX document generation while
executing (f z).

Furthermore, in operations referring indirectly to some file (e.g. use_dir)
the argument may be prefixed by a directory that will be temporarily ap-
pended to the load path, too.

6.3 Locales

Locales [7] are a concept of local proof contexts. They are introduced as
named syntactic objects within theories and can be opened in any descendant
theory.

6.3.1 Declaring Locales

A locale is declared in a theory section that starts with the keyword locale.
It consists typically of three parts, the fixes part, the assumes part, and
the defines part. Appendix A presents the full syntax.

Parts of Locales

The subsection introduced by the keyword fixes declares the locale con-
stants in a way that closely resembles a global consts declaration. In partic-
ular, there may be an optional pretty printing syntax for the locale constants.

The subsequent assumes part specifies the locale rules. They are defined
like rules: by an identifier followed by the rule given as a string. Locale rules
admit the statement of local assumptions about the locale constants. The
assumes part is optional. Non-fixed variables in locale rules are automatically
bound by the universal quantifier !'! of the meta-logic.

Finally, the defines part introduces the definitions that are available
in the locale. Locale constants declared in the fixes section are defined
using the meta-equality ==. If the locale constant is a functiond then its
definition can (as usual) have variables on the left-hand side acting as formal
parameters; they are considered as schematic variables and are automatically
generalized by universal quantification of the meta-logic. The right hand side
of a definition must not contain variables that are not already on the left hand

CHAPTER 6. THEORIES, TERMS AND TYPES 69

side. In so far locale definitions behave like theory level definitions. However,
the locale concept realizes dependent definitions: any variable that is fixed
as a locale constant can occur on the right hand side of definitions. For
an illustration of these dependent definitions see the occurrence of the locale
constant G on the right hand side of the definitions of the locale group below.
Naturally, definitions can already use the syntax of the locale constants in
the fixes subsection. The defines part is, as the assumes part, optional.

Example for Definition

The concrete syntax of locale definitions is demonstrated by example below.

Locale group assumes the definition of groups in a theory file!. A locale
defining a convenient proof environment for group related proofs may be
added to the theory as follows:

locale group =

fixes
G :: "’a grouptype"
e +e "o all
binop :: "a => ’a => ’a" (infixr "#" 80)
inv i "a => a" ("i(O" [90] 91)
assumes
Group_G "G: Group"
defines
e_def "e == unit G"
binop_def "x # y == bin_op G x y"
inv_def "i(x) == inverse G x"
Polymorphism

In contrast to polymorphic definitions in theories, the use of the same type
variable for the declaration of different locale constants in the fixes part
means the same type. In other words, the scope of the polymorphic variables
is extended over all constant declarations of a locale. In the above example
>a refers to the same type which is fixed inside the locale. In an exported
theorem (see §6.3.2) the constructors of locale group are polymorphic, yet
only simultaneously instantiatable.

Nested Locales

A locale can be defined as the extension of a previously defined locale. This
operation of extension is optional and is syntactically expressed as

IThis and other examples are from HOL/ex.

CHAPTER 6. THEORIES, TERMS AND TYPES 70

locale foo = bar + ...

The locale foo builds on the constants and syntax of the locale bar. That
is, all contents of the locale bar can be used in definitions and rules of
the corresponding parts of the locale foo. Although locale foo assumes the
fixes part of bar it does not automatically subsume its rules and definitions.
Normally, one expects to use locale foo only if locale bar is already active.
These aspects of use and activation of locales are considered in the subsequent
section.

6.3.2 Locale Scope

Locales are by default inactive, but they can be invoked. The list of currently
active locales is called scope. The process of activating them is called opening;
the reverse is closing.

Scope

The locale scope is part of each theory. It is a dynamic stack containing all
active locales at a certain point in an interactive session. The scope lives
until all locales are explicitly closed. At one time there can be more than one
locale open. The contents of these various active locales are all visible in the
scope. In case of nested locales for example, the nesting is actually reflected
to the scope, which contains the nested locales as layers. To check the state
of the scope during a development the function Print_scope may be used.
It displays the names of all open locales on the scope. The function print_
locales applied to a theory displays all locales contained in that theory and
in addition also the current scope.

The scope is manipulated by the commands for opening and closing of
locales.

Opening

Locales can be opened at any point during a session where we want to prove
theorems concerning the locale. Opening a locale means making its contents
visible by pushing it onto the scope of the current theory. Inside a scope of
opened locales, theorems can use all definitions and rules contained in the
locales on the scope. The rules and definitions may be accessed individually
using the function thm. This function is applied to the names assigned to
locale rules and definitions as strings. The opening command is called Open-
locale and takes the name of the locale to be opened as its argument.

CHAPTER 6. THEORIES, TERMS AND TYPES 71

If one opens a locale foo that is defined by extension from locale bar,
the function Open-locale checks if locale bar is open. If so, then it just
opens foo, if not, then it prints a message and opens bar before opening
foo. Naturally, this carries on, if bar is again an extension.

Closing

Closing means to cancel the last opened locale, pushing it out of the scope.
Theorems proved during the life cycle of this locale will be disabled, unless
they have been explicitly exported, as described below. However, when the
same locale is opened again these theorems may be used again as well, pro-
vided that they were saved as theorems in the first place, using qed or ML
assignment. The command Close_locale takes a locale name as a string
and checks if this locale is actually the topmost locale on the scope. If this
is the case, it removes this locale, otherwise it prints a warning message and
does not change the scope.

Export of Theorems

Export of theorems transports theorems out of the scope of locales. Lo-
cale rules that have been used in the proof of an exported theorem inside
the locale are carried by the exported form of the theorem as its individual
meta-assumptions. The locale constants are universally quantified variables
in these theorems, hence such theorems can be instantiated individually.
Definitions become unfolded; locale constants that were merely used for def-
initions vanish. Logically, exporting corresponds to a combined application
of introduction rules for implication and universal quantification. Exporting
forms a kind of normalization of theorems in a locale scope.

According to the possibility of nested locales there are two different forms
of export. The first one is realized by the function export that exports theo-
rems through all layers of opened locales of the scope. Hence, the application
of export to a theorem yields a theorem of the global level, that is, the current
theory context without any local assumptions or definitions.

When locales are nested we might want to export a theorem, not to
the global level of the current theory but just to the previous level. The
other export function, Export, transports theorems one level up in the scope;
the theorem still uses locale constants, definitions and rules of the locales
underneath.

CHAPTER 6. THEORIES, TERMS AND TYPES 72

6.3.3 Functions for Locales

Here is a quick reference list of locale functions.

Open_locale : xstring -> unit
Close_locale : xstring -> unit
export : thm -> thm
Export : thm -> thm
thm : xstring -> thm
Print_scope : unit -> unit

print_locales: theory -> unit

Open_locale zstring opens the locale zstring, adding it to the scope of the
theory of the current context. If the opened locale is built by extension,
the ancestors are opened automatically.

Close_locale zstring eliminates the locale xstring from the scope if it is
the topmost item on it, otherwise it does not change the scope and
produces a warning.

export thm locale definitions become expanded in thm and locale rules that
were used in the proof of thm become part of its individual assumptions.
This normalization happens with respect to all open locales on the
scope.

Export thm works like export but normalizes theorems only up to the pre-
vious level of locales on the scope.

thm zstring applied to the name of a locale definition or rule it returns the
definition as a theorem.

Print_scope() prints the names of the locales in the current scope of the
current theory context.

print_locale theory prints all locales that are contained in theory directly
or indirectly. It also displays the current scope similar to Print_scope.

CHAPTER 6. THEORIES, TERMS AND TYPES 73

6.4 Basic operations on theories

6.4.1 *Theory inclusion

subthy : theory * theory -> bool
eq_thy : theory * theory -> bool
transfer : theory -> thm -> thm

transfer_sg : Sign.sg -> thm -> thm

Inclusion and equality of theories is determined by unique identification
stamps that are created when declaring new components. Theorems contain
a reference to the theory (actually to its signature) they have been derived
in. Transferring theorems to super theories has no logical significance, but
may affect some operations in subtle ways (e.g. implicit merges of signatures
when applying rules, or pretty printing of theorems).

subthy (thy,, thy.) determines if thy, is included in thys wrt. identification
stamps.

eq_thy (thy,, thy,) determines if thy, is exactly the same as thys.

transfer thy thm transfers theorem thm to theory thy, provided the latter
includes the theory of thm.

transfer_sg sign thm is similar to transfer, but identifies the super the-
ory via its signature.

6.4.2 *Primitive theories

ProtoPure.thy : theory
Pure.thy : theory
CPure. thy : theory

ProtoPure.thy, Pure.thy, CPure.thy contain the syntax and signature of
the meta-logic. There are basically no axioms: meta-level inferences
are carried out by ML functions. Pure and CPure just differ in their
concrete syntax of prefix function application: ¢(uy, ..., u,) in Pure vs.
tuy,... u, in CPure. ProtoPure is their common parent, containing
no syntax for printing prefix applications at all!

CHAPTER 6. THEORIES, TERMS AND TYPES 74

6.4.3 Inspecting a theory

print_syntax : theory -> unit
print_theory : theory -> unit
parents_of : theory -> theory list
ancestors_of : theory -> theory list
sign_of : theory -> Sign.sg

Sign.stamp_names_of : Sign.sg -> string list

These provide means of viewing a theory’s components.

print_syntax thy prints the syntax of thy (grammar, macros, translation
functions etc., see page 87 for more details).

print_theory thy prints the logical parts of thy, excluding the syntax.
parents_of thy returns the direct ancestors of thy.
ancestors_of thy returns all ancestors of thy (not including thy itself).

sign_of thy returns the signature associated with thy. It is useful with
functions like read_instantiate_sg, which take a signature as an ar-
gument.

Sign.stamp_names_of sg returns the names of the identification stamps of
ax signature. These coincide with the names of its full ancestry includ-
ing that of sg itself.

6.5 Terms

Terms belong to the ML type term, which is a concrete datatype with six
constructors:

type indexname = string * int;
infix 9 $;
datatype term = Const of string * typ

| Free of string * typ

| Var of indexname * typ

| Bound of int

| Abs of string * typ * term
I

op $ of term * term;

Const (a, T) isthe constant with name a and type T'. Constants include
connectives like A and V as well as constants like 0 and Suc. Other
constants may be required to define a logic’s concrete syntax.

CHAPTER 6. THEORIES, TERMS AND TYPES 75

Free (a, T) is the free variable with name a and type 7.

Var (v, T) is the scheme variable with indexname v and type 7. An
indexname is a string paired with a non-negative index, or subscript; a
term’s scheme variables can be systematically renamed by incrementing
their subscripts. Scheme variables are essentially free variables, but
may be instantiated during unification.

Bound i is the bound variable with de Bruijn index ¢, which counts the
number of lambdas, starting from zero, between a variable’s occurrence
and its binding. The representation prevents capture of variables. For
more information see de Bruijn [5] or Paulson [14, page 376].

Abs (a, T, wu) isthe M-abstraction with body u, and whose bound vari-
able has name a and type T. The name is used only for parsing and
printing; it has no logical significance.

t $ u is the application of ¢ to u.

Application is written as an infix operator to aid readability. Here is an
ML pattern to recognize FOL formulae of the form A — B, binding the
subformulae to A and B:

Const ("Trueprop",_) $ (Const("op -->",_) $ A $ B)

6.6 *Variable binding

loose_bnos : term -> int list

incr_boundvars : int -> term -> term

abstract_over : term*term -> term

variant_abs : string * typ * term -> string * term

aconv : term * term -> bool infix

These functions are all concerned with the de Bruijn representation of bound
variables.

loose_bnos t returns the list of all dangling bound variable references. In
particular, Bound O is loose unless it is enclosed in an abstraction. Sim-
ilarly Bound 1 is loose unless it is enclosed in at least two abstractions;
if enclosed in just one, the list will contain the number 0. A well-formed
term does not contain any loose variables.

CHAPTER 6. THEORIES, TERMS AND TYPES 76

incr_boundvars j increases a term’s dangling bound variables by the off-
set 7. This is required when moving a subterm into a context where
it is enclosed by a different number of abstractions. Bound variables
with a matching abstraction are unaffected.

abstract_over (v,t) forms the abstraction of ¢ over v, which may be any
well-formed term. It replaces every occurrence of v by a Bound variable
with the correct index.

variant_abs (a, T, u) substitutes into u, which should be the body of an
abstraction. It replaces each occurrence of the outermost bound vari-
able by a free variable. The free variable has type T and its name
is a variant of a chosen to be distinct from all constants and from all
variables free in u.

t aconv u tests whether terms ¢ and u are a-convertible: identical up to
renaming of bound variables.

e Two constants, Frees, or Vars are a-convertible if their names
and types are equal. (Variables having the same name but dif-
ferent types are thus distinct. This confusing situation should be

avoided!)

e Two bound variables are a-convertible if they have the same num-
ber.

e Two abstractions are a-convertible if their bodies are, and their
bound variables have the same type.

e Two applications are a-convertible if the corresponding subterms
are.

6.7 Certified terms

A term t can be certified under a signature to ensure that every type in ¢ is
well-formed and every constant in ¢ is a type instance of a constant declared
in the signature. The term must be well-typed and its use of bound variables
must be well-formed. Meta-rules such as forall_elim take certified terms
as arguments.

Certified terms belong to the abstract type cterm. Elements of the type
can only be created through the certification process. In case of error, Isabelle
raises exception TERM.

CHAPTER 6. THEORIES, TERMS AND TYPES 77

6.7.1 Printing terms

string_of_cterm : cterm -> string
Sign.string_of_term : Sign.sg -> term -> string

string_of_cterm ct displays ct as a string.

Sign.string_of_term sign ¢ displays ¢ as a string, using the syntax
of sign.

6.7.2 Making and inspecting certified terms

cterm_of : Sign.sg -> term -> cterm

read_cterm : Sign.sg -> string * typ —> cterm

cert_axm : Sign.sg —> string * term -> string * term
read_axm : Sign.sg —> string * string -> string * term
rep_cterm : cterm -> {T:typ, t:term, sign:Sign.sg, maxidx:int}

Sign.certify_term : Sign.sg -> term -> term * typ * int

cterm_of sign t certifies ¢ with respect to signature sign.

read_cterm sign (s, T) reads the string s using the syntax of sign, cre-
ating a certified term. The term is checked to have type T'; this type
also tells the parser what kind of phrase to parse.

cert_axm sign (name, t) certifies ¢ with respect to sign as a meta-
proposition and converts all exceptions to an error, including the final
message

The error(s) above occurred in axiom "name"

read_axm sign (name, s) similar to cert_axm, but first reads the string s
using the syntax of sign.

rep_cterm ct decomposes ct as a record containing its type, the term itself,
its signature, and the maximum subscript of its unknowns. The type
and maximum subscript are computed during certification.

Sign.certify_term is a more primitive version of cterm_of, returning the
internal representation instead of an abstract cterm.

CHAPTER 6. THEORIES, TERMS AND TYPES 78

6.8 Types

Types belong to the ML type typ, which is a concrete datatype with three
constructor functions. These correspond to type constructors, free type vari-
ables and schematic type variables. Types are classified by sorts, which are
lists of classes (representing an intersection). A class is represented by a
string.

type class string;
type sort = class list;

datatype typ = Type of string * typ list
| TFree of string * sort
| TVar of indexname * sort;

infixr 5 -->;
fun § --> T = Type ("fun", [S, T1);

Type (a, 7Ts) applies the type constructor named a to the type operand
list T's. Type constructors include fun, the binary function space con-
structor, as well as nullary type constructors such as prop. Other type
constructors may be introduced. In expressions, but not in patterns,
S-->T is a convenient shorthand for function types.

TFree (a, s) is the type variable with name a and sort s.

TVar (v, s) is the type unknown with indexname v and sort s. Type
unknowns are essentially free type variables, but may be instantiated
during unification.

6.9 Certified types

Certified types, which are analogous to certified terms, have type ctyp.

6.9.1 Printing types

string_of_ctyp : ctyp —> string
Sign.string_of_typ : Sign.sg -> typ -> string

string_of_ctyp c7 displays cT as a string.

Sign.string_of_typ sign T displays T as a string, using the syntax
of sign.

CHAPTER 6. THEORIES, TERMS AND TYPES 79

6.9.2 Making and inspecting certified types

ctyp_of : Sign.sg —> typ -> ctyp
rep_ctyp : ctyp -> {T: typ, sign: Sign.sg}
Sign.certify_typ : Sign.sg -> typ —> typ

ctyp_of sign T certifies T" with respect to signature sign.

rep_ctyp c¢T decomposes cT as a record containing the type itself and its
signature.

Sign.certify_typ is a more primitive version of ctyp_of, returning the
internal representation instead of an abstract ctyp.

6.10 Oracles: calling trusted external reason-
ers

Oracles allow Isabelle to take advantage of external reasoners such as arith-
metic decision procedures, model checkers, fast tautology checkers or com-
puter algebra systems. Invoked as an oracle, an external reasoner can create
arbitrary Isabelle theorems. It is your responsibility to ensure that the exter-
nal reasoner is as trustworthy as your application requires. Isabelle’s proof
objects (§5.4) record how each theorem depends upon oracle calls.

invoke_oracle : theory -> xstring -> Sign.sg * object -> thm
Theory.add_oracle : bstring * (Sign.sg * object -> term) -> theory
-> theory

invoke_oracle thy name (sign, data) invokes the oracle name of theory
thy passing the information contained in the exception value data and
creating a theorem having signature sign. Note that type object is
just an abbreviation for exn. Errors arise if thy does not have an oracle
called name, if the oracle rejects its arguments or if its result is ill-
typed.

Theory.add_oracle name fun thy extends thy by oracle fun called name.
It is seldom called explicitly, as there is concrete syntax for oracles in
theory files.

A curious feature of ML exceptions is that they are ordinary constructors.
The ML type exn is a datatype that can be extended at any time. (See
my ML for the Working Programmer [14], especially page 136.) The oracle

CHAPTER 6. THEORIES, TERMS AND TYPES 80

mechanism takes advantage of this to allow an oracle to take any information
whatever.

There must be some way of invoking the external reasoner from ML,
either because it is coded in ML or via an operating system interface. Isabelle
expects the ML function to take two arguments: a signature and an exception
object.

e The signature will typically be that of a desendant of the theory declar-
ing the oracle. The oracle will use it to distinguish constants from
variables, etc., and it will be attached to the generated theorems.

e The exception is used to pass arbitrary information to the oracle. This
information must contain a full description of the problem to be solved
by the external reasoner, including any additional information that
might be required. The oracle may raise the exception to indicate that
it cannot solve the specified problem.

A trivial example is provided in theory FOL/ex/IffOracle. This oracle
generates tautologies of the form P < --- < P, with an even number of Ps.

The ML section of IffOracle.thy begins by declaring a few auxiliary
functions (suppressed below) for creating the tautologies. Then it declares a
new exception constructor for the information required by the oracle: here,
just an integer. It finally defines the oracle function itself.

exception IffOracleExn of int;

fun mk_iff_oracle (sign, IffOracleExn n) =
if n > 0 andalso n mod 2 = 0
then Trueprop $ mk_iff n
else raise IffOracleExn n;

Observe the function’s two arguments, the signature sign and the exception
given as a pattern. The function checks its argument for validity. If n
is positive and even then it creates a tautology containing n occurrences
of P. Otherwise it signals error by raising its own exception (just by happy
coincidence). Errors may be signalled by other means, such as returning
the theorem True. Please ensure that the oracle’s result is correctly typed;
Isabelle will reject ill-typed theorems by raising a cryptic exception at top
level.

The oracle section of IffOracle.thy installs above ML function as fol-
lows:

IffOracle = FOL +

oracle
iff = mk_iff_oracle

CHAPTER 6. THEORIES, TERMS AND TYPES 81

end

Now in IffOracle.ML we first define a wrapper for invoking the oracle:

fun iff_oracle n = invoke_oracle Iff(Oracle.thy "iff"
(sign_of IffOracle.thy, IffOracleExn n);

Here are some example applications of the iff oracle. An argument of
10 is allowed, but one of 5 is forbidden:

iff_oracle 10;
"P <=> P <-> P <-> P <-> P <-> P <->P <->P <-> P <->P" : thm
iff_oracle 5;
Exception- IffOracleExn 5 raised

Chapter 7

Defining Logics

This chapter explains how to define new formal systems — in particular,
their concrete syntax. While Isabelle can be regarded as a theorem prover
for set theory, higher-order logic or the sequent calculus, its distinguishing
feature is support for the definition of new logics.

Isabelle logics are hierarchies of theories, which are described and illus-
trated in Introduction to Isabelle. That material, together with the theory
files provided in the examples directories, should suffice for all simple appli-
cations. The easiest way to define a new theory is by modifying a copy of an
existing theory.

This chapter documents the meta-logic syntax, mixfix declarations and
pretty printing. The extended examples in §7.6 demonstrate the logical as-
pects of the definition of theories.

7.1 Priority grammars

A context-free grammar contains a set of nonterminal symbols, a set of
terminal symbols and a set of productions. Productions have the form
A =, where A is a nonterminal and 7 is a string of terminals and non-
terminals. One designated nonterminal is called the start symbol. The
language defined by the grammar consists of all strings of terminals that can
be derived from the start symbol by applying productions as rewrite rules.

The syntax of an Isabelle logic is specified by a priority grammar. Each
nonterminal is decorated by an integer priority, as in A®. A nonterminal
A®) in a derivation may be rewritten using a production A9 = ~ only
if p < ¢. Any priority grammar can be translated into a normal context free
grammar by introducing new nonterminals and productions.

Formally, a set of context free productions G induces a derivation relation
—¢. Let o and [denote strings of terminal or nonterminal symbols. Then

a AP —q ayp

if and only if G contains some production A@ =~ for p < g.

82

CHAPTER 7. DEFINING LOGICS 83

The following simple grammar for arithmetic expressions demonstrates
how binding power and associativity of operators can be enforced by priori-
ties.

A® = o

AO = (A0
A0 — 40 4 41
AQ) = AB) x 4@
AB) — - 40B)

The choice of priorities determines that - binds tighter than *, which binds
tighter than +. Furthermore + associates to the left and * to the right.
For clarity, grammars obey these conventions:

e All priorities must lie between 0 and max_pri, which is a some fixed
integer. Sometimes max_pri is written as oo.

Priority 0 on the right-hand side and priority max_pri on the left-hand
side may be omitted.

The production A®) = « is written as A = a (p); the priority of the
left-hand side actually appears in a column on the far right.

Alternatives are separated by |.

Repetition is indicated by dots (...) in an informal but obvious way.

Using these conventions and assuming co = 9, the grammar takes the
form

A =0
A
| A+ A0 (0)
| A® x4 (9)
|- a0 ®)

7.2 The Pure syntax

At the root of all object-logics lies the theory Pure. It contains, among many
other things, the Pure syntax. An informal account of this basic syntax
(types, terms and formulae) appears in Introduction to Isabelle. A more
precise description using a priority grammar appears in Fig.7.1. It defines
the following nonterminals:

CHAPTER 7. DEFINING LOGICS

any

prop

aprop

logic

1dts

odt

pttrns

ptirn

type

sort

prop | logic
(prop)
prop™@ ::
PROP aprop

type

any(3) =7= any(Q)

prop@ ==> prop®
LI prop ; ...
'l 4dts . prop

OFCLASS (type , logic)

id | longid | war
(logic)

logic™ :: type

id | longid | war
% pttrns . any®

TYPE (type)

idt | idt() idts

id | Cadt)

id :: type

pttrn | pttrn() pttrns

idt

(type)

tid | tvar | tid :: sort | tvar :: sort
id | type™) id | Ctype , ..., type) id
longid | type(™) longid | (type ,
type(l) => type

[type , ..., type 1 => type

id | longid | {3}

; prop 11 ==> prop™

logic'™) Cany , ...

logic(™) Cany , ...

