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Abstract

The growing field of Design Patterns offers hope of controlling the
complexities associated with the development of large software applica-
tions. The architecture of a system can be expressed at a higher level
of abstraction, which allows the designer to concentrate on the specifics
of the application rather than having to deal with low-level issues. Sim-
ulations are today an essential tool for research and training in areas
such as national defense, where simulations are a cheaper (and sometimes
the only possible) alternative. This work has focused on finding design
patterns for simulation software and provides an implementation of the
discovered patterns in Erlang/OTP as something called behaviours. The
main simulation software in this study is Sim94 - A concurrent simulator
for plan-driven troops, written in the Erlang programming language at the
Computing Science Department of Uppsala University in 1994. This pa-
per also investigates patterns in general as well as the relationship between
behaviours and design patterns.
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1 Introduction

This thesis is part of an effort initiated by the Swedish Defense with the
purpose of gathering as much information as possible about Design Patterns.

The main goal of this work has been to create a catalogue of design patterns
for simulations and to provide the implementation of these patterns in the form
of Erlang behaviours. As the primary aid in the search for simulation patterns,
Sim94 has been used. Sim94 is a concurrent troop simulator written in Erlang
at the Computing Science Department of Uppsala University in 1994.

This report provides the following results:

• An investigation of behaviours and design patterns in general.

• A comparison of behaviours versus published design patterns.

• The implementation of one published design pattern as a behaviour.

• A catalogue of design patterns for simulations.

• The implementation of the design pattern catalogue as behaviours.

• A programming manual for the new behaviours.

The report is divided in two major parts. The first part contains information
about Design Patterns, Simulations and Erlang/OTP. The second part contains
the actual results.

All code is developed for Erlang/OTP (R6B) on a Linux machine running
RedHat 6.2. This report is written in Emacs [1], using the LATEX typesetting
system. [2]

I would like to thank my supervisor Lennart Öhman at Sjöland & Thy-
selius Telecom AB, my examiner Richard Carlsson at the Computing Science
Department of Uppsala University, and especially the people responding to my
questions sent to the erlang-questions@erlang.org mailing list.
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2 Design Patterns

2.1 Introduction

Design patterns are gaining more and more acceptance in the software com-
munity and are becoming an important building block in modern software
development1. A design pattern is an abstract solution to a recurring problem
in a specific domain. Design patterns capture good existing practice by
documenting the assumptions, structure, dynamics and consequences of a
design decision. The primary purpose of a pattern is to communicate design
insights.

The general picture that most people have is that design patterns are an
object-oriented thing, which only is applicable in object-oriented designs and
languages. This is due to the fact that most of the work done in this field
has been done using object-orientation. Even the definition of design patterns
proposed in Design Patterns [3] talks about communicating objects and classes.
However, design patterns are not restricted to the object-oriented paradigm
and can be used with equally good results in any other context. The original
definition of patterns proposed by Christopher Alexander has nothing to do
(as you will see in section 2.2 on page 6) with object-oriented programming.

This section starts with the history of design patterns and then goes on to
explain what design patterns really are and ends with a discussion about why
every programmer should learn and use them.

2.2 The History of Design Patterns

Design patterns originate from the work of an architect named Christopher
Alexander. In the late 1970s, he wrote two books about patterns for urban
planning and building architecture, A Pattern Language [4] and A Timeless
Way of Building [5]. Alexander wanted to create structures that are good for
people and have a positive influence on them by improving their comfort and
their quality of life. Christopher Alexander asked himself,

What is present in a good quality design that is not present in a poor
design? What is present in a poor quality design that is not present
in a good design?

Alexander studied these questions by making many observations of buildings,
towns, streets and other aspects of living spaces that human beings have built
for themselves. He discovered that, for a particular architectural creation, good
constructs had things in common with each other. He named these similarities
patterns and defined them as a solution to a problem in a context :

Each pattern describes a problem which occurs over and over again
in our environment and then describes the core of the solution to
that problem, in such a way that you can use this solution a million
times over; without ever doing it the same way twice.

1Industrial Experience with Design Patterns,
http://www1.belllabs.com/user/cope/Patterns/ICSE96/icse.html
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The four components required in every pattern description, according to
Alexander are:

- The name of the pattern.