Figure 7.1: Meta-logic syntax

, any)

, any)

..., type) longid

{id | longid,..., id | longid }

AA/_\/_\,_\
—
— — — — —

84

CHAPTER 7. DEFINING LOGICS 85

any denotes any term.

prop denotes terms of type prop. These are formulae of the meta-logic.
Note that user constants of result type prop (i.e. ¢ 1 ... = prop)
should always provide concrete syntax. Otherwise atomic propositions
with head ¢ may be printed incorrectly.

aprop denotes atomic propositions.
logic denotes terms whose type belongs to class logic, excluding type prop.
idts denotes a list of identifiers, possibly constrained by types.

pttrn, pttrns denote patterns for abstraction, cases etc. Initially the same
as idt and idts, these are intended to be augmented by user extensions.

type denotes types of the meta-logic.

sort denotes meta-level sorts.

! In idts, note that x::nat y is parsed as x::(nat y), treating y like a type
® constructor applied to nat. The likely result is an error message. To avoid this
interpretation, use parentheses and write (x::nat) y.

Similarly, x: :nat y::nat is parsed as x::(nat y::nat) and yields an error.
The correct form is (x::nat) (y::nat).

| Type constraints bind very weakly. For example, x<y: :nat is normally parsed
® as (x<y)::nat, unless < has priority of 3 or less, in which case the string is
likely to be ambiguous. The correct form is x<(y: :nat).

7.2.1 Logical types and default syntax

Isabelle’s representation of mathematical languages is based on the simply
typed A-calculus. All logical types, namely those of class logic, are auto-
matically equipped with a basic syntax of types, identifiers, variables, paren-
theses, A-abstraction and application.

| Isabelle combines the syntaxes for all types of class logic by mapping all
those types to the single nonterminal logic. Thus all productions of logic, in
particular id, var etc, become available.

CHAPTER 7. DEFINING LOGICS 86

7.2.2 Lexical matters

The parser does not process input strings directly. It operates on token lists
provided by Isabelle’s lexer. There are two kinds of tokens: delimiters and
name tokens.

Delimiters can be regarded as reserved words of the syntax. You can add
new ones when extending theories. In Fig. 7.1 they appear in typewriter font,
for example ==, =?= and PROP.

Name tokens have a predefined syntax. The lexer distinguishes six disjoint
classes of names: identifiers, unknowns, type identifiers, type unknowns,
numerals, strings. They are denoted by id, var, tid, tvar, num, xnum, xstr,
respectively. Typical examples are x, 7x7, *a, ?’a3, #42, > ’foo bar’’. Here
is the precise syntax:

id letter quasiletter™
longid id(.id)"
var ?id | 7id.nat
tid 2id
tvar ?tid | 7tid.nat
num nat | -nat
Tnum #nat | #-nat
xstr R
letter latin | \<latin> | \<latin latin> | greek |
\<"isub> | \<"isup>
quasiletter letter | digit | _ |’
latin al ... |z|A|...|Z
digit = 0| ... |9
nat digit™
greek \<alpha> | \<beta> | \<gamma> | \<delta> |

\<epsilon> | \<zeta> | \<eta> | \<theta> |
\<iota> | \<kappa> | \<mu> | \<nu> |

\<xi> | \<pi> | \<rho> | \<sigma> |

\<tau> | \<upsilon> | \<phi> | \<psi> |
\<omega> | \<Gamma> | \<Delta> | \<Theta> |
\<Lambda> | \<Xi> | \<Pi> | \<Sigma> |
\<Upsilon> | \<Phi> | \<Psi> | \<Omega>

CHAPTER 7. DEFINING LOGICS 87

The lexer repeatedly takes the longest prefix of the input string that forms a
valid token. A maximal prefix that is both a delimiter and a name is treated
as a delimiter. Spaces, tabs, newlines and formfeeds are separators; they
never occur within tokens, except those of class zstr.

Delimiters need not be separated by white space. For example, if - is
a delimiter but -- is not, then the string -- is treated as two consecutive
occurrences of the token -. In contrast, ML treats —-- as a single symbolic
name. The consequence of Isabelle’s more liberal scheme is that the same
string may be parsed in different ways after extending the syntax: after
adding -- as a delimiter, the input -- is treated as a single token.

A var or tvar describes an unknown, which is internally a pair of base
name and index (ML type indexname). These components are either sepa-
rated by a dot as in ?x.1 or ?x7.3 or run together as in ?x1. The latter
form is possible if the base name does not end with digits. If the index is 0,
it may be dropped altogether: ?x abbreviates both ?x0 and 7x.0.

Tokens of class num, znum or zstr are not used by the meta-logic. Object-
logics may provide numerals and string constants by adding appropriate pro-
ductions and translation functions.

Although name tokens are returned from the lexer rather than the parser,
it is more logical to regard them as nonterminals. Delimiters, however, are
terminals; they are just syntactic sugar and contribute nothing to the ab-
stract syntax tree.

7.2.3 *Inspecting the syntax

syn_of : theory -> Syntax.syntax
print_syntax : theory -> unit
Syntax.print_syntax : Syntax.syntax -> unit
Syntax.print_gram : Syntax.syntax -> unit
Syntax.print_trans : Syntax.syntax -> unit

The abstract type Syntax.syntax allows manipulation of syntaxes in ML.
You can display values of this type by calling the following functions:

syn_of thy returns the syntax of the Isabelle theory thy as an ML value.

print_syntax thy uses Syntax.print_syntax to display the syntax part
of theory thy.

Syntax.print_syntax syn shows virtually all information contained in the
syntax syn. The displayed output can be large. The following two
functions are more selective.

CHAPTER 7. DEFINING LOGICS 38

Syntax.print_gram syn shows the grammar part of syn, namely the lexi-
con, logical types and productions. These are discussed below.

Syntax.print_trans syn shows the translation part of syn, namely the con-
stants, parse/print macros and parse/print translations.

The output of the above print functions is divided into labelled sections.
The grammar is represented by lexicon, logtypes and prods. The rest
refers to syntactic translations and macro expansion. Here is an explanation
of the various sections.

lexicon lists the delimiters used for lexical analysis.

logtypes lists the types that are regarded the same as logic syntacti-
cally. Thus types of object-logics (e.g. nat, say) will be automatically
equipped with the standard syntax of A-calculus.

prods lists the productions of the priority grammar. The nonterminal A is
rendered in ASCII as A[n]. Each delimiter is quoted. Some productions
are shown with => and an attached string. These strings later become
the heads of parse trees; they also play a vital role when terms are
printed (see §8.1).

Productions with no strings attached are called copy productions.
Their right-hand side must have exactly one nonterminal symbol (or
name token). The parser does not create a new parse tree node for
copy productions, but simply returns the parse tree of the right-hand
symbol.

If the right-hand side consists of a single nonterminal with no delim-
iters, then the copy production is called a chain production. Chain
productions act as abbreviations: conceptually, they are removed from
the grammar by adding new productions. Priority information attached
to chain productions is ignored; only the dummy value —1 is displayed.

print_modes lists the alternative print modes provided by this syntax (see
§7.4).

consts, parse_rules, print_rules relate to macros (see §8.5).

parse_ast_translation, print_ast_translation list sets of constants
that invoke translation functions for abstract syntax trees. Section
§8.1 below discusses this obscure matter.

parse_translation, print_translation list the sets of constants that in-
voke translation functions for terms (see §8.6).

CHAPTER 7. DEFINING LOGICS 89

7.3 Mixfix declarations

When defining a theory, you declare new constants by giving their names,
their type, and an optional mixfix annotation. Mixfix annotations allow
you to extend Isabelle’s basic A-calculus syntax with readable notation. They
can express any context-free priority grammar. Isabelle syntax definitions are
inspired by oBJ [6]; they are more general than the priority declarations of
ML and Prolog.

A mixfix annotation defines a production of the priority grammar. It
describes the concrete syntax, the translation to abstract syntax, and the
pretty printing. Special case annotations provide a simple means of specifying
infix operators and binders.

7.3.1 The general mixfix form

Here is a detailed account of mixfix declarations. Suppose the following line
occurs within a consts or syntax section of a .thy file:

c :: "o" ("template" ps p)
This constant declaration and mixfix annotation are interpreted as follows:

e The string c is the name of the constant associated with the production;
unless it is a valid identifier, it must be enclosed in quotes. If ¢ is
empty (given as "") then this is a copy production. Otherwise, parsing
an instance of the phrase template generates the AST ("¢" a1 ... a,),
where a; is the AST generated by parsing the i-th argument.

e The constant ¢, if non-empty, is declared to have type o (consts section
only).

e The string template specifies the right-hand side of the production. It
has the form
Wp - Wy = ... = Wy,

where each occurrence of _ denotes an argument position and the wj;
do not contain _. (If you want a literal _ in the concrete syntax, you
must escape it as described below.) The w; may consist of delimiters,
spaces or pretty printing annotations (see below).

e The type o specifies the production’s nonterminal symbols (or name
tokens). If template is of the form above then ¢ must be a function
type with at least n argument positions, say o = [r,...,7,] = 7. Non-
terminal symbols are derived from the types 7y, ..., 7,, 7 as described
below. Any of these may be function types.

CHAPTER 7. DEFINING LOGICS 90

e The optional list ps may contain at most n integers, say [p;, ...,
Pm], where p; is the minimal priority required of any phrase that may
appear as the i-th argument. Missing priorities default to 0.

e The integer p is the priority of this production. If omitted, it defaults
to the maximal priority. Priorities range between 0 and max_pri (=
1000).

The resulting production is
AP =y APV wy AT AP,

where A and the A; are the nonterminals corresponding to the types 7 and
7; respectively. The nonterminal symbol associated with a type (...)ty is
logic, if this is a logical type (namely one of class logic excluding prop).
Otherwise it is ty (note that only the outermost type constructor is taken
into account). Finally, the nonterminal of a type variable is any.

| Theories must sometimes declare types for purely syntactic purposes — merely
* playing the role of nonterminals. One example is type, the built-in type of
types. This is a ‘type of all types’ in the syntactic sense only. Do not declare
such types under arities as belonging to class logic, for that would make them
useless as separate nonterminal symbols.

Associating nonterminals with types allows a constant’s type to specify
syntax as well. We can declare the function f to have type [r,...,7,] = T
and, through a mixfix annotation, specify the layout of the function’s n
arguments. The constant’s name, in this case f, will also serve as the label
in the abstract syntax tree.

You may also declare mixfix syntax without adding constants to the the-
ory’s signature, by using a syntax section instead of consts. Thus a pro-
duction need not map directly to a logical function (this typically requires
additional syntactic translations, see also Chapter 8).

As a special case of the general mixfix declaration, the form
¢ :: "o" ("template")

specifies no priorities. The resulting production puts no priority constraints
on any of its arguments and has maximal priority itself. Omitting priorities
in this manner is prone to syntactic ambiguities unless the production’s right-
hand side is fully bracketed, as in "if _ then _ else _ fi".

Omitting the mixfix annotation completely, as in ¢ :: "¢", is sensible
only if ¢ is an identifier. Otherwise you will be unable to write terms involv-

ing c.

CHAPTER 7. DEFINING LOGICS 91

7.3.2 Example: arithmetic expressions

This theory specification contains a syntax section with mixfix declarations
encoding the priority grammar from §7.1:

ExpSyntax = Pure +

types
exp
syntax
"O" :: exp (ro" 9
"+ :: [exp, exp]l => exp ("_ + _" [0, 1] 0)
"x" :: [exp, exp] => exp (m_*_" [3, 2] 2)
"-" i exp => exp ("= _" (3] 3)
end

Executing Syntax.print_gram reveals the productions derived from the
above mixfix declarations (lots of additional information deleted):

Syntax.print_gram (syn_of ExpSyntax.thy);
exp = non - => nom (9)

exp = exp[0] "+" exp[1] => "+" (0)
exp = exp[3] "¥" exp[2] => "x" (2)
exp = n_n exp[3] => n_n (3)

Note that because exp is not of class logic, it has been retained as a
separate nonterminal. This also entails that the syntax does not provide
for identifiers or paranthesized expressions. Normally you would also want
to add the declaration arities exp::logic after types and use consts
instead of syntax. Try this as an exercise and study the changes in the
grammar.

7.3.3 The mixfix template

Let us now take a closer look at the string template appearing in mixfix
annotations. This string specifies a list of parsing and printing directives:
delimiters, arguments, spaces, blocks of indentation and line breaks. These
are encoded by the following character sequences:

d is a delimiter, namely a non-empty sequence of characters other than the
special characters _, (,) and /. Even these characters may appear if
escaped; this means preceding it with a ’ (single quote). Thus you have
to write ’? if you really want a single quote. Furthermore, a ’ followed
by a space separates delimiters without extra white space being added
for printing.

is an argument position, which stands for a nonterminal symbol or name
token.

CHAPTER 7. DEFINING LOGICS 92

s is a non-empty sequence of spaces for printing. This and the following
specifications do not affect parsing at all.

(n opens a pretty printing block. The optional number n specifies how
much indentation to add when a line break occurs within the block. If
(is not followed by digits, the indentation defaults to 0.

) closes a pretty printing block.
// forces a line break.

/s allows a line break. Here s stands for the string of spaces (zero or more)
right after the / character. These spaces are printed if the break is not
taken.

For example, the template "(_ +/ _)" specifies an infix operator. There are
two argument positions; the delimiter + is preceded by a space and followed
by a space or line break; the entire phrase is a pretty printing block. Other
examples appear in Fig. 8.4 below. Isabelle’s pretty printer resembles the one
described in Paulson [14].

7.3.4 Infixes

Infix operators associating to the left or right can be declared using infixl

or infixr. Basically, the form ¢ :: ¢ (infixl p) abbreviates the mixfix
declarations

"op c¢" :: 0 ("(_ e/ " [p, p+11 p)

llop cll 1 o (llop cll)
and ¢ :: o (infixr p) abbreviates the mixfix declarations

"op c¢" o ("(Le/ D" [p+1, pl p

"Op C" s (’lop C")

The infix operator is declared as a constant with the prefix op. Thus, pre-
fixing infixes with op makes them behave like ordinary function symbols, as
in ML. Special characters occurring in ¢ must be escaped, as in delimiters,
using a single quote.

A slightly more general form of infix declarations allows constant names
to be independent from their concrete syntax, namely ¢ :: o (infixl "sy"
p), the same for infixr. As an example consider:

and :: [bool, bool] => bool (infixr "&" 35)

The internal constant name will then be just and, without any op prefixed.

CHAPTER 7. DEFINING LOGICS 93

7.3.5 Binders

A binder is a variable-binding construct such as a quantifier. The constant
declaration

¢ :: 0 (binder "Q" [pb] p)

introduces a constant ¢ of type o, which must have the form (7 =) = 73.
Its concrete syntax is @ z . P, where z is a bound variable of type 7, the
body P has type 7, and the whole term has type 73. The optional integer pb
specifies the body’s priority, by default p. Special characters in @ must be
escaped using a single quote.

The declaration is expanded internally to something like

c it (g => 1) => 73
"Q" :: [idts, 7] => T3 ("(39_./7)" [0, pb]l p)

Here idts is the nonterminal symbol for a list of identifiers with optional type
constraints (see Fig.7.1). The declaration also installs a parse translation
for Q and a print translation for ¢ to translate between the internal and
external forms.

A binder of type (¢ = 7) = 7 can be nested by giving a list of variables.
The external form Q z; 25 ...x, . P corresponds to the internal form

c(Azy . c(Azp c(Am, . P)...)).

For example, let us declare the quantifier V:

A1l :: (’a => 0) => o (binder "ALL " 10)

This lets us write Va . P as either A11(%z.P) or ALL z.P. When printing,
Isabelle prefers the latter form, but must fall back on A11(P) if P is not an
abstraction. Both P and ALL z.P have type o, the type of formulae, while
the bound variable can be polymorphic.

7.4 *Alternative print modes

Isabelle’s pretty printer supports alternative output syntaxes. These may
be used independently or in cooperation. The currently active print modes
(with precedence from left to right) are determined by a reference variable.

print_mode: string list ref

Initially this may already contain some print mode identifiers, depending
on how Isabelle has been invoked (e.g. by some user interface). So changes

CHAPTER 7. DEFINING LOGICS 94

should be incremental — adding or deleting modes relative to the current
value.

Any ML string is a legal print mode identifier, without any predeclaration
required. The following names should be considered reserved, though: "
(the empty string), symbols, xsymbols, and latex.

There is a separate table of mixfix productions for pretty printing as-
sociated with each print mode. The currently active ones are conceptually
just concatenated from left to right, with the standard syntax output table
always coming last as default. Thus mixfix productions of preceding modes
in the list may override those of later ones. Also note that token translations
are always relative to some print mode (see §8.7).

The canonical application of print modes is optional printing of mathe-
matical symbols from a special screen font instead of ASCIl. Another example
is to re-use Isabelle’s advanced A-term printing mechanisms to generate com-
pletely different output, say for interfacing external tools like model checkers
(see also HOL/Modelcheck).

7.5 Ambiguity of parsed expressions

To keep the grammar small and allow common productions to be shared all
logical types (except prop) are internally represented by one nonterminal,
namely logic. This and omitted or too freely chosen priorities may lead to
ways of parsing an expression that were not intended by the theory’s maker.
In most cases Isabelle is able to select one of multiple parse trees that an
expression has lead to by checking which of them can be typed correctly.
But this may not work in every case and always slows down parsing. The
warning and error messages that can be produced during this process are as
follows:

If an ambiguity can be resolved by type inference the following warn-
ing is shown to remind the user that parsing is (unnecessarily) slowed
down. In cases where it’s not easily possible to eliminate the ambiguity
the frequency of the warning can be controlled by changing the value of
Syntax.ambiguity_level which has type int ref. Its default value is 1
and by increasing it one can control how many parse trees are necessary to
generate the warning.

CHAPTER 7. DEFINING LOGICS 95

Ambiguous input "..."
produces the following parse trees:

Fortunately, only one parse tree is type correct.
You may still want to disambiguate your grammar or your input.

The following message is normally caused by using the same syntax in
two different productions:

Ambiguous input "...
produces the following parse trees:

More than one term is type correct:

Ambiguities occuring in syntax translation rules cannot be resolved by
type inference because it is not necessary for these rules to be type cor-
rect. Therefore Isabelle always generates an error message and the ambiguity
should be eliminated by changing the grammar or the rule.

7.6 Example: some minimal logics

This section presents some examples that have a simple syntax. They demon-
strate how to define new object-logics from scratch.

First we must define how an object-logic syntax is embedded into the
meta-logic. Since all theorems must conform to the syntax for prop (see
Fig.7.1), that syntax has to be extended with the object-level syntax. As-
sume that the syntax of your object-logic defines a meta-type o of formulae
which refers to the nonterminal logic. These formulae can now appear in
axioms and theorems wherever prop does if you add the production

prop = logic.

This is not supposed to be a copy production but an implicit coercion from
formulae to propositions:

Base = Pure +
types
o
arities
o :: logic
consts
Trueprop :: o => prop ("_" 5)
end

The constant Trueprop (the name is arbitrary) acts as an invisible coercion
function. Assuming this definition resides in a file Base.thy, you have to
load it with the command use_thy "Base'.

CHAPTER 7. DEFINING LOGICS 96

One of the simplest nontrivial logics is minimal logic of implication. Its
definition in Isabelle needs no advanced features but illustrates the overall
mechanism nicely:

Hilbert = Base +

consts
"——>" :: [0, o] => o (infixr 10)
rules
K "Pp ——> Q --> p"
S " -->Q --—>R) ——> P -->Q) -—>P -—>R"
MP "I P-—>Q; P |] ==>Q"
end

After loading this definition from the file Hilbert. thy, you can start to prove
theorems in the logic:

Goal "P --> P";

Level 0
P -->P
1. P -->P
by (resolve_tac [Hilbert.MP] 1);
Level 1
pPp-->P
1. ?P --> P --> P
2. 7P
by (resolve_tac [Hilbert.MP] 1);
Level 2
P -->P
1. ?P1 --> ?P --> P --> P
2. 7P1
3. 7P
by (resolve_tac [Hilbert.S] 1);
Level 3
pPp-->P

1. P --> 72 --> P
2. P --> 72
by (resolve_tac [Hilbert.K] 1);
Level 4
P -->P
1. P --> 7Q2
by (resolve_tac [Hilbert.K] 1);
Level 5
P -->P
No subgoals!

As we can see, this Hilbert-style formulation of minimal logic is easy to define
but difficult to use. The following natural deduction formulation is better:

CHAPTER 7. DEFINING LOGICS 97

MinI = Base +
consts
"——>" :: [0, o] => o (infixr 10)
rules
impI "(P ==> Q) ==> P --> Q"
impE "[| P -=> Q; P [] ==> Q"
end

Note, however, that although the two systems are equivalent, this fact cannot
be proved within Isabelle. Axioms S and K can be derived in MinI (exercise!),
but impI cannot be derived in Hilbert. The reason is that impI is only an
admissible rule in Hilbert, something that can only be shown by induction
over all possible proofs in Hilbert.

We may easily extend minimal logic with falsity:

MinIF = MinI +

consts

False :: o
rules

FalseE "False ==> P"
end

On the other hand, we may wish to introduce conjunction only:

MinC = Base +
consts
"&" :: [o, o] => o (infixr 30)
rules
conjI "[| P; Q |] ==>P&qQ"
conjEl "P & Q ==> P"
conjE2 "P & Q ==> Q"
end

And if we want to have all three connectives together, we create and load a
theory file consisting of a single line:

MinIFC = MinIF + MinC

Now we can prove mixed theorems like

Goal "P & False -—> Q";

by (resolve_tac [MinI.impI] 1);

by (dresolve_tac [MinC.conjE2] 1);
by (eresolve_tac [MinIF.FalseE] 1);

Try this as an exercise!

Chapter 8

Syntax Transformations

This chapter is intended for experienced Isabelle users who need to define
macros or code their own translation functions. It describes the transforma-
tions between parse trees, abstract syntax trees and terms.

8.1 Abstract syntax trees

The parser, given a token list from the lexer, applies productions to yield a
parse tree. By applying some internal transformations the parse tree becomes
an abstract syntax tree, or AST. Macro expansion, further translations and
finally type inference yields a well-typed term. The printing process is the
reverse, except for some subtleties to be discussed later.

Figure 8.1 outlines the parsing and printing process. Much of the com-
plexity is due to the macro mechanism. Using macros, you can specify most
forms of concrete syntax without writing any ML code.

Abstract syntax trees are an intermediate form between the raw parse
trees and the typed A-terms. An AST is either an atom (constant or variable)
or a list of at least two subtrees. Internally, they have type Syntax.ast:

datatype ast = Constant of string

| Variable of string
| Appl of ast list

[sabelle uses an S-expression syntax for abstract syntax trees. Constant
atoms are shown as quoted strings, variable atoms as non-quoted strings and
applications as a parenthesised list of subtrees. For example, the AST

Appl [Constant "_constrain",
Appl [Constant "_abs", Variable "x", Variable "t"],
Appl [Constant "fun", Variable "’a", Variable "’b"]]

is shown as ("_constrain" ("_abs" x t) ("fun" ’a ’b)). Both () and
(£) are illegal because they have too few subtrees.