- The purpose of the pattern, the problem it solves.

- How we could accomplish this.

- The constraints and forces we have to consider in order to accomplish it.

The following is an example of a pattern from Alexander’s famous book A
Timeless Way of Building [5]:

The Courtyard Pattern

A courtyard, which is properly formed, helps people come to life in it.

Consider the forces at work in a courtyard. Most fundamental of all, people
seek some kind of private outdoor space, where they can sit under the sky, see
the stars, enjoy the sun, perhaps plant flowers. This is obvious.

But there are more subtle forces too. For instance, when a courtyard is too
tightly enclosed, has no view out, people feel uncomfortable, and tend to stay
away . . . they need to see out into some larger and more distant space.

Or again, people are creatures of habit. If they pass in and out of the
courtyard, every day, in the course of their normal lives, the courtyard becomes
familiar, a natural place to go . . . and it is used.

But a courtyard with only one way in, a place you only go when you want
to go there, is an unfamiliar place, tends to stay unused . . . people go more
often to places which are familiar.

Or again, there is a certain abruptness about suddenly stepping out, from
the inside, directly to the outside . . . it is subtle, but enough to inhibit you.

If there is a transitional space - a porch or a veranda, under cover, but open
to the air - this is psychologically half way between indoors and outdoors, and
makes it much more simple, to take each of the smaller steps that brings you
out into the courtyard . . .

When a courtyard has a view out to a larger space, has crossing paths
from different rooms, and has a veranda or a porch, these forces can resolve
themselves. The view out makes it comfortable, the crossing paths help generate
a sense of habit there, the porch makes it easier to go out more often . . . and
gradually the courtyard becomes a pleasant customary place to be.

In the early 90s, some experienced software developers looked at Alexander’s
work in patterns and wondered if what was true for architectural creations would
also be true for software design.
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• Were there problems in software that occur over and over again that could
be solved in somewhat the same manner?

They concluded that this was certainly the case.

Many people were involved in the study of design patterns in the early 90s,
but it was not until 1995 that a book that had great influence on the community
was published. The book was called Design Patterns: Elements of Reusable
Object-Oriented Software [3] and is still the most popular book in the field. The
authors of the book are known as the Gang of Four.

2.3 What is a Design Pattern?

A general and widely accepted definition of a pattern is as follows:

A pattern is the abstraction from a concrete form which keeps re-
curring in specific non-arbitrary contexts. [6]

A pattern is more than just a battle-proven solution to a recurring problem.
The problem occurs within a certain context, and in the presence of several
competing concerns. The proposed solution involves some kind of structure,
which balances these concerns in the manner most suitable for the given context.
Using the pattern form, the description of the solution tries to capture the
essential insight so that others may learn from it, and make use of it in similar
situations. The pattern is also given a name to facilitate the discussion of the
pattern.

Patterns are devices that allow programs to share knowledge about their
design. In our daily programming, we encounter many problems that have
occurred, and will occur again. The question is how we are going to solve them
this time. Documenting patterns is one way that you can reuse and share the
information that you have learned about how it is best to solve a specific design
problem.

To remove every possible misunderstanding of the pattern concept the fol-
lowing discussion will explain several different things that a pattern is not.

2.3.1 A design pattern is not an algorithm

Algorithms and data structures may be used in the implementation of patterns,
but algorithms and data structures generally solve more fine-grained computa-
tional problems like sorting and searching. Algorithms are usually concerned
with optimizing space or time and are rarely concerned with compromises and
tradeoffs regarding things like maintainability, adaptability and (re)usability of
the design.

2.3.2 A design pattern is not a framework

Design patterns may be used in both the design and the documentation of a
framework. A single framework typically contains several design patterns. In
fact, a framework can be viewed as the implementation of a system of design
patterns. Despite the fact that they are related in this manner, it is important
to recognize that frameworks and design patterns are two distinctly separate
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things: a framework is implemented source code, whereas design patterns rep-
resent knowledge and experience about software. Hence, both frameworks and
design patterns are abstract designs that solve a given problem.