The resemblance to Lisp’s S-expressions is intentional, but there are two
kinds of atomic symbols: Constantz and Variablez. Do not take the

98

CHAPTER 8. SYNTAX TRANSFORMATIONS 99

string
1 lexer, parser
parse tree
! parse AST translation
AST
! AST rewriting (macros)
AST
! parse translation, type inference
— well-typed term —
1 print translation
AST
! AST rewriting (macros)
AST
! print AST translation, token translation
string

Figure 8.1: Parsing and printing

names Constant and Variable too literally; in the later translation to terms,
Variable z may become a constant, free or bound variable, even a type
constructor or class name; the actual outcome depends on the context.

Similarly, you can think of (f z; ... z,) as the application of f to the
arguments zj,...,x,. But the kind of application is determined later by
context; it could be a type constructor applied to types.

Forms like (("_abs" x t) u) are legal, but ASTs are first-order: the
"_abs" does not bind the x in any way. Later at the term level, ("_abs"
x t) will become an Abs node and occurrences of x in ¢ will be replaced by
bound variables (the term constructor Bound).

8.2 Transforming parse trees to AST's

The parse tree is the raw output of the parser. Translation functions, called
parse AST translations, transform the parse tree into an abstract syntax
tree.

The parse tree is constructed by nesting the right-hand sides of the pro-
ductions used to recognize the input. Such parse trees are simply lists of
tokens and constituent parse trees, the latter representing the nonterminals
of the productions. Let us refer to the actual productions in the form dis-
played by print_syntax (see §6.4.3 for an example).

CHAPTER 8. SYNTAX TRANSFORMATIONS 100

input string AST

g £

g ‘a

" == u" ("=="t u)

"f(x)" ("_appl" f x)

"f(x, y)" ("_appl" f ("_args" x y))

"f(x, y, z)" ("_appl" f ("_args" x ("_args" y z)))
"hx y. t" ("_lambda" ("_idts" x y) t)

Figure 8.2: Parsing examples using the Pure syntax

Ignoring parse AST translations, parse trees are transformed to ASTs by
stripping out delimiters and copy productions. More precisely, the mapping
[—] is derived from the productions as follows:

e Name tokens: [t] = Variables, where ¢ is an id, var, tid, tvar, num,
xnum or xstr token, and s its associated string. Note that for xstr
this does not include the quotes.

e Copy productions: [...P...] = [P]. Here ... stands for strings of
delimiters, which are discarded. P stands for the single constituent
that is not a delimiter; it is either a nonterminal symbol or a name
token.

e (O-ary productions: [...=>c] = Constant c. Here there are no con-
stituents other than delimiters, which are discarded.

e n-ary productions, where n > 1: delimiters are discarded and the
remaining constituents Py, ..., P, are built into an application whose
head constant is c:

[...P1...P,...=>c] = Appl [Constant ¢, [P1], ..., [P.]]

Figure 8.2 presents some simple examples, where ==, _appl, _args, and so
forth name productions of the Pure syntax. These examples illustrate the
need for further translations to make ASTs closer to the typed A-calculus.
The Pure syntax provides predefined parse AST translations for ordinary
applications, type applications, nested abstractions, meta implications and
function types. Figure 8.3 shows their effect on some representative input
strings.

The names of constant heads in the AST control the translation process.
The list of constants invoking parse AST translations appears in the output
of print_syntax under parse_ast_translation.

CHAPTER 8. SYNTAX TRANSFORMATIONS 101

input string AST

"f(x, y, z)" (f xy 2)

n)a ty" (ty :a)

n(;a,)b) ty" (ty ;a)b)

"%X y z. t" ("_abs" X ("_abs" y ("_abs" = t)))
"%x :: ’a. t" ("_abs" ("_constrain" x ’a) t)

ll[l P’ Q’ R |:| => gn" (n==>|| P (||==>u Q (||==>n R S)))
n[;a’)b, ,C] => gq" ("fun" ’a ("fun" ’b ("fun" ‘e)d)))

Figure 8.3: Built-in parse AST translations

8.3 Transforming ASTs to terms

The AST, after application of macros (see §8.5), is transformed into a term.
This term is probably ill-typed since type inference has not occurred yet.
The term may contain type constraints consisting of applications with head
"_constrain"; the second argument is a type encoded as a term. Type
inference later introduces correct types or rejects the input.

Another set of translation functions, namely parse translations, may affect
this process. If we ignore parse translations for the time being, then ASTs are
transformed to terms by mapping AST constants to constants, AST variables
to schematic or free variables and AST applications to applications.

More precisely, the mapping [—] is defined by

e Constants: [Constant z] = Const(z,dummyT).

e Schematic variables: [Variable "?x:"] = Var((z, ¢), dummyT), where
is the base name and 7 the index extracted from wi.

e Lree variables: [Variable z] = Free(z, dummyT).

e Function applications with n arguments:

Here Const, Var, Free and $ are constructors of the datatype term, while
dummyT stands for some dummy type that is ignored during type inference.
So far the outcome is still a first-order term. Abstractions and bound
variables (constructors Abs and Bound) are introduced by parse translations.
Such translations are attached to "_abs", "!!" and user-defined binders.

CHAPTER 8. SYNTAX TRANSFORMATIONS 102

8.4 Printing of terms

The output phase is essentially the inverse of the input phase. Terms are
translated via abstract syntax trees into strings. Finally the strings are
pretty printed.

Print translations (§8.6) may affect the transformation of terms into ASTSs.
Ignoring those, the transformation maps term constants, variables and appli-
cations to the corresponding constructs on ASTs. Abstractions are mapped
to applications of the special constant _abs.

More precisely, the mapping [—] is defined as follows:

e [Const(z,7)] = Constant z.

[Free(z,T)] = constrain(Variable z, 7).

[Var((z,4),7)] = constrain(Variable "?x:", 7), where ?zi is the string
representation of the indexname (z, 7).

e For the abstraction Az :: 7. ¢, let 2/ be a variant of z renamed to
differ from all names occurring in ¢, and let ¢ be obtained from ¢
by replacing all bound occurrences of = by the free variable z’. This
replaces corresponding occurrences of the constructor Bound by the
term Free(z’, dummyT):

[Abs(z,T,t)] = Appl [Constant "_abs", constrain(Variable z’, 7), [¢]]
e [Boundi] = Variable"B.:". The occurrence of constructor Bound

should never happen when printing well-typed terms; it indicates a de
Bruijn index with no matching abstraction.

e Where f is not an application,
[f$2:8...8z]=appl[[f] [m] -, [2]]

Type constraints are inserted to allow the printing of types. This is governed
by the boolean variable show_types:

e constrain(z,7) = x if 7 = dummyT or show_types is set to false.

e constrain(z,T) = Appl [Constant "_constrain", z, [7]] otherwise.

Here, [7] is the AST encoding of 7: type constructors go to Constants;
type identifiers go to Variables; type applications go to Appls with
the type constructor as the first element. If show_sorts is set to true,
some type variables are decorated with an AST encoding of their sort.

CHAPTER 8. SYNTAX TRANSFORMATIONS 103

The AST, after application of macros (see §8.5), is transformed into the final
output string. The built-in print AST translations reverse the parse AST
translations of Fig. 8.3.

For the actual printing process, the names attached to productions of
the form ... Agpl) ... AlP) =>¢ play a vital role. Each AST with constant
head ¢, namely "¢" or ("¢" 21 ...1,), is printed according to the production
for ¢. Each argument z; is converted to a string, and put in parentheses if
its priority (p;) requires this. The resulting strings and their syntactic sugar
(denoted by ... above) are joined to make a single string.

If an application ("¢" z; ... z,,) has more arguments than the correspond-
ing production, it is first split into (("¢" 2y ...2,) Tpy1 ... Tn). Applications
with too few arguments or with non-constant head or without a correspond-
ing production are printed as f(z,...,2) or (aq,...,a;)ty. Multiple pro-
ductions associated with some name ¢ are tried in order of appearance. An
occurrence of Variable z is simply printed as z.

Blanks are not inserted automatically. If blanks are required to sepa-
rate tokens, specify them in the mixfix declaration, possibly preceded by a
slash (/) to allow a line break.

8.5 Macros: syntactic rewriting

Mixfix declarations alone can handle situations where there is a direct con-
nection between the concrete syntax and the underlying term. Sometimes we
require a more elaborate concrete syntax, such as quantifiers and list nota-
tion. Isabelle’s macros and translation functions can perform translations
such as

ALL x:A.P
[x, y, z]

= Ball(A, %x.P)
= Cons(x, Cons(y, Cons(z, Nil)))
Translation functions (see §8.6) must be coded in ML; they are the most
powerful translation mechanism but are difficult to read or write. Macros
are specified by first-order rewriting systems that operate on abstract syntax
trees. They are usually easy to read and write, and can express all but the
most obscure translations.

Figure 8.4 defines a fragment of first-order logic and set theory.! Theory
SetSyntax declares constants for set comprehension (Collect), replacement
(Replace) and bounded universal quantification (Ball). Each of these binds

!This and the following theories are complete working examples, though they specify
only syntax, no axioms. The file ZF/ZF . thy presents a full set theory definition, including
many macro rules.

CHAPTER 8. SYNTAX TRANSFORMATIONS 104

SetSyntax = Pure +

types
io
arities
i, o :: logic
consts
Trueprop 1 0 => prop ("_" 5)
Collect :0 [i, 1 => 0] => i
Replace i [i, [i, 41 => o]l => i
Ball :: [, 1 => 0] => o
syntax
"@Collect" 20 [idt, i, o] => i CECR RNV D)
"@Replace" :: [idt, idt, i, o] => i Ma{./ i, 2"
"@Ball" 0 [idt, i, o] => o ("(3ALL _:_./)" 10)
translations
"{x:A. P}" == "Collect(A, %x. P)"
"{y. x:A, Q}" == "Replace(4, Jx y. Q"
"ALL x:A. P" == "Ball(A, %x. P)"
end

Figure 8.4: Macro example: set theory

some variables. Without additional syntax we should have to write Vo € A.P
as Ball(A,%x.P), and similarly for the others.

The theory specifies a variable-binding syntax through additional produc-
tions that have mixfix declarations. Each non-copy production must specify
some constant, which is used for building AsTs. The additional constants
are decorated with @ to stress their purely syntactic purpose; they may not
occur within the final well-typed terms, being declared as syntax rather than
consts.

The translations cause the replacement of external forms by internal forms
after parsing, and vice versa before printing of terms. As a specification of the
set theory notation, they should be largely self-explanatory. The syntactic
constants, @Collect, @Replace and @Ball, appear implicitly in the macro
rules via their mixfix forms.

Macros can define variable-binding syntax because they operate on ASTs,
which have no inbuilt notion of bound variable. The macro variables x and y
have type idt and therefore range over identifiers, in this case bound vari-
ables. The macro variables P and Q range over formulae containing bound
variable occurrences.

Other applications of the macro system can be less straightforward, and
there are peculiarities. The rest of this section will describe in detail how
Isabelle macros are preprocessed and applied.

CHAPTER 8. SYNTAX TRANSFORMATIONS 105

8.5.1 Specifying macros

Macros are basically rewrite rules on ASTs. But unlike other macro systems
found in programming languages, Isabelle’s macros work in both directions.
Therefore a syntax contains two lists of rewrites: one for parsing and one for
printing.

The translations section specifies macros. The syntax for a macro is

=>
(root) string <= (root) string

This specifies a parse rule (=>), a print rule (<=), or both (==). The two
strings specify the left and right-hand sides of the macro rule. The (root)
specification is optional; it specifies the nonterminal for parsing the string
and if omitted defaults to logic. AST rewrite rules (I, 7) must obey certain
conditions:

e Rules must be left linear: [must not contain repeated variables.

e Every variable in r must also occur in /.

Macro rules may refer to any syntax from the parent theories. They may
also refer to anything defined before the current translations section —
including any mixfix declarations.

Upon declaration, both sides of the macro rule undergo parsing and parse
AST translations (see §8.1), but do not themselves undergo macro expansion.
The lexer runs in a different mode that additionally accepts identifiers of the
form - letter quasiletter* (like _idt, _K). Thus, a constant whose name starts
with an underscore can appear in macro rules but not in ordinary terms.

Some atoms of the macro rule’s AST are designated as constants for match-
ing. These are all names that have been declared as classes, types or constants
(logical and syntactic).

The result of this preprocessing is two lists of macro rules, each stored as a
pair of ASTs. They can be viewed using print_syntax (sections parse_rules
and print_rules). For theory SetSyntax of Fig. 8.4 these are

parse_rules:
("@Collect" x A P) -> ("Collect" A ("_abs" x P))
("@Replace" y x A Q) -> ("Replace" A ("_abs" x ("_abs" y Q)))
("@Ball" x A P) -> ("Ball" A ("_abs" x P))

print_rules:
("Collect" A ("_abs" x P)) -> ("@Collect" x A P)
("Replace" A ("_abs" x ("_abs" y Q))) -> ("OReplace" y x A Q)
("Ball" A ("_abs" x P)) -> ("@Ball" x A P)

CHAPTER 8. SYNTAX TRANSFORMATIONS 106

' Avoid choosing variable names that have previously been used as constants,

types or type classes; the consts section in the output of print_syntax lists all
such names. If a macro rule works incorrectly, inspect its internal form as shown
above, recalling that constants appear as quoted strings and variables without
quotes.

| If eta_contract is set to true, terms will be n-contracted before the AST

rewriter sees them. Thus some abstraction nodes needed for print rules to
match may vanish. For example, Ball(A, %x. P(x)) contracts to Ball(A, P);
the print rule does not apply and the output will be Ball(A, P). This problem
would not occur if ML translation functions were used instead of macros (as is done
for binder declarations).

| Another trap concerns type constraints. If show_types is set to true, bound

variables will be decorated by their meta types at the binding place (but not
at occurrences in the body). Matching with Collect(A, %x. P) binds x to some-
thing like ("_constrain" y "i") rather than only y. AST rewriting will cause
the constraint to appear in the external form, say {y::i:A::i. P::o}.

To allow such constraints to be re-read, your syntax should specify bound
variables using the nonterminal idt. This is the case in our example. Choosing
id instead of idt is a common error.

8.5.2 Applying rules

As a term is being parsed or printed, an AST is generated as an intermediate
form (recall Fig.8.1). The AST is normalised by applying macro rules in the
manner of a traditional term rewriting system. We first examine how a single
rule is applied.

Let ¢ be the abstract syntax tree to be normalised and ([, r) some trans-
lation rule. A subtree u of ¢ is a redex if it is an instance of [; in this case
[is said to match u. A redex matched by [may be replaced by the corre-
sponding instance of r, thus rewriting the AST ¢. Matching requires some
notion of place-holders that may occur in rule patterns but not in ordinary
ASTs; Variable atoms serve this purpose.

The matching of the object u by the pattern [is performed as follows:

e Every constant matches itself.

e Variablez in the object matches Constant z in the pattern. This
point is discussed further below.

e Every AST in the object matches Variable z in the pattern, binding z
to u.

CHAPTER 8. SYNTAX TRANSFORMATIONS 107

e One application matches another if they have the same number of sub-
trees and corresponding subtrees match.

e In every other case, matching fails. In particular, Constant z can only
match itself.

A successful match yields a substitution that is applied to r, generating the
instance that replaces u.

The second case above may look odd. This is where Variables of non-
rule ASTs behave like Constants. Recall that ASTs are not far removed from
parse trees; at this level it is not yet known which identifiers will become
constants, bounds, frees, types or classes. As §8.1 describes, former parse
tree heads appear in ASTs as Constants, while the name tokens id, var, tid,
tvar, num, xnum and xstr become Variables. On the other hand, when ASTs
generated from terms for printing, all constants and type constructors become
Constants; see §8.1. Thus ASTs may contain a messy mixture of Variables
and Constants. This is insignificant at macro level because matching treats
them alike.

Because of this behaviour, different kinds of atoms with the same name
are indistinguishable, which may make some rules prone to misbehaviour.
Example:

types
Nil
consts
Nil 1 ’a list
syntax
n[]n .. ;a 11St (n[]n)
translations
" == "Nil"

The term Nil will be printed as [], just as expected. The term %Nil.t will
be printed as %[] .t, which might not be expected! Guess how type Nil is
printed?

Normalizing an AST involves repeatedly applying macro rules until none
are applicable. Macro rules are chosen in order of appearance in the theory
definitions. You can watch the normalization of ASTs during parsing and
printing by setting Syntax.trace_ast to true. The information displayed
when tracing includes the AST before normalization (pre), redexes with re-
sults (rewrote), the normal form finally reached (post) and some statistics
(normalize).

CHAPTER 8. SYNTAX TRANSFORMATIONS 108

8.5.3 Example: the syntax of finite sets

This example demonstrates the use of recursive macros to implement a con-
venient notation for finite sets.

FinSyntax = SetSyntax +

types
is
syntax
o i i = is ™_"
"@Enum" :: [1, is] => is Mm_,/ _"
consts
empty | {3
insert :: [i, i] => i
syntax
"Q@Finset" irois => i LM
translations
"{x, xs}" == "insert(x, {xs})"
n{x" == "insert(x, {})"
end

Finite sets are internally built up by empty and insert. The declarations
above specify {x, y, z} as the external representation of

insert(x, insert(y, insert(z, empty)))

The nonterminal symbol is stands for one or more objects of type i separated
by commas. The mixfix declaration "_,/ _" allows a line break after the
comma for pretty printing; if no line break is required then a space is printed
instead.

The nonterminal is declared as the type is, but with no arities dec-
laration. Hence is is not a logical type and may be used safely as a new
nonterminal for custom syntax. The nonterminal is can later be re-used for
other enumerations of type i like lists or tuples. If we had needed polymor-
phic enumerations, we could have used the predefined nonterminal symbol
args and skipped this part altogether.

Next follows empty, which is already equipped with its syntax {}, and
insert without concrete syntax. The syntactic constant @Finset provides
concrete syntax for enumerations of i enclosed in curly braces. Remember
that a pair of parentheses, as in "{(_) }", specifies a block of indentation for
pretty printing.

The translations may look strange at first. Macro rules are best under-
stood in their internal forms:

CHAPTER 8. SYNTAX TRANSFORMATIONS 109

parse_rules:
("@Finset" ("@Enum" x xs)) -> ("insert" x ("@Finset" xs))
("@Finset" x) -> ("insert" x "empty")

print_rules:
("insert" x ("@Finset" xs)) -> ("@Finset" ("@Enum" x xs))
("insert" x "empty") -> ("@Finset" x)

This shows that {x,xs} indeed matches any set enumeration of at least two
elements, binding the first to x and the rest to xs. Likewise, {xs} and {x}
represent any set enumeration. The parse rules only work in the order given.

| The AST rewriter cannot distinguish constants from variables and looks only
® for names of atoms. Thus the names of Constants occurring in the (internal)
left-hand side of translation rules should be regarded as reserved words. Choose
non-identifiers like @Finset or sufficiently long and strange names. If a bound
variable’s name gets rewritten, the result will be incorrect; for example, the term

%empty insert. insert(x, empty)

is incorrectly printed as %empty insert. {x}.

8.5.4 Example: a parse macro for dependent types

As stated earlier, a macro rule may not introduce new Variables on the
right-hand side. Something like "K(B)" => "%x.B" is illegal; if allowed, it
could cause variable capture. In such cases you usually must fall back on
translation functions. But a trick can make things readable in some cases:
calling translation functions by parse macros:

ProdSyntax = SetSyntax +

consts
Pi i [, 1i=>1i] => 1
syntax
"@PROD" 20 [ddt, i, il => 1 ("(3PROD _:_./ _)" 10)
ng->" e [1, 1] => i ("(_ —>/ _)" [51, 50] 50)
translations
"PROD x:A. B" => "Pi(A, %x. B)"
"A -> B" => "Pi(A, _K(B))"
end
ML

val print_translation = [("Pi", dependent_tr’ ("@PROD", "@->"))];

Here Pi is a logical constant for constructing general products. Two
external forms exist: the general case PROD x:A.B and the function space A
-> B, which abbreviates Pi(A, %x.B) when B does not depend on x.

CHAPTER 8. SYNTAX TRANSFORMATIONS 110

The second parse macro introduces _K(B), which later becomes %x.B due
to a parse translation associated with _K. Unfortunately there is no such
trick for printing, so we have to add a ML section for the print translation
dependent_tr’.

Recall that identifiers with a leading _ are allowed in translation rules,
but not in ordinary terms. Thus we can create ASTs containing names that
are not directly expressible.

The parse translation for _K is already installed in Pure, and the function
dependent_tr’ is exported by the syntax module for public use. See §8.6
below for more of the arcane lore of translation functions.

8.6 Translation functions

This section describes the translation function mechanism. By writing ML
functions, you can do almost everything to terms or ASTs during parsing
and printing. The logic LK is a good example of sophisticated transforma-
tions between internal and external representations of sequents; here, macros
would be useless.

A full understanding of translations requires some familiarity with Isa-
belle’s internals, especially the datatypes term, typ, Syntax.ast and the
encodings of types and terms as such at the various stages of the parsing or
printing process. Most users should never need to use translation functions.

8.6.1 Declaring translation functions

There are four kinds of translation functions, with one of these coming in two
variants. Each such function is associated with a name, which triggers calls
to it. Such names can be constants (logical or syntactic) or type constructors.

Function print_syntax displays the sets of names associated with the
translation functions of a theory under parse_ast_translation, etc. You
can add new ones via the ML section of a theory definition file. Even though
the ML section is the very last part of the file, newly installed translation
functions are already effective when processing all of the preceding sections.

The ML section’s contents are simply copied verbatim near the beginning
of the ML file generated from a theory definition file. Definitions made here
are accessible as components of an ML structure; to make some parts private,
use an ML local declaration. The ML code may install translation functions
by declaring any of the following identifiers:

CHAPTER 8. SYNTAX TRANSFORMATIONS 111

val parse_ast_translation : (string * (ast list -> ast)) list
val print_ast_translation : (string * (ast list -> ast)) list
val parse_translation : (string * (term list -> term)) list
val print_translation : (string * (term list -> term)) list

val typed_print_translation :
(string * (bool -> typ -> term list -> term)) list

8.6.2 The translation strategy

The different kinds of translation functions are called during the transfor-
mations between parse trees, ASTs and terms (recall Fig.8.1). Whenever
a combination of the form ("¢" z;...x,) is encountered, and a translation
function f of appropriate kind exists for ¢, the result is computed by the ML
function call f[xy,...,z,].

For AST translations, the arguments i, ..., z, are ASTs. A combination
has the form Constant ¢ or Appl [Constant ¢, 1, ..., 2,]. For term transla-
tions, the arguments are terms and a combination has the form Const(c, 7)
or Const(c,7) $ 21 $... $ x,. Terms allow more sophisticated transfor-
mations than ASTs do, typically involving abstractions and bound variables.
Typed print translations may even peek at the type 7 of the constant they are
invoked on; they are also passed the current value of the show_sorts flag.

Regardless of whether they act on terms or ASTs, translation functions
called during the parsing process differ from those for printing more funda-
mentally in their overall behaviour:

Parse translations are applied bottom-up. The arguments are already in
translated form. The translations must not fail; exceptions trigger an
error message. There may never be more than one function associated
with any syntactic name.

Print translations are applied top-down. They are supplied with argu-
ments that are partly still in internal form. The result again undergoes
translation; therefore a print translation should not introduce as head
the very constant that invoked it. The function may raise exception
Match to indicate failure; in this event it has no effect. Multiple func-
tions associated with some syntactic name are tried in an unspecified
order.

Only constant atoms — constructor Constant for ASTs and Const for
terms — can invoke translation functions. This causes another difference
between parsing and printing.

Parsing starts with a string and the constants are not yet identified.
Only parse tree heads create Constants in the resulting AST, as described in

CHAPTER 8. SYNTAX TRANSFORMATIONS 112

§8.2. Macros and parse AST translations may introduce further Constants.
When the final AST is converted to a term, all Constants become Consts, as
described in §8.3.