2.3.3 A design pattern is not an idiom

Idioms are on a much lower level than design patterns and are programming
language specific. An idiom describes how to implement particular aspects of
components or relationships between them. The most famous publication of
idioms is James Copliens book, Advanced C++ Programming Styles and Id-
ioms [7]. One example of an idiom is the Counted-Pointer idiom which makes
memory management of dynamically allocated shared objects in C++ easier.
It introduces a reference counter to a body class that is updated by handle ob-
jects. Clients access body class objects only through handles via the overloaded
operator→().

2.4 Elements of a pattern

There exist many different formats for the documentation of design patterns.
The most widely used format is the one suggested by the Gang of Four in
Design Patterns [3]. Therefore, a description of what is commonly referred to
as GoF-format is presented next:

2.4.1 Pattern Name

The pattern must have a meaningful name since it allows us to refer to the
pattern with a single word or short phrase, which simplifies the discussion of
the pattern.

2.4.2 Intent

Describes the intent of the pattern, what it does and which design problem the
pattern is supposed to solve.

2.4.3 Also Known As

Other known names used for this pattern in the literature.

2.4.4 Motivation

A scenario that illustrates a problem and how the pattern solves it.

2.4.5 Applicability

In which situations one should use the pattern. Typically, this section contains
a couple of examples.

2.4.6 Structure

Contains a graphical representation of the different objects in the pattern and
the relationships between them.
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2.4.7 Participants

The different objects and their respective responsibilities.

2.4.8 Collaborations

How the participants work together in order to perform their responsibilities.

2.4.9 Consequences

Describes both the trade-offs and the positive results of using the pattern.

2.4.10 Implementation

What to think about when you are implementing the pattern: pitfalls, hints
and techniques.

2.4.11 Sample Code

Sample code that illustrates how an implementation of the design pattern might
look like. The code should be thoroughly explained.

2.4.12 Known Uses

Describes known occurrences of the pattern and its applicability within existing
systems. This confirms that it really is a recurring pattern. To make sure that
the pattern really is recurring the Rule of Three is applied. The rule of three
tells the pattern writer that he must show three occurrences of the pattern in
three different software applications.

2.4.13 Related Patterns

Relationships between this pattern and others within the same pattern lan-
guage2 or system. This includes patterns that this pattern is using and other
patterns using this pattern in their implementation. If there exists any similar
patterns, they should be described here as well.

2.5 Why use Design Patterns?

For the same kind of reason that you should reuse good code: Benefiting from
the knowledge and experience of other people who have put more effort into
understanding contexts, forces, and solutions than you have done. Further,
patterns can be more reusable than code, since they can be adapted so that
you can build software to address particular circumstances that cause you to be
unable to reuse an existing component. Tradeoffs and alternatives, which the
pattern reader might never discover alone, are already documented.

2A pattern language is a collection of patterns but unlike a pattern catalogue it includes
rules and guidelines that explain how and when to apply its patterns to solve a problem that is
larger than any individual pattern can solve. A pattern language may be regarded as a lexicon
of pattern plus the grammar that defines how to put them together into valid sentences.
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2.5.1 Improved communication among developers

Typically, when several software developers are discussing various potential so-
lutions to a problem, they can use the pattern names as a precise and concise
way to communicate complex concepts efficiently.

2.5.2 Patterns are extracted from working designs

Each pattern is extracted from existing, working designs and not created without
experience. The design patterns capture the essence of working designs in a form
that makes them usable in future work, including specifics about the context
that makes the patterns applicable or not.

2.5.3 Records and encourages the reuse of best practice

This is especially important for helping less-experienced developers produce
good designs faster. A collection of design patterns in handbook-form is useful
for teaching software engineering. However, a design pattern is not a rule to be
followed blindly, but rather it should serve as a guide to the designer or provide
alternatives when being applied to a particular situation.

2.5.4 Gives a higher-level perspective on the problem

This is, according to Pattern Oriented Design [8], the greatest of the reasons to
study design patterns. They mean that it frees you from the tyranny of dealing
with the details to early.

2.6 The Dark Side of Design Patterns

There are several things in the world of patterns that are not as positive as
the opinions from the previous section. First of all, design patterns have no
generally accepted definition and no standardization exists. This leads to,
among other things, that misconceptions arise and design patterns written by
different authors can be as different as night and day. Secondly, no central
organization, to which design pattern proposals can be sent and reviewed by,
exists. Neither does a place where programmers can find all published design
pattern. As it is today, one pattern can be found in a book, another pattern
can be found on an unknown web site and yet another pattern might not even
be found even though it exist. Further, the Internet contains many different
versions of each pattern, which makes it almost impossible for novices in the
design pattern field to know which pattern to use or even if a pattern is correct.

Introducing design patterns to the programmers in a company is a major
task. For programmers to take advantage of design patterns they must all
learn many patterns and how to use them. It is not sufficient if one of the
programmers becomes an expert on design patterns. To take full advantage
of the communication speedup among developers everybody involved in the
implementation of a system must know the relevant design patterns.

Some people complain about the fact that design patterns must be
(re)implemented each time they are used. This is the certainly the case.



2 DESIGN PATTERNS 12

However, this is the way it must be since an implementation of a design pattern
would loose in generality and thus applicability.

An expert programmer that have been implementing a special kind of
software for several years will not gain any advantages by using design patterns
since he writes solutions to his problems much faster and better without them.
He knows the special requirements and problems within his domain better than
anybody else. This is the kind of person that should write design pattern.

Sometimes it is better to use a simpler solution than the appropriate design
pattern. [9] investigates the question whether it is useful to design programs
with design patterns even if the actual design problem is simpler than that
solved by the design patterns, i.e., whether using patterns which overkill the
problem at hand is useful, harmful, or neutral. They found that all of this can
be the case, depending on the situation.

Design Patterns are often designed for object-oriented languages, i.e. either
the implementation section assumes that you are working with C++/Java or
the problem itself is occurring only in object-oriented languages.
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3 Erlang/OTP

3.1 Erlang - The Programming Language

Erlang is a declarative programming language which was designed for program-
ming concurrent, real-time, distributed fault-tolerant systems. The Erlang
programming language has been developed at Ericsson and Ellemtel Computer
Science Laboratories [10]. The development started in the early eighties as an
investigation of whether modern declarative programming paradigms could be
used for programming large industrial telecommunications switching systems.
Erlang has ideas from Prolog and the syntax clearly resembles that of an
untyped ML. With the recent development of the Internet startup company
BlueTail one must say that Erlang really became a success. At the time of this
writing BlueTail, which works with Internet traffic management in Erlang, has
been sold for over a billion SEK.

Applications written in Erlang are divided into modules. Modules are com-
posed of functions and each function consists of clauses. Functions are either
only visible inside a module or exported, i.e. they can also be called by functions
in other modules. Different functions can have the same names as long as they
have different number of arguments or exist in different modules. This is due
to the fact that functions are distinguished by module:name/arity.

-module(list).
-export([reverse/1]).

reverse(Lst) ->
reverse(Lst, []).

reverse([X|Xs], Rev) ->
reverse(Xs, [X|Rev]);

reverse([], Rev) ->
Rev.

In the example above the module list exports the reverse/1 function. reverse/2
is hidden and no other modules are allowed to call it. As you can see in reverse/2
Erlang supports pattern matching. This means that different clauses are invoked
by different inputs. In reverse/2 above, a nonempty list matches the first clause
while empty lists matches the second clause.

Variables in Erlang must start with a capital letter and are assign once
variables. This means that once a variable has been assigned a certain value
the variable can never change again. This approach makes careless mistakes
less frequent. Apart from the basic data types, Erlang also provides tuples and
lists. Tuples are of fixed size and are created by writing:

Tuple = {Variable1, Variable2, ...}.

while lists are of variable length and are created like

List = [Variable1, Variable2, ...].

The work in a system is done by lightweight processes. The processes commu-
nicate with each other by messages passing. A process is started through
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Pid = spawn(Module, Function, [Arg1, Arg2, ...]).

where the arguments describe which function the process should run. The vari-
able Pid now contains the process identifier of the newly created process and
messages can be sent to it by writing

Pid ! Message.

A process can receive messages by using the receive command. Further, a pro-
cess can use pattern matching to choose which messages to receive. Messages
not yet received are stored at the process in a FIFO queue.

receive ->
{message1, From} -> ...;
{message2, From} -> ...

end.