Printing starts with a well-typed term and all the constants are known.
So all logical constants and type constructors may invoke print translations.
These, and macros, may introduce further constants.

8.6.3 Example: a print translation for dependent types

Let us continue the dependent type example (page 109) by examining the
parse translation for _K and the print translation dependent_tr’, which are
both built-in. By convention, parse translations have names ending with _tr
and print translations have names ending with _tr’. Search for such names
in the Isabelle sources to locate more examples.

Here is the parse translation for _K:

fun k_tr [t] = Abs ("x", dummyT, incr_boundvars 1 t)
| k_tr ts = raise TERM ("k_tr", ts);

If k_tr is called with exactly one argument ¢, it creates a new Abs node
with a body derived from ¢. Since terms given to parse translations are
not yet typed, the type of the bound variable in the new Abs is simply
dummyT. The function increments all Bound nodes referring to outer abstrac-
tions by calling incr_boundvars, a basic term manipulation function defined
in Pure/term.ML.
Here is the print translation for dependent types:
fun dependent_tr’ (q, r) (A :: Abs (x, T, B) :: ts) =
if 0 mem (loose_bnos B) then
let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B) in
list_comb

(Const (q,dummyT) $
Syntax.mark_boundT (x’,T) $ A $ B’, ts)

end
else list_comb (Const (r, dummyT) $ A $ B, ts)
| dependent_tr’ _ _ = raise Match;

The argument (q, r) is supplied to the curried function dependent_tr’ by
a partial application during its installation. For example, we could set up
print translations for both Pi and Sigma by including

val print_translation =

[("Pi", dependent_tr’ ("@PROD", "@->")),
("Sigma", dependent_tr’ ("@SUM", "@*"))];

within the ML section. The first of these transforms Pi(A, Abs(z, T, B)) into
@PROD(z', A, B') or @->(A, B), choosing the latter form if B does not de-

CHAPTER 8. SYNTAX TRANSFORMATIONS 113

pend on z. It checks this using loose_bnos, yet another function from
Pure/term.ML. Note that 2’ is a version of x renamed away from all names
in B, and B’ is the body B with Bound nodes referring to the Abs node
replaced by Free(z', dummyT) (but marked as representing a bound variable).

We must be careful with types here. While types of Consts are ignored,
type constraints may be printed for some Frees and Vars if show_types is set

to true. Variables of type dummyT are never printed with constraint, though.
The line

let val (x’, B’) = Syntax.variant_abs’ (x, dummyT, B);

replaces bound variable occurrences in B by the free variable z’ with type
dummyT. Only the binding occurrence of z’ is given the correct type T, so this
is the only place where a type constraint might appear.

Also note that we are responsible to mark free identifiers that actually
represent bound variables. This is achieved by Syntax.variant_abs’ and
Syntax.mark_boundT above. Failing to do so may cause these names to be
printed in the wrong style.

8.7 Token translations

Isabelle’s meta-logic features quite a lot of different kinds of identifiers,
namely class, tfree, tvar, free, bound, var. One might want to have these
printed in different styles, e.g. in bold or italic, or even transcribed into
something more readable like «, o/, 5 instead of ’a, ’aa, ’b for type vari-
ables. Token translations provide a means to such ends, enabling the user
to install certain ML functions associated with any logical token class and
depending on some print mode.

The logical class of identifiers can not necessarily be determined by its
syntactic category, though. For example, consider free vs. bound variables.
So Isabelle’s pretty printing mechanism, starting from fully typed terms,
has to be careful to preserve this additional information®. In particular,
user-supplied print translation functions operating on terms have to be well-
behaved in this respect. Free identifiers introduced to represent bound vari-
ables have to be marked appropriately (cf. the example at the end of §8.6).

Token translations may be installed by declaring the token_translation
value within the ML section of a theory definition file:

2This is done by marking atoms in abstract syntax trees appropriately. The marks are
actually visible by print translation functions — they are just special constants applied to
atomic asts, for example ("_bound" x).

CHAPTER 8. SYNTAX TRANSFORMATIONS 114

val token_translation:
(string * string * (string -> string * real)) list

The elements of this list are of the form (m, ¢, f), where m is a print mode
identifier, ¢ a token class, and f: string — string X real the actual translation
function. Assuming that z is of identifier class ¢, and print mode m is the first
(active) mode providing some translation for ¢, then z is output according to
f(z) = (2',len). Thereby '’ is the modified identifier name and len its visual
length in terms of characters (e.g. length 1.0 would correspond to 1/2em in
ITEX). Thus 2’ may include non-printing parts like control sequences or
markup information for typesetting systems.

Chapter 9

Substitution Tactics

Replacing equals by equals is a basic form of reasoning. Isabelle supports
several kinds of equality reasoning. Substitution means replacing free oc-
currences of ¢ by v in a subgoal. This is easily done, given an equality ¢t = u,
provided the logic possesses the appropriate rule. The tactic hyp_subst_tac
performs substitution even in the assumptions. But it works via object-level
implication, and therefore must be specially set up for each suitable object-
logic.

Substitution should not be confused with object-level rewriting. Given
equalities of the form ¢ = u, rewriting replaces instances of ¢ by corresponding
instances of u, and continues until it reaches a normal form. Substitution
handles ‘one-off” replacements by particular equalities while rewriting handles
general equations. Chapter 10 discusses Isabelle’s rewriting tactics.

9.1 Substitution rules

Many logics include a substitution rule of the form
[7a = ;7P (%a)] = "P(7) (subst)

In backward proof, this may seem difficult to use: the conclusion 7P(7)
admits far too many unifiers. But, if the theorem eqth asserts ¢t = wu, then
eqth RS subst is the derived rule

WP(t) = P (u).

Provided « is not an unknown, resolution with this rule is well-behaved.! To
replace u by t in subgoal 7, use

resolve_tac [eqth RS subst] i.

To replace t by u in subgoal 7, use

Unifying ?P(u) with a formula @ expresses @ in terms of its dependence upon u.
There are still 2% unifiers, if Q has k occurrences of u, but Isabelle ensures that the first
unifier includes all the occurrences.

115

CHAPTER 9. SUBSTITUTION TACTICS 116

resolve_tac [eqth RS ssubst] i,

where ssubst is the ‘swapped’ substitution rule
[7a = 76; 7P ()] = 7P (7a). (ssubst)

If sym denotes the symmetry rule 7a = % = 7 = %a, then ssubst is
just sym RS subst. Many logics with equality include the rules subst and
ssubst, as well as refl, sym and trans (for the usual equality laws). Ex-
amples include FOL and HOL, but not CTT (Constructive Type Theory).

Elim-resolution is well-behaved with assumptions of the form ¢ = u. To
replace u by t or ¢ by u in subgoal 7, use

eresolve_tac [subst] ¢ or eresolve_tac [ssubst] 1.
Logics HOL, FOL and ZF define the tactic stac by

fun stac eqth = CHANGED o rtac (eqth RS ssubst);

Now stac eqth is like resolve_tac [eqth RS ssubst] but with the valu-
able property of failing if the substitution has no effect.

9.2 Substitution in the hypotheses

Substitution rules, like other rules of natural deduction, do not affect the
assumptions. This can be inconvenient. Consider proving the subgoal

[c=a;c=b] = a=0.

Calling eresolve_tac [ssubst] ¢ simply discards the assumption ¢ = a,
since ¢ does not occur in a = b. Of course, we can work out a solution. First
apply eresolve_tac [subst] ¢, replacing a by c:

c=b=—=rc¢c=0»

Equality reasoning can be difficult, but this trivial proof requires nothing
more sophisticated than substitution in the assumptions. Object-logics that
include the rule (subst) provide tactics for this purpose:

hyp_subst_tac : int -> tactic
bound_hyp_subst_tac : int -> tactic

hyp_subst_tac i selects an equality assumption of the form ¢ = u or v = ¢,
where t is a free variable or parameter. Deleting this assumption, it
replaces t by u throughout subgoal 4, including the other assumptions.

CHAPTER 9. SUBSTITUTION TACTICS 117

bound_hyp_subst_tac ¢ is similar but only substitutes for parameters
(bound variables). Uses for this are discussed below.

The term being replaced must be a free variable or parameter. Substitution
for constants is usually unhelpful, since they may appear in other theorems.
For instance, the best way to use the assumption 0 = 1 is to contradict a
theorem that states 0 # 1, rather than to replace 0 by 1 in the subgoal!

Substitution for unknowns, such as ¢z = 0, is a bad idea: we might
prove the subgoal more easily by instantiating 7z to 1. Substitution for
free variables is unhelpful if they appear in the premises of a rule being
derived: the substitution affects object-level assumptions, not meta-level as-
sumptions. For instance, replacing a by b could make the premise P(a)
worthless. To avoid this problem, use bound_hyp_subst_tac; alternatively,
call cut_facts_tac to insert the atomic premises as object-level assump-
tions.

9.3 Setting up the package

Many Isabelle object-logics, such as FOL, HOL and their descendants, come
with hyp_subst_tac already defined. A few others, such as CTT, do not
support this tactic because they lack the rule (subst). When defining a
new logic that includes a substitution rule and implication, you must set
up hyp_subst_tac yourself. It is packaged as the ML functor HypsubstFun,
which takes the argument signature HYPSUBST_DATA:

signature HYPSUBST_DATA =

sig

structure Simplifier : SIMPLIFIER

val dest_Trueprop : term -> term

val dest_eq : term -> termxterm*typ

val dest_imp : term -> termxterm

val eq_reflection : thm (* a=b ==> a==b *)

val rev_eq_reflection: thm (* a==b ==> a=b *)

val imp_intr : thm (x(P ==> Q) ==> P-->Q %)
val rev_mp : thm (x [| P; P-—>Q |] ==> Q *)
val subst : thm (x [| a=b; P(a) |] ==> P(b) *)
val sym : thm (x a=b ==> b=a *)

val thin_refl : thm (x [lx=x; P|] ==> P x)

end;

Thus, the functor requires the following items:

Simplifier should be an instance of the simplifier (see Chapter 10).

CHAPTER 9. SUBSTITUTION TACTICS 118

dest_Trueprop should coerce a meta-level formula to the corresponding
object-level one. Typically, it should return P when applied to the
term Trueprop P (see example below).

dest_eq should return the triple (¢, u, T'), where T is the type of ¢ and u,
when applied to the ML term that represents ¢ = u. For other terms,
it should raise an exception.

dest_imp should return the pair (P, @) when applied to the ML term that
represents the implication P — (). For other terms, it should raise an
exception.

eq_reflection is the theorem discussed in §10.8.
rev_eq_reflection is the reverse of eq_reflection.
imp_intr should be the implies introduction rule (7P = 7Q)) — 7P — 7Q).

rev_mp should be the ‘reversed’ implies elimination rule [?P; 7P — 7Q] —

Q.
subst should be the substitution rule [7a = %; ?P(7a)] = 7P (7).
sym should be the symmetry rule 7a = 7% =— % = 7a.

thin_refl should be the rule [?a = %a; ?P] = 7P, which is used to erase
trivial equalities.

The functor resides in file Provers/hypsubst.ML in the Isabelle distribution
directory. It is not sensitive to the precise formalization of the object-logic.
It is not concerned with the names of the equality and implication symbols,
or the types of formula and terms.

Coding the functions dest_Trueprop, dest_eq and dest_imp requires
knowledge of Isabelle’s representation of terms. For FOL, they are declared
by

fun dest_Trueprop (Const ("Trueprop", _) $ P) =P
| dest_Trueprop t = raise TERM ("dest_Trueprop", [t]);

fun dest_eq (Const("op =",T) $ t $ u) = (t, u, domain_type T)

fun dest_imp (Const("op -->",_) $ A $ B) = (A, B)
| dest_imp t = raise TERM ("dest_imp", [t]);

Recall that Trueprop is the coercion from type o to type prop, while op = is
the internal name of the infix operator =. Function domain_type, given the

CHAPTER 9. SUBSTITUTION TACTICS 119

function type § = T, returns the type S. Pattern-matching expresses the
function concisely, using wildcards (_) for the types.

The tactic hyp_subst_tac works as follows. First, it identifies a suit-
able equality assumption, possibly re-orienting it using sym. Then it moves
other assumptions into the conclusion of the goal, by repeatedly calling
etac rev_mp. Then, it uses asm_full_simp_tac or ssubst to substitute
throughout the subgoal. (If the equality involves unknowns then it must use
ssubst.) Then, it deletes the equality. Finally, it moves the assumptions
back to their original positions by calling resolve_tac [imp_intr].

Chapter 10

Simplification

This chapter describes Isabelle’s generic simplification package. It performs
conditional and unconditional rewriting and uses contextual information (‘lo-
cal assumptions’). It provides several general hooks, which can provide au-
tomatic case splits during rewriting, for example. The simplifier is already
set up for many of Isabelle’s logics: FOL, ZF, HOL, HOLCF.

The first section is a quick introduction to the simplifier that should be
sufficient to get started. The later sections explain more advanced features.

10.1 Simplification for dummies

Basic use of the simplifier is particularly easy because each theory is equipped
with sensible default information controlling the rewrite process — namely
the implicit current simpset. A suite of simple commands is provided that
refer to the implicit simpset of the current theory context.

| Make sure that you are working within the correct theory context. Executing
proofs interactively, or loading them from ML files without associated theories
may require setting the current theory manually via the context command.

10.1.1 Simplification tactics

Simp_tac : int -> tactic
Asm_simp_tac : int -> tactic
Full_simp_tac ¢ int -> tactic
Asm_full_simp_tac : int -> tactic
trace_simp : bool ref initially false
debug_simp : bool ref initially false

Simp_tac ¢ simplifies subgoal i using the current simpset. It may solve the
subgoal completely if it has become trivial, using the simpset’s solver
tactic.

Asm_simp_tac is like Simp_tac, but extracts additional rewrite rules from
the local assumptions.

120

CHAPTER 10. SIMPLIFICATION 121

Full_simp_tac is like Simp_tac, but also simplifies the assumptions (with-
out using the assumptions to simplify each other or the actual goal).

Asm_full_simp_tac is like Asm_simp_tac, but also simplifies the assump-
tions. In particular, assumptions can simplify each other. !

set trace_simp; makes the simplifier output internal operations. This in-
cludes rewrite steps, but also bookkeeping like modifications of the
simpset.

set debug_simp; makes the simplifier output some extra information about
internal operations. This includes any attempted invocation of simpli-
fication procedures.

As an example, consider the theory of arithmetic in HOL. The (rather
trivial) goal 0+ (z+0) = 2 +0+0 can be solved by a single call of Simp_tac
as follows:

context Arith.thy;
Goal "0 + (x +0) =x+ 0 + 0";
1. 0+ (x+0) =x+0+0
by (Simp_tac 1);
Level 1
0+ (x+0)=x+0+0
No subgoals!

The simplifier uses the current simpset of Arith.thy, which contains
suitable theorems like 7n + 0 = "n and 0 + "7n = "n.

In many cases, assumptions of a subgoal are also needed in the simplifica-
tion process. For example, x = 0 ==> x + x = 0issolved by Asm_simp_tac
as follows:

1. x=0==>x+x=0
by (Asm_simp_tac 1);
Asm_full_simp_tac is the most powerful of this quartet of tactics but

may also loop where some of the others terminate. For example,

1. ALL x. fx=g (f (gx)) ==>f0=1f0+0

is solved by Simp_tac, but Asm_simp_tac and Asm_full_simp_tac loop be-
cause the rewrite rule f 7z = ¢ (f (g 7r)) extracted from the assumption does

lpasm_full_simp_tac used to process the assumptions from left to right. For back-
wards compatibilty reasons only there is now Asm_lr_simp_tac that behaves like the old
Asm_full_simp_tac

CHAPTER 10. SIMPLIFICATION 122

not terminate. Isabelle notices certain simple forms of nontermination, but
not this one. Because assumptions may simplify each other, there can be very
subtle cases of nontermination. For example, invoking Asm_full_simp_tac
on

1. [P x); y=x; fx=Ffy] ==>4Q

gives rise to the infinite reduction sequence
P(fz) &L P(fy) =2 P (fa) LY.

whereas applying the same tactic to
1. [l y=x; fx=fy; P (fx) []==>8

terminates.

Using the simplifier effectively may take a bit of experimentation. Set
the trace_simp flag to get a better idea of what is going on. The resulting
output can be enormous, especially since invocations of the simplifier are
often nested (e.g. when solving conditions of rewrite rules).

10.1.2 Modifying the current simpset

Addsimps : thm list -> unit
Delsimps : thm list -> unit
Addsimprocs : simproc list -> unit
Delsimprocs : simproc list -> unit

Addcongs : thm list -> unit
Delcongs : thm list -> unit
Addsplits : thm list -> unit
Delsplits : thm list -> unit

Depending on the theory context, the Add and Del functions manipulate
basic components of the associated current simpset. Internally, all rewrite
rules have to be expressed as (conditional) meta-equalities. This form is
derived automatically from object-level equations that are supplied by the
user. Another source of rewrite rules are simplification procedures, that is
ML functions that produce suitable theorems on demand, depending on the
current redex. Congruences are a more advanced feature; see §10.2.6.

Addsimps thms; adds rewrite rules derived from thms to the current
simpset.

Delsimps thms; deletes rewrite rules derived from thms from the current
simpset.

CHAPTER 10. SIMPLIFICATION 123

Addsimprocs procs; adds simplification procedures procs to the current
simpset.

Delsimprocs procs; deletes simplification procedures procs from the cur-
rent simpset.

Addcongs thms; adds congruence rules to the current simpset.
Delcongs thms; deletes congruence rules from the current simpset.
Addsplits thms; adds splitting rules to the current simpset.
Delsplits thms; deletes splitting rules from the current simpset.

When a new theory is built, its implicit simpset is initialized by the union
of the respective simpsets of its parent theories. In addition, certain theory
definition constructs (e.g. datatype and primrec in HOL) implicitly aug-
ment the current simpset. Ordinary definitions are not added automatically!

It is up the user to manipulate the current simpset further by explicitly
adding or deleting theorems and simplification procedures.

Good simpsets are hard to design. Rules that obviously simplify, like
m + 0 = ", should be added to the current simpset right after they have
been proved. More specific ones (such as distributive laws, which duplicate
subterms) should be added only for specific proofs and deleted afterwards.
Conversely, sometimes a rule needs to be removed for a certain proof and
restored afterwards. The need of frequent additions or deletions may indicate
a badly designed simpset.

! The union of the parent simpsets (as described above) is not always a good

starting point for the new theory. If some ancestors have deleted simplification
rules because they are no longer wanted, while others have left those rules in, then
the union will contain the unwanted rules. After this union is formed, changes to
a parent simpset have no effect on the child simpset.

10.2 Simplification sets

The simplifier is controlled by information contained in simpsets. These
consist of several components, including rewrite rules, simplification proce-
dures, congruence rules, and the subgoaler, solver and looper tactics. The
simplifier should be set up with sensible defaults so that most simplifier calls
specify only rewrite rules or simplification procedures. Experienced users
can exploit the other components to streamline proofs in more sophisticated
manners.

CHAPTER 10. SIMPLIFICATION 124

10.2.1 Inspecting simpsets

print_ss : simpset -> unit

rep_ss : simpset -> {mss : meta_simpset,
subgoal_tac: simpset -> int -> tactic,
loop_tacs : (string * (int -> tactic))list,

finish_tac : solver list,
unsafe_finish_tac : solver list}

print_ss ss; displays the printable contents of simpset ss. This includes
the rewrite rules and congruences in their internal form expressed as
meta-equalities. The names of the simplification procedures and the
patterns they are invoked on are also shown. The other parts, functions
and tactics, are non-printable.

rep_ss ss; decomposes ss as a record of its internal components, namely
the meta’simpset, the subgoaler, the loop, and the safe and unsafe
solvers.

10.2.2 Building simpsets

empty_ss : simpset
merge_ss : simpset * simpset -> simpset

empty_ss is the empty simpset. This is not very useful under normal cir-
cumstances because it doesn’t contain suitable tactics (subgoaler etc.).
When setting up the simplifier for a particular object-logic, one will
typically define a more appropriate “almost empty” simpset. For ex-
ample, in HOL this is called HOL_basic_ss.

merge_ss (Ss;, $s2) merges simpsets ss; and ss; by building the union of
their respective rewrite rules, simplification procedures and congru-
ences. The other components (tactics etc.) cannot be merged, though;
they are taken from either simpset?.

2 Actually from ss;, but it would unwise to count on that.

CHAPTER 10. SIMPLIFICATION 125

10.2.3 Accessing the current simpset

simpset : unit -> simpset

simpset_ref : unit -> simpset ref

simpset_of : theory -> simpset

simpset_ref_of : theory -> simpset ref

print_simpset : theory -> unit

SIMPSET : (simpset -> tactic) -> tactic
SIMPSET’ : (simpset -> ’a -> tactic) -> ’a -> tactic

Each theory contains a current simpset stored within a private ML refer-
ence variable. This can be retrieved and modified as follows.

simpset () ; retrieves the simpset value from the current theory context.

simpset_ref (); retrieves the simpset reference variable from the current
theory context. This can be assigned to by using := in ML.

simpset_of thy; retrieves the simpset value from theory thy.

simpset_ref_of thy; retrieves the simpset reference variable from theory
thy.

print_simpset thy; prints the current simpset of theory thy in the same
way as print_ss.

SIMPSET tacf, SIMPSET’ tacf’ are tacticals that make a tactic depend on
the implicit current simpset of the theory associated with the proof
state they are applied on.

| There is a small difference between (SIMPSET’ tacf) and (tacf (simpset())).

For example (SIMPSET’ simp_tac) would depend on the theory of the proof
state it is applied to, while (simp_tac (simpset())) implicitly refers to the cur-
rent theory context. Both are usually the same in proof scripts, provided that
goals are only stated within the current theory. Robust programs would not count
on that, of course.

10.2.4 Rewrite rules

addsimps : simpset * thm list -> simpset infix 4
delsimps : simpset * thm list -> simpset infix 4

CHAPTER 10. SIMPLIFICATION 126

Rewrite rules are theorems expressing some form of equality, for example:

Suc(m)+ ™ = "m+ Suc(’n)
PANIP «— 7P
AU = {z.z€?AVz e B}

Conditional rewrites such as ?m < 'n = ?m/"n = 0 are also permitted; the
conditions can be arbitrary formulas.

Internally, all rewrite rules are translated into meta-equalities, theorems
with conclusion lhs = rhs. Each simpset contains a function for extracting
equalities from arbitrary theorems. For example, =(7z € {}) could be turned
into 7z € {} = False. This function can be installed using setmksimps but
only the definer of a logic should need to do this; see §10.8.2. The function
processes theorems added by addsimps as well as local assumptions.

ss addsimps thms adds rewrite rules derived from thms to the simpset ss.

ss delsimps thms deletes rewrite rules derived from thms from the simpset
ss.

The simplifier will accept all standard rewrite rules: those where all unknowns
are of base type. Hence % + (% + %) = (% + %) + 7% is OK.
It will also deal gracefully with all rules whose left-hand sides are so-called
higher-order patterns [10]. These are terms in (-normal form (this will always
be the case unless you have done something strange) where each occurrence of an
unknown is of the form ?F(zi,...,z,), where the z; are distinct bound variables.
Hence (Vz.7P(z)A\?Q(z)) < (Vz.?P(z))A(Vz.?7Q(z)) is also OK, in both directions.