Erlang has features for error handling and recovery like exception handling.
When you are programming in Erlang it is possible to change the code of a
running program. This feature is very important for real-time systems that are
impossible to stop for maintenance.

The characteristics of the Erlang programming language according to Seved
Torstendahl [11]:

• Very high-level functional/declarative language

• Symbolic data representation

• Support of massive lightweight concurrency

• Support for distribution

• Permits tailored-to-fit fault recovery schemes in distributed systems

• No pointers, no memory leaks

• No fixed sizes of limits

• Easy to interface other software and hardware

• Permits software to be updated while running

• Modular concept for structuring applications

• Easy to create reusable libraries
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3.2 OTP - Open Telecom Platform

The Erlang Open Telecom Platform is designed for the development of
telecommunication applications. Therefore, OTP supports the requirements of
typical telecommunication systems like robustness, smooth software upgrades,
distribution and real-time functionality. The purpose of OTP is to reduce the
time-to-market.

OTP applications adhere to the structure of fig 1 on page 15. The bottom
layer contains commercial operating systems and hardware. The middle layer
contains support for telecommunication. The top layer contains applications.

Applications
written in C,
C++ or Java

Applications written in Erlang

Mnesia
DBMS

SASL SNMP
agent

Web
�

Server

Erlang run-time system

Commercial operating system and computer hardware

Figure 1: The OTP system architecture

The system architecture provides the following three interfaces: the interface
to the OTP software, the interface to the operating system and the interface
between applications written in different languages.

OTP provides, among others things, the following set of tools and building
blocks:

Erlang The programming language, the compiler, the debugger and the virtual
machine. The compiler produces platform independent byte code.

SASL The System Architecture Support Libraries contains the necessary func-
tionality for building fault-tolerant and distributed systems.

Behaviours Formalizations of design patterns that can be used to build new
applications.

Mnesia A real-time fault-tolerant distributed database management system.

SNMP Simple Network Management Protocol.

Appmon A program for application monitoring.

C interface generator This tool creates the necessary stubs for communica-
tion between C and Erlang.

Coverage tester Makes sure that all code in a module has been executed.
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Cross-reference tool To build graphs and find out module dependencies.

Erlang mode for Emacs Helps the programmer by providing syntax high-
lighting, code formatting etc.

Profiler A profiler is used to detect the ”hot spots” in your code.

Kernel This is an application that is running at all times. The Kernel provides
facilities like authorization, error logging, rpc, etc.

OS monitoring Services for controlling available disk space and free memory.

Sockets Interface to communication protocols.

3.3 Behaviours

The way in which something functions or operates.

- Webster Online Dictionary

To explain the concept of behaviours lets first introduce something that in
Erlang/OTP is called Applications [12].

Applications are the building blocks of systems. The idea is that applications
should free the user from dealing with the internal details of an application
and instead focus on the relationships between them. Applications are named
collections of objects that encapsulate the different system components. Each
application can be named, loaded and unloaded, as well as started and stopped.
Applications must obey certain rules and follow certain protocols in order to
provide a uniform interface to the Erlang system. For example, they have to
be programmed so that code change3 can take place during runtime. Most of
the time, an application is written as a supervision tree. A supervision tree is
a hierarchical tree of supervisors and workers. The supervisors supervise the
workers, which perform the actual computations. This creates a fault-tolerant
system where the supervisors detect errors among their children and restart
them whenever necessary.

To relieve the programmer of the burden of always writing code that follow
these laws and protocols, he/she can make use of behaviours instead. Be-
haviours are described as formalizations of design patterns by the Erlang/OTP
Users Guide [12]. A behaviour solves a particular problem (in a general way
so that it can be used in many different contexts). The meaning is that
systems can be built by combining several of these behaviours. As a result,
all applications will behave in the same way. A behaviour is implemented as a
callback module, which means that in order to use a behaviour the user writes
a module that exports a specific set of functions, which the behaviour calls
in order to complete its task. Applications that are written using behaviours
all provide functionality for debugging, handling the termination of a parent,
presentation of error information and code change. This makes it easy to use
and understand an application written by someone else.

3In, for example, the telecom business there exists applications that are impossible to shut
down in order to install a new version of the software. For these situations, the Erlang system
provides a mechanism that lets the code of an executing program be replaced by a new version.
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Lets take a look at the gen server behaviour, which provides a standard way
of writing Client-Server applications. The only thing the programmer has to
do in order to write a server application is to implement the following callback
functions:

• init(Args) → Return

• handle_call(Request, From, State) → CallReply

• handle_cast(Request, State) → Return

• handle_info(Info, State) → Return

• terminate(Reason, State) → ok

• code_change(OldVsn, State, Extra) → {ok, NewState}

When the programmer has implemented the functions above the application
automatically follows the required protocols. Another positive effect that the
use of behaviours introduces is that the application will be more reliable and
have fewer bugs since it is built on top of a framework that has been thoroughly
tested and used in several commercial applications.

The Erlang system currently provides the following set of behaviours:

• application - defines how applications are implemented.

• sup bridge - is used to connect a process to a supervision tree.

• supervisor - defines how to write fault-tolerant supervision trees.

• gen server - defines the generic server described above.

• gen event - is used for event handling mechanisms.

• gen fsm - is used for finite state machine programming.
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4 Simulations

The technique of imitating the behaviour of some situation or system
(Economic, Mechanical etc.) by means of an analogous model, sit-
uation, or apparatus, either to gain information more conveniently
or to train personnel.

- Oxford English Dictionary

4.1 Introduction

To model a system is to imitate it with something that is simpler and easier
to study, and which at the same time is equivalent to the real system in all
important aspects. Simulations can be used to gain knowledge about existing
systems, to predict the behaviour of some imaginary system and for teaching
purposes. One of the key powers of simulation is the ability to model the
behaviour of a system as time progresses.

Simulation has become an indispensable technique for system studies and
product development in today’s industry. This is due to the fact that simulations
can be used when it is too difficult, too dangerous, or too expensive to observe
the real system. For these reasons simulations are frequently used by military
organizations in order to train their soldiers in military leadership4, teach their
pilots how to fly using flight simulators, etc. These activities would otherwise
require much personnel and/or be extremely dangerous to perform.

Computers have been used to simulate systems for more than four decades
and the field of computer simulations has been the subject of much research.
Several different types of simulations have emerged from this research and they
will be briefly explained in the next section.

4.2 Different Kinds of Simulations

Depending on the system to be simulated different kinds of simulation princi-
ples are applicable. The three most commonly used simulation methods are
Continuous-, Discrete-, and Monte Carlo-simulations. Simulation methods are
often classified by how time is treated in the simulation, see figure 2. Contin-
uous and discrete simulations are separated by how they handle time, whereas
in Monte Carlo simulations; time is not even a part of the model.

4.2.1 Continuous Simulation

In cases where the systems state changes all the time, not just at the time of some
discrete event, continuous simulation is appropriate. In this kind of simulation,
the model is often a set of differential equations solved with numerical methods
where time is one of the free variables. Continuous simulation generally causes
problems with speed, numerical accuracy, and statistical accuracy [14]. These
problems come from the algorithms used in the computation of random numbers
as well as the algorithms used for solving numerical integrals.

4This is the purpose of Sim94 - A concurrent simulator for plan-driven troops. [13]
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Simulation

Time independent Time dependent

Monte Carlo Continuous time Discrete time

 Synchronous
(Time-stepped)

Asynchronous
(Event-driven)

Figure 2: Classification of simulation methods

4.2.2 Discrete Simulation

Discrete simulations are simulations where time is incremented in discrete steps.
These simulations can be further divided into two groups, event driven simula-
tions and time stepped simulations. In event driven simulation, the events that
occur within the system control the simulation while in time stepped simula-
tion, the time control the simulation. Of these two, event driven simulation
is the more efficient one. When programming discrete event simulations you
have a queue of events that are scheduled to happen at certain times in the
future. The reason that discrete event simulation is faster is that it lets the
time jump in non-uniform steps, that is directly to the next scheduled event.
Time stepped simulation on the other hand jumps in fixed size steps and there-
fore visits times when no events are scheduled to happen. Even though discrete
event simulation is more efficient, there are times when time stepped simulation
is preferable. Often when a simulation is constructed for teaching purposes,
time stepped simulation is the primary choice. In such cases you do not want
the time to change in non-uniform steps due to user interaction.