In some rare cases the rewriter will even deal with quite general rules: for
example ?f (7x) € range(?f) = True rewrites g(a) € range(g) to True, but will fail
to match g(h(b)) € range(Az . g(h(x))). However, you can replace the offending
subterms (in our case 7f(7z), which is not a pattern) by adding new variables and
conditions: %y = (%) = ?y € range(?f) = True is acceptable as a conditional
rewrite rule since conditions can be arbitrary terms.

There is basically no restriction on the form of the right-hand sides. They may
not contain extraneous term or type variables, though.

@ ——D

10.2.5 *Simplification procedures

addsimprocs : simpset * simproc list -> simpset
delsimprocs : simpset * simproc list -> simpset

Simplification procedures are ML objects of abstract type simproc. Ba-
sically they are just functions that may produce proven rewrite rules on

CHAPTER 10. SIMPLIFICATION 127

demand. They are associated with certain patterns that conceptually rep-
resent left-hand sides of equations; these are shown by print_ss. During
its operation, the simplifier may offer a simplification procedure the current
redex and ask for a suitable rewrite rule. Thus rules may be specifically
fashioned for particular situations, resulting in a more powerful mechanism
than term rewriting by a fixed set of rules.

ss addsimprocs procs adds the simplification procedures procs to the cur-
rent simpset.

ss delsimprocs procs deletes the simplification procedures procs from the
current simpset.

For example, simplification procedures nat_cancel of HOL/Arith cancel
common summands and constant factors out of several relations of sums over
natural numbers.

Consider the following goal, which after cancelling a on both sides con-
tains a factor of 2. Simplifying with the simpset of Arith.thy will do the
cancellation automatically:

l.x+a+x<y+y+2+a+a+a+a*+a
by (Simp_tac 1);
1. x < Suc (a + (a+y))

10.2.6 *Congruence rules

addcongs : simpset * thm list -> simpset infix 4
delcongs : simpset * thm list -> simpset infix 4
addeqcongs : simpset * thm list -> simpset infix 4
deleqcongs : simpset * thm list -> simpset infix 4

Congruence rules are meta-equalities of the form

v =,) = (P)

This governs the simplification of the arguments of f. For example, some
arguments can be simplified under additional assumptions:

Given this rule, the simplifier assumes); and extracts rewrite rules from
it when simplifying P,. Such local assumptions are effective for rewriting
formulae such as + = 0 — y + 2 = y. The local assumptions are also
provided as theorems to the solver; see § 10.2.8 below.

CHAPTER 10. SIMPLIFICATION 128

ss addcongs thms adds congruence rules to the simpset ss. These are de-
rived from thms in an appropriate way, depending on the underlying
object-logic.

ss delcongs thms deletes congruence rules derived from thms.

ss addeqcongs thms adds congruence rules in their internal form (conclu-
sions using meta-equality) to simpset ss. This is the basic mechanism
that addcongs is built on. It should be rarely used directly.

ss deleqcongs thms deletes congruence rules in internal form from simpset

SS.

Here are some more examples. The congruence rule for bounded quanti-
fiers also supplies contextual information, this time about the bound variable:

[?7A=7B; N\z.z € B = "P(z) =7Q(z)] =
(Vo € ?A.7P(z)) = (Y € ?B . 7Q(x))

The congruence rule for conditional expressions can supply contextual infor-
mation for simplifying the arms:

[70 ="7; 2 = T ="c; =% = M =] = if ("p,%a,?) = if (q, c,)

A congruence rule can also prevent simplification of some arguments. Here
is an alternative congruence rule for conditional expressions:

=" = if("p, 7, M) = if (7q,7a,7b)

Only the first argument is simplified; the others remain unchanged. This can
make simplification much faster, but may require an extra case split to prove
the goal.

10.2.7 *The subgoaler

setsubgoaler :
simpset * (simpset -> int -> tactic) -> simpset infix 4
prems_of_ss : simpset -> thm list

The subgoaler is the tactic used to solve subgoals arising out of conditional
rewrite rules or congruence rules. The default should be simplification itself.
Occasionally this strategy needs to be changed. For example, if the premise
of a conditional rule is an instance of its conclusion, as in Suc(’m) < h =
"m < M, the default strategy could loop.

CHAPTER 10. SIMPLIFICATION 129

ss setsubgoaler tacf sets the subgoaler of ss to tacf. The function tacf
will be applied to the current simplifier context expressed as a simpset.

prems_of_ss ss retrieves the current set of premises from simplifier context
ss. This may be non-empty only if the simplifier has been told to utilize
local assumptions in the first place, e.g. if invoked via asm_simp_tac.

As an example, consider the following subgoaler:

fun subgoaler ss =
assume_tac ORELSE’
resolve_tac (prems_of_ss ss) ORELSE’
asm_simp_tac ss;

This tactic first tries to solve the subgoal by assumption or by resolving with
with one of the premises, calling simplification only if that fails.

10.2.8 *The solver

mk_solver : string -> (thm list -> int -> tactic) -> solver

setSolver : simpset * solver -> simpset infix 4
addSolver : simpset * solver -> simpset infix 4
setSSolver : simpset * solver -> simpset infix 4
addSSolver : simpset * solver -> simpset infix 4

A solver is a tactic that attempts to solve a subgoal after simplification.
Typically it just proves trivial subgoals such as True and ¢ = ¢. It could
use sophisticated means such as blast_tac, though that could make simpli-
fication expensive. To keep things more abstract, solvers are packaged up in
type solver. The only way to create a solver is via mk_solver.

Rewriting does not instantiate unknowns. For example, rewriting cannot
prove a € ?A since this requires instantiating ?A. The solver, however, is
an arbitrary tactic and may instantiate unknowns as it pleases. This is the
only way the simplifier can handle a conditional rewrite rule whose condition
contains extra variables. When a simplification tactic is to be combined with
other provers, especially with the classical reasoner, it is important whether
it can be considered safe or not. For this reason a simpset contains two
solvers, a safe and an unsafe one.

The standard simplification strategy solely uses the unsafe solver, which
is appropriate in most cases. For special applications where the simplification
process is not allowed to instantiate unknowns within the goal, simplification
starts with the safe solver, but may still apply the ordinary unsafe one in
nested simplifications for conditional rules or congruences. Note that in this
way the overall tactic is not totally safe: it may instantiate unknowns that
appear also in other subgoals.

CHAPTER 10. SIMPLIFICATION 130

mk_solver s tacf converts tacf into a new solver; the string s is only at-
tached as a comment and has no other significance.

ss setSSolver tacf installs tacf as the safe solver of ss.

ss addSSolver tacf adds tacf as an additional safe solver; it will be tried
after the solvers which had already been present in ss.

ss setSolver tacf installs tacf as the unsafe solver of ss.

ss addSolver tacf adds tacf as an additional unsafe solver; it will be tried
after the solvers which had already been present in ss.

The solver tactic is invoked with a list of theorems, namely assumptions
that hold in the local context. This may be non-empty only if the simplifier
has been told to utilize local assumptions in the first place, e.g. if invoked
via asm_simp_tac. The solver is also presented the full goal including its
assumptions in any case. Thus it can use these (e.g. by calling assume_tac),
even if the list of premises is not passed.

As explained in §10.2.7, the subgoaler is also used to solve the premises
of congruence rules. These are usually of the form s = 7, where s needs to
be simplified and 7z needs to be instantiated with the result. Typically, the
subgoaler will invoke the simplifier at some point, which will eventually call
the solver. For this reason, solver tactics must be prepared to solve goals of
the form ¢t = 7z, usually by reflexivity. In particular, reflexivity should be
tried before any of the fancy tactics like blast_tac.

It may even happen that due to simplification the subgoal is no longer
an equality. For example False < ?¢) could be rewritten to =7¢). To cover
this case, the solver could try resolving with the theorem —False.

| If a premise of a congruence rule cannot be proved, then the congruence is

ignored. This should only happen if the rule is conditional — that is, contains
premises not of the form ¢ = 7x; otherwise it indicates that some congruence rule,
or possibly the subgoaler or solver, is faulty.

CHAPTER 10. SIMPLIFICATION 131

10.2.9 *The looper

setloop : simpset * (int -> tactic) -> simpset infix 4
addloop : simpset * (string * (int -> tactic)) -> simpset infix 4
delloop : simpset * string -> simpset infix 4
addsplits : simpset * thm list -> simpset infix 4
delsplits : simpset * thm list -> simpset infix 4

The looper is a list of tactics that are applied after simplification, in
case the solver failed to solve the simplified goal. If the looper succeeds, the
simplification process is started all over again. Each of the subgoals generated
by the looper is attacked in turn, in reverse order.

A typical looper is : the expansion of a conditional. Another possibility is
to apply an elimination rule on the assumptions. More adventurous loopers
could start an induction.

ss setloop tacf installs tacf as the only looper tactic of ss.

ss addloop (name,tacf) adds tacf as an additional looper tactic with name
name; it will be tried after the looper tactics that had already been
present in ss.

ss delloop name deletes the looper tactic name from ss.

ss addsplits thms adds split tactics for thms as additional looper tactics
of ss.

ss addsplits thms deletes the split tactics for thms from the looper tactics
of ss.

The splitter replaces applications of a given function; the right-hand side
of the replacement can be anything. For example, here is a splitting rule for
conditional expressions:

WP(if (7Q, 7, y)) < (1Q — P(%)) A (=7Q — P (%y))
Another example is the elimination operator for Cartesian products (which
happens to be called split):

TP (split(f, 7)) < (Va b. % = (a,b) — ?P(%f(a,b)))

For technical reasons, there is a distinction between case splitting in the
conclusion and in the premises of a subgoal. The former is done by split_tac
with rules like split_if or option.split, which do not split the subgoal,
while the latter is done by split_asm_tac with rules like split_if_asm
or option.split_asm, which split the subgoal. The operator addsplits
automatically takes care of which tactic to call, analyzing the form of the
rules given as argument.

CHAPTER 10. SIMPLIFICATION 132

! Due to split_asm_tac, the simplifier may split subgoals!

Case splits should be allowed only when necessary; they are expensive

and hard to control. Here is an example of use, where split_if is the first
rule above:

by (simp_tac (simpset()
addloop ("split if", split_tac [split_ifl)) 1);

Users would usually prefer the following shortcut using addsplits:

by (simp_tac (simpset() addsplits [split_ifl]) 1);

Case-splitting on conditional expressions is usually beneficial, so it is enabled
by default in the object-logics HOL and FOL.

10.3 The simplification tactics

generic_simp_tac : bool -> bool * bool * bool ->
simpset -> int -> tactic
simp_tac : simpset -> int -> tactic
asm_simp_tac : simpset -> int -> tactic
full_simp_tac : simpset -> int -> tactic
asm_full_simp_tac : simpset -> int -> tactic

safe_asm_full_simp_tac : simpset -> int -> tactic

generic_simp_tac is the basic tactic that is underlying any actual sim-
plification work. The others are just instantiations of it. The rewriting
strategy is always strictly bottom up, except for congruence rules, which are
applied while descending into a term. Conditions in conditional rewrite rules
are solved recursively before the rewrite rule is applied.

generic_simp_tac safe (simp-asm, use-asm, mutual) gives direct ac-
cess to the various simplification modes:
e if safe is true, the safe solver is used as explained in §10.2.8,

o simp-asm determines whether the local assumptions are simpli-
fied,

e use_asm determines whether the assumptions are used as local
rewrite rules, and

e mutual determines whether assumptions can simplify each other
rather than being processed from left to right.

CHAPTER 10. SIMPLIFICATION 133

This generic interface is intended for building special tools, e.g. for
combining the simplifier with the classical reasoner. It is rarely used
directly.

simp_tac, asm_simp_tac, full_simp_tac, asm_full_simp_tac are the
basic simplification tactics that work exactly like their namesakes in
§10.1, except that they are explicitly supplied with a simpset.

Local modifications of simpsets within a proof are often much cleaner by
using above tactics in conjunction with explicit simpsets, rather than their
capitalized counterparts. For example

Addsimps thms;

by (Simp_tac %) ;
Delsimps thms;

can be expressed more appropriately as

by (simp_tac (simpset() addsimps thms) i);

Also note that functions depending implicitly on the current theory con-
text (like capital Simp_tac and the other commands of §10.1) should be con-
sidered harmful outside of actual proof scripts. In particular, ML programs
like theory definition packages or special tactics should refer to simpsets only
explicitly, via the above tactics used in conjunction with simpset_of or the
SIMPSET tacticals.

10.4 Forward rules and conversions

simplify : simpset -> thm -> thm
asm_simplify : simpset -> thm -> thm
full_simplify : simpset -> thm -> thm
asm_full_simplify : simpset -> thm -> thm
Simplifier.rewrite : simpset -> cterm -> thm
Simplifier.asm_rewrite : simpset -> cterm -> thm
Simplifier.full_rewrite : simpset -> cterm -> thm
Simplifier.asm_full_rewrite : simpset -> cterm -> thm

The first four of these functions provide forward rules for simplification.
Their effect is analogous to the corresponding tactics described in §10.3, but
affect the whole theorem instead of just a certain subgoal. Also note that
the looper / solver process as described in §10.2.9 and §10.2.8 is omitted in
forward simplification.

The latter four are conversions, establishing proven equations of the form
t = u where the 1.h.s. ¢ has been given as argument.

CHAPTER 10. SIMPLIFICATION 134

| Forward simplification rules and conversions should be used rarely in ordinary
proof scripts. The main intention is to provide an internal interface to the
simplifier for special utilities.

10.5 Examples of using the Simplifier

Assume we are working within FOL (see the file FOL/ex/Nat) and that

Nat.thy is a theory including the constants 0, Suc and +,

add_0 is the rewrite rule 0 4+ 7n = "n,

add_Suc is the rewrite rule Suc(?m) + " = Suc(?m +),

induct is the induction rule [?P(0); Az.?P(z) = "P(Suc(z))] = P ("n).

We augment the implicit simpset inherited from Nat with the basic rewrite
rules for addition of natural numbers:

Addsimps [add_0, add_Suc];

10.5.1 A trivial example

Proofs by induction typically involve simplification. Here is a proof that 0 is
a right identity:
Goal "m+0
Level 0

m+ 0=m
1. m+ 0 =m

I
8

The first step is to perform induction on the variable m. This returns a base
case and inductive step as two subgoals:
by (res_inst_tac [("n","m")] induct 1);
Level 1
m+ 0=m
1. 0+0=0
2. Mx. x + 0 =x ==> Suc(x) + 0 = Suc(x)

Simplification solves the first subgoal trivially:

by (Simp_tac 1);
Level 2
m+ 0 =m
1. !'lx. x + 0 = x ==> Suc(x) + 0 = Suc(x)

The remaining subgoal requires Asm_simp_tac in order to use the induction
hypothesis as a rewrite rule:

CHAPTER 10. SIMPLIFICATION 135

by (Asm_simp_tac 1);
Level 3
m+ 0 =m
No subgoals!

10.5.2 An example of tracing

Let us prove a similar result involving more complex terms. We prove that
addition is commutative.

Goal "m+Suc(n) = Suc(m+n)";
Level 0
m + Suc(n) = Suc(m + n)
1. m + Suc(n) = Suc(m + n)

Performing induction on m yields two subgoals:

by (res_inst_tac [("n","m")] induct 1);
Level 1
m + Suc(n) = Suc(m + n)
1. 0 + Suc(n) = Suc(0 + n)
2. Ilx. x + Suc(n) = Suc(x + n) ==>
Suc(x) + Suc(n) = Suc(Suc(x) + n)

Simplification solves the first subgoal, this time rewriting two occurrences
of 0:

by (Simp_tac 1);

Level 2
m + Suc(n) = Suc(m + n)
1. !x. x + Suc(n) = Suc(x + n) ==>

Suc(x) + Suc(n) = Suc(Suc(x) + n)

Switching tracing on illustrates how the simplifier solves the remaining sub-
goal:

set trace_simp;
by (Asm_simp_tac 1);
Adding rewrite rule:

.x + Suc n == Suc (.x + n)
Applying instance of rewrite rule:
?m + Suc ?n == Suc (7m + 7n)
Rewriting:

Suc .x + Suc n == Suc (Suc .x + n)
Applying instance of rewrite rule:
Suc ?m + ?n == Suc (7m + 7n)
Rewriting:

Suc .x + n == Suc (.x + n)

CHAPTER 10. SIMPLIFICATION 136

Applying instance of rewrite rule:

Suc ?m + ?n == Suc (?m + ?n)

Rewriting:

Suc .x + n == Suc (.x + n)

Applying instance of rewrite rule:

?x = 7x == True

Rewriting:

Suc (Suc (.x + n)) = Suc (Suc (.x + n)) == True
Level 3

m + Suc(n) = Suc(m + n)
No subgoals!

Many variations are possible. At Level 1 (in either example) we could have
solved both subgoals at once using the tactical ALLGOALS:

by (ALLGOALS Asm_simp_tac);
Level 2
m + Suc(n) = Suc(m + n)
No subgoals!

10.5.3 Free variables and simplification

Here is a conjecture to be proved for an arbitrary function f satisfying the
law f(Suc(’n)) = Suc(f(n)):

val [prem] = Goal
"(Mn. £(Suc(n)) = Suc(f(n))) ==> £(i+j) = i+£(j)";
Level 0
f(1 +j) =1+ £(3)
1. £(i +j) =i+ £()
val prem = "f(Suc(?n)) = Suc(f(?n))
[tin. f(Suc(n)) = Suc(£f(n))]" : thm

In the theorem prem, note that f is a free variable while ?n is a schematic
variable.

by (res_inst_tac [("n","i")] induct 1);

Level 1
f(i+j) =1+ £(j)
1. £(0 + j) =0 + £(j)
2. Nx. f(x + j) = x + £(j) ==> f(Suc(x) + j) = Suc(x) + £(j)

We simplify each subgoal in turn. The first one is trivial:

by (Simp_tac 1);
Level 2
f(i+ j) =1+ £(j)
1. Mx. f(x + j) = x + £(j) ==> f(Suc(x) + j) = Suc(x) + £(j)
The remaining subgoal requires rewriting by the premise, so we add it to the
current simpset:

CHAPTER 10. SIMPLIFICATION 137

by (asm_simp_tac (simpset() addsimps [prem]) 1);
Level 3
f(i+3j) =1+ £(j)
No subgoals!

10.6 Permutative rewrite rules

A rewrite rule is permutative if the left-hand side and right-hand side are
the same up to renaming of variables. The most common permutative rule is
commutativity: z+y = y+z. Other examples include (z—y)—2z = (z—2)—y
in arithmetic and insert(x, insert(y, A)) = insert(y, insert(z, A)) for sets.
Such rules are common enough to merit special attention.

Because ordinary rewriting loops given such rules, the simplifier employs
a special strategy, called ordered rewriting. There is a standard lexico-
graphic ordering on terms. This should be perfectly OK in most cases, but
can be changed for special applications.

settermless : simpset * (term * term -> bool) -> simpset infix 4

ss settermless rel installs relation rel as term order in simpset ss.

A permutative rewrite rule is applied only if it decreases the given term
with respect to this ordering. For example, commutativity rewrites b + a to
a+0b, but then stops because a+b is strictly less than b4a. The Boyer-Moore
theorem prover [3] also employs ordered rewriting.

Permutative rewrite rules are added to simpsets just like other rewrite
rules; the simplifier recognizes their special status automatically. They are
most effective in the case of associative-commutative operators. (Associativ-
ity by itself is not permutative.) When dealing with an AC-operator f, keep
the following points in mind:

e The associative law must always be oriented from left to right, namely
f(f(z,y),2) = f(z,f(y,2)). The opposite orientation, if used with
commutativity, leads to looping in conjunction with the standard term
order.

e To complete your set of rewrite rules, you must add not just associa-
tivity (A) and commutativity (C) but also a derived rule, left-com-

mutativity (LC): f(z,f(y,2)) = f(y,f(z,2)).
Ordered rewriting with the combination of A, C, and LC sorts a term lexi-
cographically:

(b+c)+arsb+(c+a)rSb+(ate) S a+ (b+c)

CHAPTER 10. SIMPLIFICATION 138

Martin and Nipkow [9] discuss the theory and give many examples; other
algebraic structures are amenable to ordered rewriting, such as boolean rings.

10.6.1 Example: sums of natural numbers

This example is again set in HOL (see HOL/ex/NatSum). Theory Arith
contains natural numbers arithmetic. Its associated simpset contains many
arithmetic laws including distributivity of x over +, while add_ac is a list
consisting of the A, C and LC laws for + on type nat. Let us prove the
theorem

zn:i:nx(n—i—l)/z

A functional sum represents the summation operator under the interpretation
sumf (n+1)=>",f1i. We extend Arith as follows:

NatSum = Arith +

consts sum :: [nat=>nat, nat] => nat
primrec

"sum £ 0 = O"

"sum f (Suc n) = f(n) + sum f n"
end

The primrec declaration automatically adds rewrite rules for sum to the
default simpset. We now remove the nat_cancel simplification procedures
(in order not to spoil the example) and insert the AC-rules for +:

Delsimprocs nat_cancel;
Addsimps add_ac;

Our desired theorem now reads sum(Ai .) (n + 1) = n x (n + 1)/2. The
Isabelle goal has both sides multiplied by 2:

Goal "2 * sum (%i.i) (Suc n) = n * Suc n";
Level 0
2 % sum (4i. i) (Suc n) = n * Suc n
1. 2 * sum (%i. i) (Suc n) = n * Suc n

Induction should not be applied until the goal is in the simplest form:

by (Simp_tac 1);
Level 1
2 % sum (4i. i) (Suc n) = n * Suc n
1. n+ (sum (%i. i) n + sum (%i. i) n) = n * n

Ordered rewriting has sorted the terms in the left-hand side. The subgoal is
now ready for induction:

CHAPTER 10. SIMPLIFICATION 139

by (induct_tac "n" 1);
Level 2
2 % sum (4i. i) (Suc n) = n * Suc n
1. 0 + (sum (%i. i) O + sum (%i. i) 0) = 0 * 0O
2. !!'n. n+ (sum (4i. i) n + sum (4i. i) n) = n * n
==> Suc n + (sum (%i. i) (Suc n) + sum (4i.i) (Suc n)) =
Suc n * Suc n

Simplification proves both subgoals immediately:

by (ALLGOALS Asm_simp_tac);
Level 3
2 * sum (%i. i) (Suc n) = n * Suc n
No subgoals!

Simplification cannot prove the induction step if we omit add_ac from the
simpset. Observe that like terms have not been collected:

Level 3
2 % sum (}i. i) (Suc n) = n * Suc n
1. !'"!'n. n + sum (}i. i) n + (n + sum (4i. i) n) = n + n * n

=>n+ (n+ sum (4i. i) n) + (n + (n + sum (Ji. i) n)) =
n+ (m+ (n+n *n))

Ordered rewriting proves this by sorting the left-hand side. Proving arith-
metic theorems without ordered rewriting requires explicit use of commuta-
tivity. This is tedious; try it and see!

Ordered rewriting is equally successful in proving 37, i* = n? x (n +
1)%/4.

10.6.2 Re-orienting equalities

Ordered rewriting with the derived rule symmetry can reverse equations:

val symmetry = prove_goal HOL.thy "(x=y) = (y=x)"
(fn _ => [Blast_tac 11);

This is frequently useful. Assumptions of the form s = ¢, where ¢ occurs
in the conclusion but not s, can often be brought into the right form. For
example, ordered rewriting with symmetry can prove the goal

fla)=bAfla)=c—b=c.

Here symmetry reverses both f(a) = b and f(a) = ¢ because f(a) is lexi-
cographically greater than b and c¢. These re-oriented equations, as rewrite
rules, replace b and c¢ in the conclusion by f(a).