4.2.3 Monte Carlo Simulation

A technique with great impact in many different fields of computational science
is called Monte Carlo Simulation. This technique derives its name from the
casinos in Monte Carlo - a Monte Carlo simulation uses random numbers to
model some sort of process. It works especially well when the process is one
where the underlying probabilities are known but the results are difficult to
determine. Several of the fastest computers in the world are performing Monte
Carlo simulations. This is because we can write down the fundamental laws of
physics but cannot analytically solve them for problems of interest. One of the
most famous examples of a Monte Carlo simulation is the computation of π [15].
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4.3 Sim94

4.3.1 Introduction

The following text is a shortened version of the abstract taken from the Sim94
technical report [13].

“Sim94 is a simulation system for plan-driven troops developed at the Com-
puting Science Department, Uppsala University, 1994. Traditionally, military
leadership training have consisted of operations involving much personnel. This
is expensive and therefore simulation is needed. In order to provide computer-
controlled units in military leadership training, Sim94 uses agent-based simula-
tion. An agent is an entity, representing a unit that can make decisions and act
accordingly. The agents may interact with other agents, the user, and/or the
environment. Sim94 implements a simulator for military leadership training of
battalion chiefs. The active entities in the simulation represent troops of 150
infantry soldiers. Sim94 is based on the client-server model, where the server
operates independently, i.e. the simulation can go on without any connected
clients. Clients are able to connect for inspection and manipulation of the sim-
ulation. The agents are controlled by a set of rules and placed in a dynamic
terrain where they interact with friendly and hostile troops. The digital terrain
is dynamic and can be manipulated during the simulation. The simulator can
import geographical data from common GIS formats e.g. ARC/INFO.”

4.3.2 Simulation in Sim94

The simulation model that is used differs from the usual framework common for
simulations. The usual approach is discrete event simulations where the events
control the running of the simulation. Instead, Sim94 is built using a kind of
distributed discrete simulation where the active entities are concurrent Erlang
processes. This approach forces the simulator to use a central world process
in order to keep the entities in the simulation synchronized. This module also
keeps track of the time and provides a view of the entire simulation for the
connected clients to see.

Agents The agents are controlled by a state machine with memory. The mem-
ory is necessary to keep track of strength, fatigue, position and other
parameters.

A message from the world process containing enemy agents within the
reconnaissance radius marks the start of a time interval. After that, the
agent first decides what to do. Second, it takes appropriate action, simu-
lating an amount of time equivalent to the length of the interval, to achieve
the goals decided upon. Third, it reports the new state, including the new
position, to the world process. Finally, it waits for the next interval.

The actions may involve communication with the nationality process to
inform the friendly agents about enemies and forbidden areas. If the agent
is moving, there is also communication with the terrain process to check
that no forbidden areas are entered. If the agent needs movement route
planning, the terrain process is consulted.
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Figure 3: The structure of the Sim94 simulator

World The world process holds a database with records for all agents. This
database is used to calculate which agents are in each other’s vicinity. The
interesting parts of the result are sent to the agents, which marks the start
of a new interval. Then the world process collects information from the
agents to update the database.

All agents wait until the interval starts and the world process waits until
all agents have finished their actions before starting a new interval. This
synchronizes the agents. If the simulation is paused, the world process
simply refrains from starting a new interval.

If there is an agent attacking another agent, the world process takes care
of battle judgment to determine the losses.

Terrain The geographical data is pre-processed to an internal format with the
GIS-system GRASS. The terrain is a 25×25 km area divided in 100×100 m
squares. Water is approximated only on the edges delimiting the squares.
Roads are approximated between the centers of adjacent squares crossing
the edges in a straight angle.

The representation of a square contains a terrain type and information
about which edges are water and which are crossed by a road. A water
edge can only be crossed if there is a road on the same edge. There is no
altitude information.

The terrain is represented as a 250-element tuple of tuples where the inner
tuples are 250 element tuples of squares. This is a common representation
of a two-dimensional array in Erlang.

When the agents move along their routes, the terrain process is frequently
queried about the geography along the route.
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Route planning requests from the agents are replayed to the navigator
processes through the terrain process.