CHAPTER 10. SIMPLIFICATION 140

Another example is the goal =(¢ = u) — —(u = t). The differing orienta-
tions make this appear difficult to prove. Ordered rewriting with symmetry
makes the equalities agree. (Without knowing more about ¢ and u we cannot
say whether they both go to ¢ = u or u = ¢.) Then the simplifier can prove
the goal outright.

10.7 *Coding simplification procedures

val Simplifier.simproc: Sign.sg -> string -> string list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

val Simplifier.simproc_i: Sign.sg -> string -> term list
-> (Sign.sg -> simpset -> term -> thm option) -> simproc

Simplifier.simproc sign name lhss proc makes proc a simplification
procedure for left-hand side patterns lhss. The name just serves as
a comment. The function proc may be invoked by the simplifier for
redex positions matched by one of lhss as described below (which are
be specified as strings to be read as terms).

Simplifier.simproc_i is similar to Simplifier.simproc, but takes well-
typed terms as pattern argument.

Simplification procedures are applied in a two-stage process as follows:
The simplifier tries to match the current redex position against any one of the
lhs patterns of any simplification procedure. If this succeeds, it invokes the
corresponding ML function, passing with the current signature, local assump-
tions and the (potential) redex. The result may be either None (indicating
failure) or Some thm.

Any successful result is supposed to be a (possibly conditional) rewrite
rule £ = wu that is applicable to the current redex. The rule will be applied
just as any ordinary rewrite rule. It is expected to be already in internal form,
though, bypassing the automatic preprocessing of object-level equivalences.

As an example of how to write your own simplification procedures, con-
sider eta-expansion of pair abstraction (see also HOL/Modelcheck/MCSyn
where this is used to provide external model checker syntax).

The HOL theory of tuples (see HOL/Prod) provides an operator split
together with some concrete syntax supporting A (z,y) . b abstractions. As-
sume that we would like to offer a tactic that rewrites any function Ap . fp
(where p is of some pair type) to A(z,y) . f(z,y). The corresponding rule

1S:

CHAPTER 10. SIMPLIFICATION 141

pair_eta_expand: (f::’ax’b=>’c) = (%(x, y). £ (x, y))

Unfortunately, term rewriting using this rule directly would not terminate!
We now use the simplification procedure mechanism in order to stop the
simplifier from applying this rule over and over again, making it rewrite only
actual abstractions. The simplification procedure pair_eta_expand_proc is
defined as follows:

val pair_eta_expand_proc =
Simplifier.simproc (Theory.sign_of (the_context ()))
"pair_eta_expand" ["f::’a*x’b=>’c"]

(fn _ => fn _ => fn t =>
case t of Abs _ => Some (mk_meta_eq pair_eta_expand)
| _ => None);

This is an example of using pair_eta_expand_proc:

1. P (Jp::’a * ’a. fst p + snd p + z)
by (simp_tac (simpset() addsimprocs [pair_eta_expand_proc]) 1);
1. P (J(x::’a,y::’a). x +y + z)

In the above example the simplification procedure just did fine grained
control over rule application, beyond higher-order pattern matching. Usually,
procedures would do some more work, in particular prove particular theorems
depending on the current redex.

10.8 *Setting up the Simplifier

Setting up the simplifier for new logics is complicated in the general case.
This section describes how the simplifier is installed for intuitionistic first-
order logic; the code is largely taken from FOL/simpdata.ML of the Isabelle
sources.

The case splitting tactic, which resides on a separate files, is not part of
Pure Isabelle. It needs to be loaded explicitly by the object-logic as follows
(below ~~ refers to $ISABELLE_HOME):

use ""7/src/Provers/splitter.ML";

Simplification requires converting object-equalities to meta-level rewrite
rules. This demands rules stating that equal terms and equivalent formu-
lae are also equal at the meta-level. The rule declaration part of the file
FOL/IFOL.thy contains the two lines

CHAPTER 10. SIMPLIFICATION 142

eq_reflection "(x=y) ==> (x==y)"

iff_reflection "(P<—>Q) ==> (P==Q)"
Of course, you should only assert such rules if they are true for your par-
ticular logic. In Constructive Type Theory, equality is a ternary relation of
the form a = b € A; the type A determines the meaning of the equality
essentially as a partial equivalence relation. The present simplifier cannot
be used. Rewriting in CTT uses another simplifier, which resides in the file
Provers/typedsimp.ML and is not documented. Even this does not work for
later variants of Constructive Type Theory that use intensional equality [13].

10.8.1 A collection of standard rewrite rules

We first prove lots of standard rewrite rules about the logical connectives.
These include cancellation and associative laws. We define a function that
echoes the desired law and then supplies it the prover for intuitionistic FOL:
fun int_prove_fun s =
(writeln s;
prove_goal IFOL.thy s
(fn prems => [(cut_facts_tac prems 1),
(IntPr.fast_tac 1) 1));

The following rewrite rules about conjunction are a selection of those proved
on FOL/simpdata.ML. Later, these will be supplied to the standard simpset.

val conj_simps = map int_prove_fun

["P & True <-> P", "True & P <-> P",

"P & False <-> False", "False & P <-> False",
"P & P <-> P",

"P & P <-> False", "“P & P <-> False",

"P&Q) &R <>P& (Q & R)"];

The file also proves some distributive laws. As they can cause exponential
blowup, they will not be included in the standard simpset. Instead they are
merely bound to an ML identifier, for user reference.
val distrib_simps = map int_prove_fun
["P & (Q | R) <> P&Q | P&R",
"(Q | R) & P <> Q&P | R&P",
"(P | Q -->R) <> (P -->R) & (Q -—> R)"];

10.8.2 Functions for preprocessing the rewrite rules
setmksimps : simpset * (thm -> thm list) -> simpset infix 4

The next step is to define the function for preprocessing rewrite rules. This
will be installed by calling setmksimps below. Preprocessing occurs when-
ever rewrite rules are added, whether by user command or automatically.

CHAPTER 10. SIMPLIFICATION 143

Preprocessing involves extracting atomic rewrites at the object-level, then
reflecting them to the meta-level.

To start, the function gen_all strips any meta-level quantifiers from the
front of the given theorem.

The function atomize analyses a theorem in order to extract atomic
rewrite rules. The head of all the patterns, matched by the wildcard _,
is the coercion function Trueprop.

fun atomize th = case concl_of th of
_ % (Const("op &",_) $ _ $) => atomize(th RS conjunctl) @
atomize(th RS conjunct?2)
_ $ (Const("op -—>",.) $ _ $ _) => atomize(th RS mp)

|

| _ $ (Const("All",) $) => atomize(th RS spec)
| _ $ (Const("True",_)) = []

| _ $ (Const("False",_)) = []

I - => [th];

There are several cases, depending upon the form of the conclusion:

e Conjunction: extract rewrites from both conjuncts.

e Implication: convert P — () to the meta-implication P = @ and
extract rewrites from (); these will be conditional rewrites with the
condition P.

e Universal quantification: remove the quantifier, replacing the bound
variable by a schematic variable, and extract rewrites from the body.

e True and False contain no useful rewrites.

e Anything else: return the theorem in a singleton list.

The resulting theorems are not literally atomic — they could be disjunc-
tive, for example — but are broken down as much as possible. See the file
ZF/simpdata.ML for a sophisticated translation of set-theoretic formulae into
rewrite rules.

For standard situations like the above, there is a generic auxiliary func-
tion mk_atomize that takes a list of pairs (name, thms), where name is an
operator name and thms is a list of theorems to resolve with in case the
pattern matches, and returns a suitable atomize function.

The simplified rewrites must now be converted into meta-equalities. The
rule eq_reflection converts equality rewrites, while iff_reflection con-
verts if-and-only-if rewrites. The latter possibility can arise in two other
ways: the negative theorem —P is converted to P = False, and any other
theorem P is converted to P = True. The rules iff_reflection_F and
iff_reflection_T accomplish this conversion.

CHAPTER 10. SIMPLIFICATION 144

val P_iff F = int_prove_fun "“P ==> (P <-> False)";
val iff_reflection_F = P_iff_F RS iff_reflection;
val P_iff T = int_prove_fun "P ==> (P <-> True)";
val iff_reflection_T = P_iff T RS iff_reflection;

The function mk_eq converts a theorem to a meta-equality using the case
analysis described above.

fun mk_eq th = case concl_of th of

$ (Const("op =",)$_$_) => th RS eqg_reflection
| _ $ (Const("op <->",_)$_$_) => th RS iff_reflection
| _ $ (Const("Not",_)$_) => th RS iff_reflection_F

| => th RS iff_reflection_T;

The three functions gen_all, atomize and mk_eq will be composed together
and supplied below to setmksimps.

10.8.3 Making the initial simpset

It is time to assemble these items. The list IFOL_simps contains the default
rewrite rules for intuitionistic first-order logic. The first of these is the reflex-
ive law expressed as the equivalence (a = a) < True; the rewrite rule ¢ = a
is clearly useless.

val IFOL_simps =
[refl RS P_iff _T] @ conj_simps @ disj_simps @ not_simps @
imp_simps @ iff_simps @ quant_simps;

The list triv_rls contains trivial theorems for the solver. Any subgoal that
is simplified to one of these will be removed.

val notFalsel = int_prove_fun "“False";
val triv_rls = [Truel,refl,iff_refl,notFalsel];

We also define the function mk_meta_cong to convert the conclusion of con-
gruence rules into meta-equalities.

fun mk_meta_cong rl = standard (mk_meta_eq (mk_meta_prems rl));

The basic simpset for intuitionistic FOL is FOL_basic_ss. It preprocess
rewrites using gen_all, atomize and mk_eq. It solves simplified subgoals
using triv_rls and assumptions, and by detecting contradictions. It uses
asm_simp_tac to tackle subgoals of conditional rewrites.

Other simpsets built from FOL_basic_ss will inherit these items. In
particular, IFOL_ss, which introduces IFOL_simps as rewrite rules. FOL_ss
will later extend IFOL_ss with classical rewrite rules such as -——P < P.

CHAPTER 10. SIMPLIFICATION 145

fun unsafe_solver prems = FIRST’ [resolve_tac (triv_rls @ prems),
atac, etac FalseE];

fun safe_solver prems = FIRST’ [match_tac (triv_rls @ prems),
eq_assume_tac, ematch_tac [FalseE]];

val FOL_basic_ss =
empty_ss setsubgoaler asm_simp_tac
addsimprocs [defALL_regroup, defEX_regroup]
setSSolver safe_solver
setSolver unsafe_solver
setmksimps (map mk_eq o atomize o gen_all)
setmkcong mk_meta_cong;

val IFOL_ss =
FOL_basic_ss addsimps (IFOL_simps @
int_ex_simps @ int_all_simps)
addcongs [imp_cong];

This simpset takes imp_cong as a congruence rule in order to use contextual
information to simplify the conclusions of implications:

[P« ?P"; IP' = 7Q « Q"] = (7P — Q) < (P’ — Q")

By adding the congruence rule conj_cong, we could obtain a similar effect
for conjunctions.

10.8.4 Splitter setup

To set up case splitting, we have to call the ML functor SplitterFun,
which takes the argument signature SPLITTER_DATA. So we prove the theorem
meta_eq_to_iff below and store it, together with the mk_eq function de-
scribed above and several standard theorems, in the structure SplitterData.
Calling the functor with this data yields a new instantiation of the splitter
for our logic.

val meta_eq_to_iff = prove_goal IFOL.thy "x==y ==> x<->y"
(fn [prem] => [rewtac prem, rtac iffI 1, atac 1, atac 1]);

CHAPTER 10. SIMPLIFICATION

structure SplitterData
struct
structure Simplifier
val mk_eq =
val meta_eq_to_iff
val iffD =
val disjE =
val conjE =
val exE =
val contrapos =
val contrapos2 =
val notnotD =
end;

structure Splitter = SplitterFun(SplitterData);

= Simplifier
mk_eq

= meta_eq_to_iff

iffD2
disjE
conjE

exE
contrapos
contrapos?2
notnotD

146

Chapter 11

The Classical Reasoner

Although Isabelle is generic, many users will be working in some extension of
classical first-order logic. Isabelle’s set theory ZF is built upon theory FOL,
while HOL conceptually contains first-order logic as a fragment. Theorem-
proving in predicate logic is undecidable, but many researchers have devel-
oped strategies to assist in this task.

Isabelle’s classical reasoner is an ML functor that accepts certain infor-
mation about a logic and delivers a suite of automatic tactics. Each tactic
takes a collection of rules and executes a simple, non-clausal proof procedure.
They are slow and simplistic compared with resolution theorem provers, but
they can save considerable time and effort. They can prove theorems such
as Pelletier’s [15] problems 40 and 41 in seconds:

(Jy Vo .J(y,z) < ~J(z,z)) = -V . Jy . Vz. J(z,y) < ~J(z,2))

(Vz .3y . Vo . F(z,y) < F(z,2) N=F(z,z)) — —~(32 .V . F(z,2))

The tactics are generic. They are not restricted to first-order logic, and have
been heavily used in the development of Isabelle’s set theory. Few interactive
proof assistants provide this much automation. The tactics can be traced,
and their components can be called directly; in this manner, any proof can
be viewed interactively.

The simplest way to apply the classical reasoner (to subgoal 7) is to type

by (Blast_tac i) ;

This command quickly proves most simple formulas of the predicate calculus
or set theory. To attempt to prove subgoals using a combination of rewriting
and classical reasoning, try

auto(); applies to all subgoals
force i; applies to one subgoal

To do all obvious logical steps, even if they do not prove the subgoal, type
one of the following:

147

CHAPTER 11. THE CLASSICAL REASONER 148

by Safe_tac; applies to all subgoals
by (Clarify_tac i); applies to one subgoal

You need to know how the classical reasoner works in order to use it
effectively. There are many tactics to choose from, including Fast_tac and
Best_tac.

We shall first discuss the underlying principles, then present the classical
reasoner. Finally, we shall see how to instantiate it for new logics. The logics
FOL, ZF, HOL and HOLCF have it already installed.

11.1 The sequent calculus

Isabelle supports natural deduction, which is easy to use for interactive proof.
But natural deduction does not easily lend itself to automation, and has a
bias towards intuitionism. For certain proofs in classical logic, it can not be
called natural. The sequent calculus, a generalization of natural deduction,
is easier to automate.

A sequent has the form I' F A, where I" and A are sets of formulae.!
The sequent

Py, ... Pp =y, @Qn

is valid if Py A ... A P, implies 1 V...V @,. Thus Py,..., P,, represent
assumptions, each of which is true, while @y,..., @), represent alternative
goals. A sequent is basic if its left and right sides have a common formula,
asin P, Q F @, R; basic sequents are trivially valid.

Sequent rules are classified as right or left, indicating which side of the
F symbol they operate on. Rules that operate on the right side are analogous
to natural deduction’s introduction rules, and left rules are analogous to
elimination rules. Recall the natural deduction rules for first-order logic,
from Introduction to Isabelle. The sequent calculus analogue of (—1I) is the

rule
PTHA, Q

'EAP—Q

(—R)

This breaks down some implication on the right side of a sequent; I' and
A stand for the sets of formulae that are unaffected by the inference. The
analogue of the pair (VI1) and (VI2) is the single rule

THA,P,Q
TFA,PVQ

(VR)

'For first-order logic, sequents can equivalently be made from lists or multisets of
formulae.

CHAPTER 11. THE CLASSICAL REASONER 149

This breaks down some disjunction on the right side, replacing it by both
disjuncts. Thus, the sequent calculus is a kind of multiple-conclusion logic.

To illustrate the use of multiple formulae on the right, let us prove the
classical theorem (P — @)V (@ — P). Working backwards, we reduce this
formula to a basic sequent:

P.OF QP
PFQ,(Q— P) ((:))];
P00 =P |

F(P—Q)V(Q— P)

This example is typical of the sequent calculus: start with the desired the-
orem and apply rules backwards in a fairly arbitrary manner. This yields
a surprisingly effective proof procedure. Quantifiers add few complications,
since Isabelle handles parameters and schematic variables. See Chapter 10
of ML for the Working Programmer [14] for further discussion.

11.2 Simulating sequents by natural deduc-
tion

Isabelle can represent sequents directly, as in the object-logic LK. But natural
deduction is easier to work with, and most object-logics employ it. Fortu-
nately, we can simulate the sequent Py,..., P, F @Q1,..., @, by the Isabelle
formula

[Pr;.. s Py Q.52 Q] = C1,

where the order of the assumptions and the choice of (), are arbitrary. Elim-
resolution plays a key role in simulating sequent proofs.

We can easily handle reasoning on the left. As discussed in Introduction
to Isabelle, elim-resolution with the rules (VE), (LFE) and (3E) achieves a
similar effect as the corresponding sequent rules. For the other connectives,
we use sequent-style elimination rules instead of destruction rules such as
(AE1,2) and (VE). But note that the rule (=L) has no effect under our
representation of sequents!

T'HA,P
~PTFA

(=L)

What about reasoning on the right? Introduction rules can only affect the
formula in the conclusion, namely ;. The other right-side formulae are
represented as negated assumptions, = (), ..., = @),. In order to operate on

CHAPTER 11. THE CLASSICAL REASONER 150

one of these, it must first be exchanged with ¢);. Elim-resolution with the
swap rule has this effect:

[-P; -R = P] = R (swap)

To ensure that swaps occur only when necessary, each introduction rule
is converted into a swapped form: it is resolved with the second premise
of (swap). The swapped form of (Al), which might be called (-AE), is

[-(PAQ); "R = P; R = Q] = R.
Similarly, the swapped form of (—1) is
[-(P— Q) ["R;P]= Q] = R

Swapped introduction rules are applied using elim-resolution, which deletes
the negated formula. Our representation of sequents also requires the use
of ordinary introduction rules. If we had no regard for readability, we could
treat the right side more uniformly by representing sequents as

[Pi;...; P =G ... 0 Qn] = L.

11.3 Extra rules for the sequent calculus

As mentioned, destruction rules such as (AE1,2) and (VE) must be replaced
by sequent-style elimination rules. In addition, we need rules to embody
the classical equivalence between P — () and =P V (). The introduction
rules (V/1,2) are replaced by a rule that simulates (VR):

(~Q=P)=PVQ
The destruction rule (—FE) is replaced by
[P— Q; -P—= R; Q — R] — R.

Quantifier replication also requires special rules. In classical logic, dz.P is
equivalent to =Vz.—P; the rules (3R) and (VL) are dual:

T+ A,3z.P, Plt/q]
TFA,3z.P

P[t/z],Yz.P,T+ A

Vz.P,T'F A (VL)

(3R)

Thus both kinds of quantifier may be replicated. Theorems requiring multiple
uses of a universal formula are easy to invent; consider

(Ve . P(x) — P(f(x))) A P(a) — P(f"(a)),

CHAPTER 11. THE CLASSICAL REASONER 151

for any n > 1. Natural examples of the multiple use of an existential formula
are rare; a standard one is 3z . Vy . P(z) — P(y).

Forgoing quantifier replication loses completeness, but gains decidability,
since the search space becomes finite. Many useful theorems can be proved
without replication, and the search generally delivers its verdict in a reason-
able time. To adopt this approach, represent the sequent rules (IR), (3L)
and (VR) by (31), (3F) and (VI), respectively, and put (VE) into elimination
form:

[Va.P(z); P(t) = Q] = @ (VE)

Elim-resolution with this rule will delete the universal formula after a single
use. To replicate universal quantifiers, replace the rule by

[Vz.P(z); [P(¢);V2.P(2)] = Q] = Q. (VEs)
To replicate existential quantifiers, replace (31) by
[-(3z.P(z)) = P(t)] = Jz.P(z).

All introduction rules mentioned above are also useful in swapped form.

Replication makes the search space infinite; we must apply the rules with
care. The classical reasoner distinguishes between safe and unsafe rules,
applying the latter only when there is no alternative. Depth-first search may
well go down a blind alley; best-first search is better behaved in an infinite
search space. However, quantifier replication is too expensive to prove any
but the simplest theorems.

11.4 Classical rule sets

Each automatic tactic takes a classical set — a collection of rules, classified
as introduction or elimination and as safe or unsafe. In general, safe rules
can be attempted blindly, while unsafe rules must be used with care. A safe
rule must never reduce a provable goal to an unprovable set of subgoals.

The rule (V1) is unsafe because it reduces PV () to P. Any rule is unsafe
whose premises contain new unknowns. The elimination rule (VE») is unsafe,
since it is applied via elim-resolution, which discards the assumption Vz.P(x)
and replaces it by the weaker assumption P(7). The rule (31) is unsafe for
similar reasons. The rule (VE3) is unsafe in a different sense: since it keeps
the assumption Vz.P(x), it is prone to looping. In classical first-order logic,
all rules are safe except those mentioned above.

The safe/unsafe distinction is vague, and may be regarded merely as a
way of giving some rules priority over others. One could argue that (VE)

CHAPTER 11. THE CLASSICAL REASONER 152

is unsafe, because repeated application of it could generate exponentially
many subgoals. Induction rules are unsafe because inductive proofs are dif-
ficult to set up automatically. Any inference is unsafe that instantiates an
unknown in the proof state — thus match_tac must be used, rather than
resolve_tac. Even proof by assumption is unsafe if it instantiates unknowns
shared with other subgoals — thus eq_assume_tac must be used, rather than
assume_tac.

11.4.1 Adding rules to classical sets

Classical rule sets belong to the abstract type claset, which supports the
following operations (provided the classical reasoner is installed!):

empty_cs : claset

print_cs : claset -> unit

rep_cs : claset -> {safeEs: thm list, safels: thm list,
hazEs: thm list, hazIs: thm list,
swrappers: (string * wrapper) list,
uwrappers: (string * wrapper) list,
safeO_netpair: netpair, safep_netpair: netpair,
haz_netpair: netpair, dup_netpair: netpair}

addSIs : claset * thm list -> claset infix 4
addSEs : claset * thm list -> claset infix 4
addSDs : claset * thm list -> claset infix 4
addIs : claset * thm list -> claset infix 4
addEs : claset * thm list -> claset infix 4
addDs : claset * thm list -> claset infix 4
delrules : claset * thm list -> claset infix 4

The add operations ignore any rule already present in the claset with the
same classification (such as safe introduction). They print a warning if the
rule has already been added with some other classification, but add the rule
anyway. Calling delrules deletes all occurrences of a rule from the claset,
but see the warning below concerning destruction rules.

empty_cs is the empty classical set.

print_cs cs displays the printable contents of cs, which is the rules. All
other parts are non-printable.

rep_cs cs decomposes cs as a record of its internal components, namely
the safe introduction and elimination rules, the unsafe introduction and
elimination rules, the lists of safe and unsafe wrappers (see 11.4.2), and
the internalized forms of the rules.

¢s addSIs rules adds safe introduction rules to cs.

CHAPTER 11. THE CLASSICAL REASONER 153

cs addSEs rules adds safe elimination rules to cs.
cs addSDs rules adds safe destruction rules to cs.
c¢s addIs rules adds unsafe introduction rules to cs.
cs addEs rules adds unsafe elimination rules to cs.
cs addDs rules adds unsafe destruction rules to cs.

cs delrules rules deletes rules from cs. It prints a warning for those rules
that are not in cs.

| If you added rule using addSDs or addDs, then you must delete it as follows:

c¢s delrules [make_elim rule]

This is necessary because the operators addSDs and addDs convert the destruction
rules to elimination rules by applying make_elim, and then insert them using
addSEs and addEs, respectively.

Introduction rules are those that can be applied using ordinary resolution.
The classical set automatically generates their swapped forms, which will
be applied using elim-resolution. Elimination rules are applied using elim-
resolution. In a classical set, rules are sorted by the number of new subgoals
they will yield; rules that generate the fewest subgoals will be tried first (see
§3.4.1).

For elimination and destruction rules there are variants of the add oper-
ations adding a rule in a way such that it is applied only if also its second
premise can be unified with an assumption of the current proof state:

addSE2 : claset * (string * thm) -> claset infix 4
addSD2 : claset * (string * thm) -> claset infix 4
addE2 : claset * (string * thm) -> claset infix 4
addD2 : claset * (string * thm) -> claset infix 4

! A rule to be added in this special way must be given a name, which is used

to delete it again — when desired — using delSWrappers or delWrappers, re-
spectively. This is because these add operations are implemented as wrappers (see
11.4.2 below).

CHAPTER 11. THE CLASSICAL REASONER 154

11.4.2 Modifying the search step

For a given classical set, the proof strategy is simple. Perform as many safe
inferences as possible; or else, apply certain safe rules, allowing instantiation
of unknowns; or else, apply an unsafe rule. The tactics also eliminate as-
sumptions of the form z = ¢ by substitution if they have been set up to do so
(see hyp_subst_tacs in §11.6 below). They may perform a form of Modus
Ponens: if there are assumptions P —) and P, then replace P — @) by Q.

The classical reasoning tactics — except blast_tac! — allow you to
modify this basic proof strategy by applying two lists of arbitrary wrapper
tacticals to it. The first wrapper list, which is considered to contain safe
wrappers only, affects safe_step_tac and all the tactics that call it. The
second one, which may contain unsafe wrappers, affects the unsafe parts
of step_tac, slow_step_tac, and the tactics that call them. A wrapper
transforms each step of the search, for example by attempting other tactics
before or after the original step tactic. All members of a wrapper list are
applied in turn to the respective step tactic.

Initially the two wrapper lists are empty, which means no modification
of the step tactics. Safe and unsafe wrappers are added to a claset with the
functions given below, supplying them with wrapper names. These names
may be used to selectively delete wrappers.

type wrapper = (int -> tactic) -> (int -> tactic);

addSWrapper : claset * (string * wrapper) => claset infix 4
addSbefore : claset * (string * (int -> tactic)) -> claset infix 4
addSafter : claset * (string * (int -> tactic)) -> claset infix 4
delSWrapper : claset * string -> claset infix 4
addWrapper : claset * (string * wrapper) -> claset infix 4
addbefore : claset * (string * (int -> tactic)) -> claset infix 4
addafter : claset * (string * (int -> tactic)) -> claset infix 4
delWrapper : claset * string -> claset infix 4
addSss : claset * simpset -> claset infix 4
addss : claset * simpset -> claset infix 4

cs addSWrapper (name, wrapper) adds a new wrapper, which should yield
a safe tactic, to modify the existing safe step tactic.

cs addSbefore (name,tac) adds the given tactic as a safe wrapper, such
that it is tried before each safe step of the search.

cs addSafter (name,tac) adds the given tactic as a safe wrapper, such that
it is tried when a safe step of the search would fail.

CHAPTER 11. THE CLASSICAL REASONER 155

cs delSWrapper name deletes the safe wrapper with the given name.

cs addWrapper (name,wrapper) adds a new wrapper to modify the existing
(unsafe) step tactic.

cs addbefore (name,tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated before the result of each unsafe step.

cs addafter (name,tac) adds the given tactic as an unsafe wrapper, such
that it its result is concatenated after the result of each unsafe step.

cs delWrapper name deletes the unsafe wrapper with the given name.

cs addSss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, in a rather safe way, after each safe step of the
search.

cs addss ss adds the simpset ss to the classical set. The assumptions and
goal will be simplified, before the each unsafe step of the search.

Strictly speaking, the operators addss and addSss are not part of the
classical reasoner. , which are used as primitives for the automatic tactics
described in §11.5.2, are implemented as wrapper tacticals. they

| Being defined as wrappers, these operators are inappropriate for adding more
® than one simpset at a time: the simpset added last overwrites any earlier ones.
When a simpset combined with a claset is to be augmented, this should done before
combining it with the claset.

11.5 The classical tactics

If installed, the classical module provides powerful theorem-proving tactics.
Most of them have capitalized analogues that use the default claset; see
611.5.7.

11.5.1 The tableau prover

The tactic blast_tac searches for a proof using a fast tableau prover, coded
directly in ML. It then reconstructs the proof using Isabelle tactics. It is
faster and more powerful than the other classical reasoning tactics, but has
major limitations too.

e [t does not use the wrapper tacticals described above, such as addss.

CHAPTER 11. THE CLASSICAL REASONER 156

e [t ignores types, which can cause problems in HOL. If it applies a rule
whose types are inappropriate, then proof reconstruction will fail.

e [t does not perform higher-order unification, as needed by the rule
rangel in HOL and RepFunI in ZF. There are often alternatives to
such rules, for example range_eqI and RepFun_eqI.

e Function variables may only be applied to parameters of the sub-
goal. (This restriction arises because the prover does not use higher-
order unification.) If other function variables are present then the
prover will fail with the message Function Var’s argument not a
bound variable.

e [ts proof strategy is more general than fast_tac’s but can be slower.
If blast_tac fails or seems to be running forever, try fast_tac and
the other tactics described below.

blast_tac : claset -> int -> tactic
Blast.depth_tac : claset -> int -> int -> tactic
Blast.trace : bool ref initially false

The two tactics differ on how they bound the number of unsafe steps used
in a proof. While blast_tac starts with a bound of zero and increases it
successively to 20, Blast.depth_tac applies a user-supplied search bound.

blast_tac c¢s 4 tries to prove subgoal 7, increasing the search bound using
iterative deepening [8].

Blast.depth_tac cs lim i tries to prove subgoal ¢ using a search bound
of lim. Sometimes a slow proof using blast_tac can be made much
faster by supplying the successful search bound to this tactic instead.

set Blast.trace; causes the tableau prover to print a trace of its search.
At each step it displays the formula currently being examined and
reports whether the branch has been closed, extended or split.

11.5.2 Automatic tactics

type clasimpset = claset * simpset;

auto_tac : clasimpset -> tactic
force_tac : clasimpset -> int -> tactic
auto : unit -> unit
force : int -> unit

The automatic tactics attempt to prove goals using a combination of simpli-
fication and classical reasoning.

CHAPTER 11. THE CLASSICAL REASONER 157

auto_tac (cs, ss) is intended for situations where there are a lot of mostly
trivial subgoals; it proves all the easy ones, leaving the ones it cannot
prove. (Unfortunately, attempting to prove the hard ones may take a
long time.)

force_tac (cs,ss) i is intended to prove subgoal i completely. It tries to
apply all fancy tactics it knows about, performing a rather exhaustive
search.

They must be supplied both a simpset and a claset; therefore they are most
easily called as Auto_tac and Force_tac, which use the default claset and
simpset (see §11.5.7 below). For interactive use, the shorthand auto();
abbreviates by Auto_tac; while force 1; abbreviates by (Force_tac 1);

11.5.3 Semi-automatic tactics

clarify_tac : claset -> int -> tactic
clarify_step_tac : claset -> int -> tactic
clarsimp_tac : clasimpset -> int -> tactic

Use these when the automatic tactics fail. They perform all the obvious
logical inferences that do not split the subgoal. The result is a simpler subgoal
that can be tackled by other means, such as by instantiating quantifiers
yourself.

clarify_tac cs i performs a series of safe steps on subgoal i by repeatedly
calling clarify_step_tac.

clarify_step_tac cs ¢ performs a safe step on subgoal i. No splitting step
is applied; for example, the subgoal AA B is left as a conjunction. Proof
by assumption, Modus Ponens, etc., may be performed provided they
do not instantiate unknowns. Assumptions of the form z = ¢ may be
eliminated. The user-supplied safe wrapper tactical is applied.

clarsimp_tac cs i actslike clarify_tac, but also does simplification with
the given simpset. Note that if the simpset includes a splitter for the
premises, the subgoal may still be split.

CHAPTER 11. THE CLASSICAL REASONER 158

11.5.4 Other classical tactics

fast_tac : claset -> int -> tactic
best_tac : claset -> int -> tactic
slow_tac : claset -> int -> tactic

slow_best_tac : claset -> int -> tactic

These tactics attempt to prove a subgoal using sequent-style reasoning. Un-
like blast_tac, they construct proofs directly in Isabelle. Their effect is
restricted (by SELECT_GOAL) to one subgoal; they either prove this subgoal
or fail. The slow_ versions conduct a broader search.?

The best-first tactics are guided by a heuristic function: typically, the
total size of the proof state. This function is supplied in the functor call that
sets up the classical reasoner.

fast_tac cs i applies step_tac using depth-first search to prove subgoal 3.
best_tac c¢s ¢ applies step_tac using best-first search to prove subgoal 1.

slow_tac cs i applies slow_step_tac using depth-first search to prove sub-
goal 1.

slow_best_tac cs ¢ applies slow_step_tac with best-first search to prove
subgoal 7.

11.5.5 Depth-limited automatic tactics

depth_tac : claset -> int -> int -> tactic
deepen_tac : claset -> int -> int -> tactic

These work by exhaustive search up to a specified depth. Unsafe rules are
modified to preserve the formula they act on, so that it be used repeatedly.
They can prove more goals than fast_tac can but are much slower, for
example if the assumptions have many universal quantifiers.

The depth limits the number of unsafe steps. If you can estimate the
minimum number of unsafe steps needed, supply this value as m to save
time.

depth_tac c¢s m 4 tries to prove subgoal ¢ by exhaustive search up to
depth m.

deepen_tac cs m 4 tries to prove subgoal ¢ by iterative deepening. It calls
depth_tac repeatedly with increasing depths, starting with m.

2They may, when backtracking from a failed proof attempt, undo even the step of
proving a subgoal by assumption.

CHAPTER 11. THE CLASSICAL REASONER 159

11.5.6 Single-step tactics

safe_step_tac : claset -> int -> tactic
safe_tac : claset -> tactic
inst_step_tac : claset -> int -> tactic
step_tac : claset -> int -> tactic
slow_step_tac : claset -> int -> tactic

The automatic proof procedures call these tactics. By calling them yourself,
you can execute these procedures one step at a time.

safe_step_tac cs ¢ performs a safe step on subgoal 7. The safe wrapper
tacticals are applied to a tactic that may include proof by assump-
tion or Modus Ponens (taking care not to instantiate unknowns), or
substitution.

safe_tac cs repeatedly performs safe steps on all subgoals. It is determin-
istic, with at most one outcome.

inst_step_tac cs @ is like safe_step_tac, but allows unknowns to be in-
stantiated.

step_tac c¢s i is the basic step of the proof procedure. The unsafe wrapper
tacticals are applied to a tactic that tries safe_tac, inst_step_tac,
or applies an unsafe rule from cs.

slow_step_tac resembles step_tac, but allows backtracking between using
safe rules with instantiation (inst_step_tac) and using unsafe rules.
The resulting search space is larger.

11.5.7 The current claset

Each theory is equipped with an implicit current claset . This is a default

set of classical rules. The underlying idea is quite similar to that of a current

simpset described in §10.1; please read that section, including its warnings.
The tactics

CHAPTER 11. THE CLASSICAL REASONER 160

Blast_tac : int -> tactic
Auto_tac : tactic
Force_tac : int -> tactic
Fast_tac : int -> tactic
Best_tac : int -> tactic
Deepen_tac : int -> int -> tactic
Clarify_tac : int -> tactic
Clarify_step_tac : int -> tactic
Clarsimp_tac : int -> tactic
Safe_tac : tactic
Safe_step_tac : int -> tactic
Step_tac : int -> tactic

make use of the current claset. For example, Blast_tac is defined as

fun Blast_tac i st = blast_tac (claset()) i st;

and gets the current claset, only after it is applied to a proof state. The
functions

AddSIs, AddSEs, AddSDs, AddIs, AddEs, AddDs: thm list -> unit

are used to add rules to the current claset. They work exactly like their lower
case counterparts, such as addSIs. Calling

Delrules : thm list -> unit

deletes rules from the current claset.

11.5.8 Accessing the current claset

the functions to access the current claset are analogous to the functions for
the current simpset, so please see 10.2.3 for a description.

claset : unit -> claset

claset_ref : unit -> claset ref

claset_of : theory -> claset

claset_ref_of : theory -> claset ref

print_claset : theory -> unit

CLASET : (claset -> tactic) -> tactic
CLASET’ : (claset -> ’a -> tactic) -> ’a -> tactic
CLASIMPSET : (clasimpset -> tactic) -> tactic

CLASIMPSET’ :(clasimpset -> ’a -> tactic) -> ’a -> tactic

CHAPTER 11. THE CLASSICAL REASONER 161

11.5.9 Other useful tactics

contr_tac : int -> tactic
mp_tac : int -> tactic
eq_mp_tac : int -> tactic

swap_res_tac : thm list -> int -> tactic

These can be used in the body of a specialized search.

contr_tac i solves subgoal 7 by detecting a contradiction among two as-
sumptions of the form P and —P, or fail. It may instantiate unknowns.
The tactic can produce multiple outcomes, enumerating all possible
contradictions.

mp_tac ¢ is like contr_tac, but also attempts to perform Modus Ponens
in subgoal 7. If there are assumptions P — () and P, then it replaces
P — @ by @. It may instantiate unknowns. It fails if it can do nothing.

eq_mp_tac i is like mp_tac 7, but may not instantiate unknowns — thus, it
is safe.

swap_res_tac thms i refines subgoal i of the proof state using thms, which
should be a list of introduction rules. First, it attempts to prove the
goal using assume_tac or contr_tac. It then attempts to apply each
rule in turn, attempting resolution and also elim-resolution with the
swapped form.

11.5.10 Creating swapped rules

swapify : thm list -> thm list
joinrules : thm list * thm list -> (bool * thm) list

swapify thms returns a list consisting of the swapped versions of thms, re-
garded as introduction rules.

joinrules (intrs, elims) joins introduction rules, their swapped versions,
and elimination rules for use with biresolve_tac. Each rule is paired
with false (indicating ordinary resolution) or true (indicating elim-
resolution).

11.6 Setting up the classical reasoner

Isabelle’s classical object-logics, including FOL and HOL, have the classical
reasoner already set up. When defining a new classical logic, you should set

CHAPTER 11. THE CLASSICAL REASONER 162

up the reasoner yourself. It consists of the ML functor ClassicalFun, which
takes the argument signature CLASSICAL_DATA:

signature CLASSICAL_DATA =

sig

val mp : thm

val not_elim : thm

val swap : thm

val sizef : thm -> int

val hyp_subst_tacs : (int -> tactic) list
end;

Thus, the functor requires the following items:

mp should be the Modus Ponens rule [?P — 7Q); 7P] = Q.
not_elim should be the contradiction rule [-7P; 7P] = 7R.
swap should be the swap rule [-?P; —=7R = 7P| = "R.

sizef is the heuristic function used for best-first search. It should esti-
mate the size of the remaining subgoals. A good heuristic function
is size_of_thm, which measures the size of the proof state. Another
size function might ignore certain subgoals (say, those concerned with
type-checking). A heuristic function might simply count the subgoals.

hyp_subst_tacs is a list of tactics for substitution in the hypotheses, typi-
cally created by HypsubstFun (see Chapter 9). This list can, of course,
be empty. The tactics are assumed to be safe!

The functor is not at all sensitive to the formalization of the object-logic. It
does not even examine the rules, but merely applies them according to its
fixed strategy. The functor resides in Provers/classical.ML in the Isabelle
sources.

11.7 Setting up the combination with the
simplifier

To combine the classical reasoner and the simplifier, we simply call the ML
functor ClasimpFun that assembles the parts as required. It takes a structure
(of signature CLASIMP_DATA) as argment, which can be contructed on the fly:
structure Clasimp = ClasimpFun
(structure Simplifier = Simplifier
and Classical = Classical
and Blast Blast);

Bibliography

1]
2]

David Aspinall. Proof General. http://proofgeneral.inf.ed.ac.uk/.

Stefan Berghofer and Tobias Nipkow. Proof terms for simply typed higher
order logic. In J. Harrison and M. Aagaard, editors, Theorem Proving in
Higher Order Logics: TPHOLs 2000, volume 1869 of Lecture Notes in
Computer Science, pages 38-52. Springer-Verlag, 2000.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook.
Academic Press, 1988.

E. Charniak, C. K. Riesbeck, and D. V. McDermott. Artificial Intelligence
Programming. Lawrence Erlbaum Associates, 1980.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34:381-392, 1972.

K. Futatsugi, J.A. Goguen, Jean-Pierre Jouannaud, and J. Meseguer.
Principles of OBJ2. In Symposium on Principles of Programming
Languages, pages 52-66, 1985.

Florian Kammuiller, Markus Wenzel, and Lawrence C. Paulson. Locales: A
sectioning concept for Isabelle. In Y. Bertot, G. Dowek, A. Hirschowitz,

C. Paulin, and L. Thery, editors, Theorem Proving in Higher Order Logics:
TPHOLs 99, volume 1690 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

R. E. Korf. Depth-first iterative-deepening: an optimal admissible tree
search. Artificial Intelligence, 27:97-109, 1985.

Ursula Martin and Tobias Nipkow. Ordered rewriting and confluence. In
Mark E. Stickel, editor, 10th International Conference on Automated
Deduction, LNAT 449, pages 366-380. Springer, 1990.

Tobias Nipkow. Functional unification of higher-order patterns. In M. Vardi,
editor, Fighth Annual Symposium on Logic in Computer Science, pages
64-74. 1IEEE Computer Society Press, 1993.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A
Proof Assistant for Higher-Order Logic. Springer, 2002. LNCS Tutorial 2283.

163

http://proofgeneral.inf.ed.ac.uk/

BIBLIOGRAPHY 164

[12]

[13]

[14]

[15]

[16]

Tobias Nipkow and Christian Prehofer. Type reconstruction for type classes.
Journal of Functional Programming, 5(2):201-224, 1995.

Bengt Nordstrom, Kent Petersson, and Jan Smith. Programming in
Martin-Lof’s Type Theory. An Introduction. Oxford University Press, 1990.

Lawrence C. Paulson. ML for the Working Programmer. Cambridge
University Press, 2nd edition, 1996.

F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.
Journal of Automated Reasoning, 2:191-216, 1986. Errata, JAR 4 (1988),
235-236 and JAR 18 (1997), 135.

Markus Wenzel. Type classes and overloading in higher-order logic. In
Elsa L. Gunter and Amy Felty, editors, Theorem Proving in Higher Order
Logics: TPHOLs ’97, volume 1275 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

Appendix A

Syntax of Isabelle Theories

Below we present the full syntax of theory definition files as provided by
Pure Isabelle — object-logics may add their own sections. §6.1 explains the
meanings of these constructs. The syntax obeys the following conventions:

e Typewriter font denotes terminal symbols.

e id, tid, nat, string and longident are the lexical classes of identifiers,
type identifiers, natural numbers, quoted strings (without the need for
\...\ between lines) and long qualified ML identifiers. The categories
id, tid, nat are fully defined in §7.

e text is all text from the current position to the end of file, verbatim is
any text enclosed in {|... [}

e Comments in theories take the form (*...*) and may be nested, just
as in ML.

theoryDef

—1 extension

name

id
1 string j

extension

section en

3

(
H

)

165

APPENDIX A. SYNTAX OF ISABELLE THEORIES

section

classe

S

default L

types

L

arities I

nonterminals |

consts I

syntax I

trans

I

defs ———

constdefs I

rules

L

axclass I

mstance I

oracle L

locale

I

local

I

global |——/

fffffffffffffffff%

setup

166

APPENDIX A. SYNTAX OF ISABELLE THEORIES 167

classes

classDecl

classDecl

id

default

—@ef auli} sort ——

sort
id
N5 o

types

typeDecl

infix

J nat

APPENDIX A. SYNTAX OF ISABELLE THEORIES 168

typeDecl

— typevarlist — name

string
type
typevarlist
tid
tid
type
simpleType

type

APPENDIX A. SYNTAX OF ISABELLE THEORIES 169

simpleType
~ 1 e
] tid /
type id |
sunpleType
arities

arity

arities

arity
sort
L = o
nonterminals

nonterminals name

consts

mixfixConstDecl T

APPENDIX A. SYNTAX OF ISABELLE THEORIES 170

syntax

—@ l J (mixfixConstDecl T
mode

mode

mazfirConstDecl

— constDecl
1@ mixfix @J

constDecl
name ° string T
C) type

mixfix

— string \ j e
nat

N infix

LG)inde19+ string H nat J

APPENDIX A. SYNTAX OF ISABELLE THEORIES 171

trans

pat

01010

string ——

rules id | string

s

rules

!

defs

defs id [string

L

constdefs

constdefs name

9 -

stringjk J string
type mixfix

|

azxclass

I

axclass} classDecl

id [string

e

APPENDIX A. SYNTAX OF ISABELLE THEORIES

instance
name @ name witness ——
name @ arity J
witness
string 1 verbatim J
id
longident
)
>/
locale

—Clocale} name

locale Body

T

localeBody

localeConsts

— localeConsts \L

localeAsms jl localeDefs j

"

me

@T

string

mixfix

localeAsms

id = string T

APPENDIX A. SYNTAX OF ISABELLE THEORIES

localeDefs

id = string T

oracle

—Gracl% name name ——

local

global

setup

—@Lid J

longident

ml
——{(ML) text |—

173

Index

'l symbol, 84

$, 75, 101

% symbol, 84

* SplitterFun, 145
:: symbol, 84, 85
== symbol, 84

==> symbol, 84

=> symbol, 84

=7= symbol, 84
@Enum constant, 108
@Finset constant, 108
[symbol, 84

[| symbol, 84
$ISABELLE_HOME, 3
%, BT

Do, 58

1 symbol, 84

_K constant, 110, 112
{} symbol, 108

{ symbol, 84

} symbol, 84

|1 symbol, 84

Abs, 75, 101

AbsP, 57

Abst, 57
abstract_over, 76
abstract_rule, 53
aconv, 76
add_path, 67
addafter, 155
addbefore, 155
Addcongs, 123
addcongs, 128, 144
addD2, 153

174

AddDs, 160
addDs, 153
addE2, 153
addeqcongs, 128
AddEs, 160
addEs, 153
AddIs, 160
addIs, 153
addloop, 131
addSafter, 154
addSbefore, 154
addsD2, 153
AddSDs, 160
addSDs, 153
addSE2, 153
AddSEs, 160
addSEs, 153
Addsimprocs, 123
addsimprocs, 127
Addsimps, 122
addsimps, 126, 144
AddSIs, 160
addSIs, 152
addSolver, 130
Addsplits, 123
addsplits, 131
addss, 155, 155
addSSolver, 130
addSWrapper, 154
addWrapper, 155
all_tac, 37
ALLGOALS, 42, 136, 139
ambiguity

of parsed expressions, 94

INDEX

ancestors_of, 74
any nonterminal, 85
APPEND, 35, 37
APPEND’, 43
Appl, 98
aprop nonterminal, 85
ares_tac, 26
args nonterminal, 108
Arith theory, 138
arities
context conditions, 66
Asm_full_simp_tac, 121
asm_full_simp_tac, 29, 133
asm_full_simplify, 133
asm_rl theorem, 27
Asm_simp_tac, 120, 134
asm_simp_tac, 133, 144
asm_simplify, 133
associative-commutative opera-
tors, 137
assume, 52
assume_ax, 12, 13
assume_tac, 23, 152
assumption, 55
assumptions
contradictory, 161
deleting, 29
in simplification, 120, 130
inserting, 26
negated, 149
of main goal, 10, 11, 13, 19, 20
rotating, 28, 29
substitution in, 116
tactics for, 23
ASTs, 98-103
made from parse trees, 99
made from terms, 102
atac, 25
Auto_tac, 160
auto_tac (cs, ss), 157
axclass section, 64

175

axiomatic type class, 64
axioms

extracting, 12
axioms_of, 13

ba, 16

back, 14

batch execution, 17
bd, 16

bds, 16

be, 16

bes, 16
BEST_FIRST, 39, 40
Best_tac, 160
best_tac, 158
beta_conversion, 53
bicompose, 56
bimatch_tac, 30
bind_thm, 12, 13, 45
bind_thms, 12
binders, 93
biresolution, 55
biresolve_tac, 30, 161
Blast.depth_tac, 156
Blast.trace, 156
Blast_tac, 160
blast_tac, 156
Bound, 75, 99, 101, 102
bound_hyp_subst_tac, 117
br, 16
BREADTH_FIRST, 39
brs, 16

bw, 17

bws, 17

by, 11, 14, 15, 20
byev, 11

case splitting, 131
cd, 3
cert_axm, 77
CHANGED, 38

INDEX

chop, 14, 19
choplev, 14
Clarify_step_tac, 160
clarify_step_tac, 157
Clarify_tac, 160
clarify_tac, 157
Clarsimp_tac, 160
clarsimp_tac, 157
claset

current, 159
claset ML type, 152
ClasimpFun, 162
classes

context conditions, 66
classical reasoner, 147-162

setting up, 161

tactics, 155
classical sets, 151
ClassicalFun, 162
Close_locale, 72
combination, 53
commit, 3
COMP, 56
compose, 56
compose_tac, 30
concl_of, 48
COND, 39
congruence rules, 127
Const, 74, 101, 111
Constant, 98, 111
constants, 74

for translations, 88

syntactic, 104
context, 4, 120
contr_tac, 161
could_unify, 32
cprems_of, 48
cprop_of, 48
CPure theory, 62
CPure.thy, 73
crep_thm, 49

176

cterm ML type, 76
cterm_instantiate, 47
cterm_of, 18, 77

ctyp, 78

ctyp_of, 79
cut_facts_tac, 26, 117
cut_inst_tac, 26
cut_rl theorem, 27

datac, 25

datatype, 123

debug_simp, 121
Deepen_tac, 160
deepen_tac, 158

defer_tac, 26

definitions, see rewriting, meta-

level, 27, 65
unfolding, 10, 12
del_path, 67

Delcongs, 123
delcongs, 128
deleqcongs, 128
delete_tmpfiles, 67
delimiters, 86, 88, 89, 91
delloop, 131
delrules, 153
Delsimprocs, 123
delsimprocs, 127
Delsimps, 122
delsimps, 126
Delsplits, 123
delSWrapper, 155
delWrapper, 155
dependent_tr’, 110, 112
DEPTH_FIRST, 38
DEPTH_SOLVE, 38
DEPTH_SOLVE_1, 38
depth_tac, 158
dest_eq, 118
dest_imp, 118
dest_state, 49

INDEX

dest_Trueprop, 118
destruct-resolution, 23
DETERM, 40
DETERM_UNTIL, 37
DETERM_UNTIL_SOLVED, 40
discrimination nets, 31
distinct_subgoals_tac, 29
dmatch_tac, 23
domain_type, 118
dres_inst_tac, 25
dresolve_tac, 23
Drule.instantiate, 54
dtac, 25
dummyT, 101, 102, 113
duplicate subgoals
removing, 29

eatac, 25
elim-resolution, 23
ematch_tac, 23

empty constant, 108
empty_cs, 152
empty_ss, 124
eq_assume_tac, 23, 152
eg_assumption, 55
eq_mp_tac, 161

eq_reflection theorem, 118, 142

eq_thm, 40
eq_thm_prop, 40
eq_thy, 73
equal_elim, 52
equal_intr, 52
equality, 115-119
eres_inst_tac, 24
eresolve_tac, 23

on other than first premise, 48

ERROR, 7

error, 7

error messages, 7
eta_contract, 6, 106
etac, 25

EVERY, 36
EVERY’, 43
EVERY1, 43
examples

of logic definitions, 95

of macros, 108, 109

of mixfix declarations, 91
of simplification, 134

of translations, 112

exceptions

printing of, 7

exit, 3
Export, 72
export, 72
extensional, 53

fa,

16

Fast_tac, 160
fast_tac, 158
fatac, 25

£d,

16

fds, 16

fe,

16

fes, 16

files

reading, 3, 66

filt_resolve_tac, 32
FILTER, 38
filter_goal, 21
filter_thms, 32
findE, 14
findEs, 14
findI, 13
FIRST, 36
FIRST’, 43
FIRST1, 43
FIRSTGOAL, 42

flex-flex constraints, 29, 48, 57

flexflex_rule, 57
flexflex_tac, 29
FOL_basic_ss, 144

177

INDEX

FOL_ss, 144
fold_goals_tac, 27
fold_tac, 27
forall_elim, 54
forall_elim_list, 54
forall_elim_var, 54
forall_elim_vars, 54
forall_intr, 54
forall_intr_frees, 54
forall_intr_list, 54
Force_tac, 160
force_tac, 157
forw_inst_tac, 25
forward proof, 23, 45
forward_tac, 23

fr, 16

Free, 75, 101
freezeT, 55

frs, 16

ftac, 25
Full_simp_tac, 121
full_simp_tac, 133
full_simplify, 133
fun type, 78

function applications, 75

generic_simp_tac, 132
get_axiom, 13
get_thm, 13
get_thms, 13
getenv, 67
getgoal, 21
gethyps, 21, 41
Goal, 10, 19
goal, 10
goals_limit, 15
Goalw, 10
goalw, 10
goalw_cterm, 10

has_fewer_prems, 40

178

higher-order pattern, 126
HOL_basic_ss, 124

Hyp, 58
hyp_subst_tac, 116
hyp_subst_tacs, 162
HypsubstFun, 117, 162

id nonterminal, 86, 100, 107
identifiers, 86

idt nonterminal, 106

idts nonterminal, 85, 93
IF_UNSOLVED, 40
iff_reflection theorem, 142
IFOL_ss, 144

imp_intr theorem, 118
implies_elim, 52
implies_elim_list, 52
implies_intr, 52
implies_intr_hyps, 52
implies_intr_list, 52
incr_boundvars, 76, 112
indexname ML type, 75, 87
infixes, 92

insert constant, 108
inst_step_tac, 159
instance section, 64
instantiate, 54
instantiate’, 47, 55
instantiate_tac, 25
instantiation, 24, 46, 54
INTLEAVE, 36, 37
INTLEAVE’, 43
invoke_oracle, 79

is nonterminal, 108

joinrules, 161

A-abstractions, 31, 75
A-calculus, 51, 53, 85
lessb, 30

lexer, 86
lift_rule, 56

INDEX 179

lifting, 56 net_biresolve_tac, 31

locales net_match_tac, 31
functions, 72 net_resolve_tac, 31

logic class, 85, 90 no_document, 68

logic nonterminal, 85 no_qged, 11

Logic.auto_rename, 28 no_tac, 37

Logic.set_rename_prefix, 28 None, 33

long_names, 6 nonterminal symbols, 63

loose_bnos, 75, 113 not_elim theorem, 162

nprems_of, 48

num nonterminal, 86, 100, 107

numerals, 86

macros, 103-110
make_elim, 47, 153
Match exception, 111

match_tac, 23, 152 o type, 95
max_pri, 83, 90 object, 79
merge_ss, 124 OF, 45

meta-assumptions, 41, 50, 52, 55
printing of, 5
meta-equality, 51-53

op symbol, 92
Open_locale, 72
option ML type, 33

meta-implication, 51, 52
meta-quantifiers, 51, 53
meta-rewriting, 10, 17, 18, 27, see

Oracle, 58
oracles, 79-81
ORELSE, 35, 37, 42

also tactics, theorems ORELSE’, 43
in theorems, 46
meta-rules, see meta-rules, 50-57 parameters

removing unused, 29
renaming, 17, 28, 57
parents_of, 74
parse trees, 98
parse_rules, 105
pattern, higher-order, 126
pause_tac, 33

METAHYPS, 21, 41

MinProof, 58

mixfix declarations, 64, 89-93
mk_atomize, 143
mk_meta_cong, 144
mk_solver, 130

ML section, 65, 110, 112

model checkers, 94 PAxm, 58
mp theorem, 162 PBound, 58
mp_tac, 161 permute_prems, 48
MRI: 46 Poly /ML compiler, 7
MRS, 45 pop_proof, 19

pr, 15
name tokens, 86 premises, 10, 19
nat_cancel, 127 prems_of, 48

net_bimatch_tac, 31 prems_of_ss, 129

INDEX

pretty printing, 89, 91-92, 108
Pretty.setdepth, 5
Pretty.setmargin, 5
PRIMITIVE, 32
primrec, 123
prin, 8, 20
print mode, 64, 113
print modes, 93-94
print_cs, 152
print_depth, 5
print_exn, 7, 44
print_goals, 45
print_locale, 72
print_mode, 93
print_modes, 88
print_rules, 105
Print_scope, 72
print_simpset, 125
print_ss, 124
print_syntax, 74, 87
print_tac, 33
print_theory, 74
print_thm, 45
printing control, 5-6
printyp, 20
priorities, 82, 90
priority grammars, 82-83
prlev, 15
prlim, 15
productions, 82, 88, 89
copy, 88, 89, 100
proof ML type, 20
proof state, 9
printing of, 15
proof terms, 57-61
checking, 59
parsing, 60
partial, 59
printing, 60
reconstructing, 59
proofs, 9-21

inspecting the state, 20
managing multiple, 19
saving and restoring, 20
stacking, 19
starting, 9
timing, 15
proofs, 58
PROP symbol, 84
prop type, 78, 85
prop nonterminal, 85, 95
ProtoPure.thy, 73
prove_goal, 15, 18
prove_goalw, 18
prove_goalw_cterm, 18
prth, 45
prthq, 45
prths, 45
prune_params_tac, 29
PThm, 58
pttrn nonterminal, 85
pttrns nonterminal, 85
Pure theory, 62, 83
Pure.thy, 73
push_proof, 19
pwd, 3

ged, 11, 13
ged_goal, 18
qed_goalw, 18
quantifiers, 93
quit, 3

read, 20
read_axm, 77
read_cterm, 77
read_instantiate, 46
read_instantiate_sg, 47
reading
axioms, see assume_ax
goals, see proofs, starting
rearrange_prems, 48

INDEX

reflexive, 53
remove_thy, 67
ren, 17
rename_last_tac, 28
rename_params_rule, 57
rename_tac, 28
rep_cs, 152
rep_cterm, 77
rep_ctyp, 79
rep_ss, 124
rep_thm, 49
REPEAT, 36, 37
REPEAT1, 37
REPEAT_DETERM, 36
REPEAT_DETERM_N, 36
REPEAT_FIRST, 42
REPEAT_SOME, 42
res_inst_tac, 24, 29
reserved words, 86, 109
reset, 5
reset_path, 68
resolution, 45, 55

tactics, 22

without lifting, 56
resolve_tac, 22, 152
restore_proof, 20
result, 11, 13, 20
rev_eq_reflection theorem, 118
rev_mp theorem, 118
rewrite rules, 125-126

permutative, 137-140
rewrite_goals_rule, 46
rewrite_goals_tac, 27, 46
rewrite_rule, 46
rewrite_tac, 12, 27
rewriting

object-level, see simplification

ordered, 137

syntactic, 103-110
rewtac, 26
RL, 46

181

RLN, 46
rotate_prems, 48
rotate_proof, 19
rotate_tac, 29
RS, 45
RSN, 45
rtac, 25
rule_by_tactic, 29, 47
rules
converting destruction to elim-
ination, 47

Safe_step_tac, 160
safe_step_tac, 154, 159
Safe_tac, 160
safe_tac, 159
save_proof, 20
saving your session, 2
search, 35

tacticals, 3840
SELECT_GOAL, 27, 41
Seq.seq ML type, 32
sequences (lazy lists), 33
sequent calculus, 148
sessions, 1-8
set, b
setloop, 131
setmksimps, 126, 142, 144
setSolver, 130, 144
setSSolver, 130, 144
setsubgoaler, 129, 144
settermless, 137
setup

theory, 65
shortcuts

for by commands, 15

for tactics, 25
show_brackets, 6
show_consts, 6
show_hyps, 6
show_path, 67

INDEX

show_sorts, 6, 102, 111
show_tags, 6
show_types, 6, 102, 106, 113
Sign.certify_term, 77
Sign.certify_typ, 79
Sign.sg ML type, 62
Sign.stamp_names_of, 74
Sign.string_of_term, 77
Sign.string_of _typ, 78
sign_of, 18, 74
sign_of_thm, 48
signatures, 62, 74, 76, 77, 79
Simp_tac, 120
simp_tac, 133
simplification, 120-146

conversions, 133

forward rules, 133

from classical reasoner, 155

setting up, 141

setting up the splitter, 145

tactics, 132
simplification sets, 123
Simplifier.asm_full_rewrite,

133

Simplifier.asm_rewrite, 133
Simplifier.full_rewrite, 133
Simplifier.rewrite, 133
Simplifier.simproc, 140
Simplifier.simproc_i, 140
simplify, 133
SIMPSET, 125
simpset

current, 120, 125
simpset, 125
SIMPSET’, 125
simpset_of, 125
simpset_ref, 125
simpset_ref_of, 125
size_of_thm, 39, 40, 162
sizef, 162
slow_best_tac, 158

slow_step_tac, 154, 159
slow_tac, 158
SOLVE, 40
Some, 33
SOMEGOAL, 42
sort nonterminal, 85
sort constraints, 84
sort hypotheses, 49, 51
sorts

printing of, 5
ssubst theorem, 116
stac, 116
stamps, 62, 74
standard, 47
starting up, 1
Step_tac, 160
step_tac, 154, 159
store_thm, 12
store_thms, 12
string_of_cterm, 77
string_of_ctyp, 78
string_of_thm, 45
strings, 86
strip_shyps, 50
strip_shyps_warning, 50
SUBGOAL, 32
subgoal module, 9-21
subgoal_tac, 26
subgoals_of_brl, 30
subgoals_tac, 26
subst theorem, 115, 118
substitution

rules, 115
subthy, 73
swap theorem, 162
swap_res_tac, 161
swapify, 161
sym theorem, 116, 118
symmetric, 53
syn_of, 87
syntax

182

INDEX

Pure, 83-88

transformations, 98-113
syntax section, 64
Syntax.ast ML type, 98
Syntax.mark_boundT, 113
Syntax.print_gram, 88
Syntax.print_syntax, 87
Syntax.print_trans, 88
Syntax.syntax ML type, 87
Syntax.trace_ast, 107
Syntax.variant_abs’, 113

tactic ML type, 22
Tactic.prove, 18
Tactic.prove_standard, 18
tacticals, 3543
conditional, 39
deterministic, 39
for filtering, 38
for restriction to a subgoal, 41
identities for, 37
joining a list of tactics, 36
joining tactic functions, 43
joining two tactics, 35
repetition, 36
scanning for subgoals, 42
searching, 38, 39
tactics, 22-34
assumption, 23, 25
commands for applying, 10
debugging, 20
filtering results of, 38
for composition, 29
for contradiction, 161
for inserting facts, 26
for Modus Ponens, 161
instantiation, 24
matching, 23
meta-rewriting, 25, 27
primitives for coding, 32
resolution, 22, 25, 30, 31

183

restricting to a subgoal, 41
simplification, 132
substitution, 115-119
tracing, 33
TERM, 76
term ML type, 74, 101
terms, 74
certified, 76
made from ASTs, 101
printing of, 20, 77
reading of, 20
TFree, 78
the_context, 4
THEN, 35, 37, 42
THEN’, 43
THEN_BEST_FIRST, 39
theorems, 44-61
dependencies, 59
equality of, 40
extracting, 12
extracting proved, 11
joining by resolution, 45
of pure theory, 27
printing of, 44
retrieving, 13
size of, 40
standardizing, 47
storing, 12
taking apart, 48
theories, 6281
axioms of, 12
inspecting, 74
parent, 62
reading, 4, 66
theorems of, 12
THEORY exception, 13, 62
theory, 4
theory ML type, 62
Theory.add_oracle, 79
theory_of_thm, 49
thin_refl theorem, 118

INDEX

thin_tac, 29
THM exception, 44, 45, 50, 56
thm, 12, 70, 72
thm ML type, 44
Thm.instantiate, 54
thm_deps, 59
thms, 12
thms_containing, 14
thms_of, 13
tid nonterminal, 86, 100, 107
time_use, 3
time_use_thy, 4
timing, 15
timing statistics, 15
toggle, 5
token class, 113
token translations, 113-114
token_translation, 113
topthm, 20
touch_thy, 67
tpairs_of, 48
trace_BEST_FIRST, 39
trace_DEPTH_FIRST, 38
trace_goalno_tac, 42
trace_REPEAT, 37
trace_simp, 121, 135
tracing
of classical prover, 156
of macros, 107

of searching tacticals, 38, 39
of simplification, 122, 135-136

of tactics, 33

of unification, 50
transfer, 73
transfer_sg, 73
transitive, 53
translations, 110-113

parse, 93, 101

parse AST, 99, 100

print, 93

print AST, 103

184

translations section, 105
trivial, 56
Trueprop constant, 95
TRY, 36, 37
TRYALL, 42
TVar, 78
tvar nonterminal, 86, 87, 100, 107
typ ML type, 78
Type, 78
type type, 90
type nonterminal, 85
type constraints, 85, 93, 102
type constructors, 78
type identifiers, 86
type synonyms, 63
type unknowns, 78, 86
freezing/thawing of, 55
type variables, 78
types, 78
certified, 78
printing of, 5, 20, 78

undo, 9, 10, 14, 19
unknowns, 75, 86
update_thy, 4
update_thy_only, 67
uresult, 12, 13, 20
use, 3

use_thy, 4
use_thy_only, 67

Var, 75, 101
var nonterminal, 86, 87, 100, 107
Variable, 98
variables
bound, 75
free, 75
variant_abs, 76
varifyT, 55

warning, 7
warnings, 7

INDEX

with_path, 68
writeln, 7

xnum nonterminal, 86, 100, 107
xstr nonterminal, 86, 100, 107

zero_var_indexes, 47

185

	Basic Use of Isabelle
	Basic interaction with Isabelle
	Ending a session
	Reading ML files
	Reading theories
	Setting flags
	Printing of terms and theorems
	Printing limits
	Printing of hypotheses, brackets, types etc.
	Eta-contraction before printing

	Diagnostic messages
	Displaying exceptions as error messages

	Proof Management: The Subgoal Module
	Basic commands
	Starting a backward proof
	Applying a tactic
	Extracting and storing the proved theorem
	Extracting axioms and stored theorems
	Retrieving theorems
	Undoing and backtracking
	Printing the proof state
	Timing

	Shortcuts for applying tactics
	Refining a given subgoal
	Scanning shortcuts
	Other shortcuts

	Executing batch proofs
	Internal proofs
	Managing multiple proofs
	The stack of proof states
	Saving and restoring proof states

	*Debugging and inspecting
	Reading and printing terms
	Inspecting the proof state
	Filtering lists of rules

	Tactics
	Resolution and assumption tactics
	Resolution tactics
	Assumption tactics
	Matching tactics
	Explicit instantiation

	Other basic tactics
	Tactic shortcuts
	Inserting premises and facts
	``Putting off'' a subgoal
	Definitions and meta-level rewriting
	Theorems useful with tactics

	Obscure tactics
	Renaming parameters in a goal
	Manipulating assumptions
	Tidying the proof state
	Composition: resolution without lifting

	*Managing lots of rules
	Combined resolution and elim-resolution
	Discrimination nets for fast resolution

	Programming tools for proof strategies
	Operations on tactics
	Tracing

	*Sequences
	Basic operations on sequences
	Converting between sequences and lists
	Combining sequences

	Tacticals
	The basic tacticals
	Joining two tactics
	Joining a list of tactics
	Repetition tacticals
	Identities for tacticals

	Control and search tacticals
	Filtering a tactic's results
	Depth-first search
	Other search strategies
	Auxiliary tacticals for searching
	Predicates and functions useful for searching

	Tacticals for subgoal numbering
	Restricting a tactic to one subgoal
	Scanning for a subgoal by number
	Joining tactic functions
	Applying a list of tactics to 1

	Theorems and Forward Proof
	Basic operations on theorems
	Pretty-printing a theorem
	Forward proof: joining rules by resolution
	Expanding definitions in theorems
	Instantiating unknowns in a theorem
	Miscellaneous forward rules
	Taking a theorem apart
	*Sort hypotheses
	Tracing flags for unification

	*Primitive meta-level inference rules
	Assumption rule
	Implication rules
	Logical equivalence rules
	Equality rules
	The -conversion rules
	Forall introduction rules
	Forall elimination rules
	Instantiation of unknowns
	Freezing/thawing type unknowns

	Derived rules for goal-directed proof
	Proof by assumption
	Resolution
	Composition: resolution without lifting
	Other meta-rules

	Proof terms
	Reconstructing and checking proof terms
	Parsing and printing proof terms

	Theories, Terms and Types
	Defining theories
	Definitions
	*Classes and arities

	The theory loader
	Locales
	Declaring Locales
	Locale Scope
	Functions for Locales

	Basic operations on theories
	*Theory inclusion
	*Primitive theories
	Inspecting a theory

	Terms
	*Variable binding
	Certified terms
	Printing terms
	Making and inspecting certified terms

	Types
	Certified types
	Printing types
	Making and inspecting certified types

	Oracles: calling trusted external reasoners

	Defining Logics
	Priority grammars
	The Pure syntax
	Logical types and default syntax
	Lexical matters
	*Inspecting the syntax

	Mixfix declarations
	The general mixfix form
	Example: arithmetic expressions
	The mixfix template
	Infixes
	Binders

	*Alternative print modes
	Ambiguity of parsed expressions
	Example: some minimal logics

	Syntax Transformations
	Abstract syntax trees
	Transforming parse trees to ASTs
	Transforming ASTs to terms
	Printing of terms
	Macros: syntactic rewriting
	Specifying macros
	Applying rules
	Example: the syntax of finite sets
	Example: a parse macro for dependent types

	Translation functions
	Declaring translation functions
	The translation strategy
	Example: a print translation for dependent types

	Token translations

	Substitution Tactics
	Substitution rules
	Substitution in the hypotheses
	Setting up the package

	Simplification
	Simplification for dummies
	Simplification tactics
	Modifying the current simpset

	Simplification sets
	Inspecting simpsets
	Building simpsets
	Accessing the current simpset
	Rewrite rules
	*Simplification procedures
	*Congruence rules
	*The subgoaler
	*The solver
	*The looper

	The simplification tactics
	Forward rules and conversions
	Examples of using the Simplifier
	A trivial example
	An example of tracing
	Free variables and simplification

	Permutative rewrite rules
	Example: sums of natural numbers
	Re-orienting equalities

	*Coding simplification procedures
	*Setting up the Simplifier
	A collection of standard rewrite rules
	Functions for preprocessing the rewrite rules
	Making the initial simpset
	Splitter setup

	The Classical Reasoner
	The sequent calculus
	Simulating sequents by natural deduction
	Extra rules for the sequent calculus
	Classical rule sets
	Adding rules to classical sets
	Modifying the search step

	The classical tactics
	The tableau prover
	Automatic tactics
	Semi-automatic tactics
	Other classical tactics
	Depth-limited automatic tactics
	Single-step tactics
	The current claset
	Accessing the current claset
	Other useful tactics
	Creating swapped rules

	Setting up the classical reasoner
	Setting up the combination with the simplifier

	Syntax of Isabelle Theories