Navigator The navigator processes plan routes from point A to point B given
certain constraints. There are time constraints of the form it may not
take more than three hours to go from A to B. There are also geometric
constraints of the form I want to go no closer to C than 3 km while going
from A to B.

The navigator processes use agent based planning. A search-agent starts at
point A and tries to find a safe way to point B that satisfies the constraints.
The search is guided in B’s direction. In each square local choice is made
of where to go next. If the choice is too hard, the search-agent may split
in two to explore different alternatives.

If a path is found that satisfies the constraints it is returned to the querying
agent, otherwise a ”no path found” answer is returned.

Master The master process controls the simulator, creates and destroys pro-
cesses. If the simulator is distributed the master process is in charge of
the distribution.

The master process allocates a UNIX port for client connections and han-
dles the communication with the clients via a socket.

Logging of the system status for robustness is frequently done. A saved
status can be reloaded and the system restarted.

Clients and tokenizers The clients are implemented for X windows using
Scheme Tk (STk). STk is a scheme interpreter integrated with the GUI
toolkit Tk, usually used together with TCL (Tool Command Language).
As part of the project, the socket library is interfaced with STk for com-
munication with the simulator.

The tokenizer processes are internal representations of the clients in the
simulator. A tokenizer process receives messages from a client. These
messages can be requests to e.g. create a new agent, destroy an agent, get
information about an agent and issue orders.

A tokenizer process has a view of the simulation, in terms of agents and
forbidden areas, given by the world process for the super user and nation-
ality process for normal users.

The clients subscribe to events through their tokenizer process. Events are
e.g. new positions for an agent, discovery of a forbidden area and creation
of a new agent. The tokenizer process sends a subscription request to the
process where the event will occur. When the event occurs the process
sends a message to the tokenizer process, which relays the message to the
client. This simplifies the client’s task, as there is no need to constantly
ask for information.
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5 Design Patterns versus Behaviours

5.1 Design Patterns compared to behaviours

Something closely related to design patterns are software frameworks:

A software framework is a reusable mini-architecture that provides
the generic structure and behaviour for a family of software abstrac-
tions, along with a context of metaphors, which specifies their col-
laboration and use within a given domain. [16]

A framework implements the context, while making the abstractions open-
ended by designing them with specific plug-points. These plug-points, imple-
mented using callbacks or polymorphism, enable the framework to be adapted
and extended to fit varying needs. A framework is not a complete application
since it lacks the application-specific functionality. Instead, an application may
be constructed from one or more frameworks by inserting this missing function-
ality into the plug-points provided by the frameworks. Thus,

A framework supplies the infrastructure and mechanisms that exe-
cute a policy for interaction between abstract components with open
implementations. [16]

The definitions above might just as well be about behaviours. When you
are using behaviours to program your application, you must implement a bunch
of functions in order to specialize the behaviour. This is exactly how you use
software frameworks. The difference is that frameworks often are written in
object-oriented languages where you use inheritance or implement abstract
methods in order to specialize the behaviour of the frameworks.

Behaviours are just as frameworks implemented in code while design
patterns are not. Only examples of design patterns can be written down in
code. This makes patterns more general than behaviours. On the other hand,
one of the strengths of frameworks/behaviours are that they can be reused
directly.

Every time you use a design pattern, you have to (re)implement it in a pro-
gramming language. Thus, behaviours are language dependent (Erlang/OTP)
while design patterns are language independent5.

Both behaviours and design patterns contain well-proven solutions to
common problems and are intended to help the programmer to produce better
programs faster. To produce better programs faster is actually the main reason
behind the development of Erlang/OTP.

When you are using behaviours as well as design patterns in your
programs, you get a lot of the documentation for free. The behaviours
are rigorously documented and every good pattern description are as well.
Design patterns also explain the intent, trade-offs, and consequences of a design.

5This is not entirely true since there exists design patterns that are of use only in object-
oriented languages. However, most of the existing design patterns are language independent.
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A design pattern is a solution to a single problem. Frameworks, and
behaviours in particular, contains so much more. Frameworks are often
an implementation of one or more design patterns and behaviours gives
you functionality for debugging, handling the termination of a parent6, the
ability to change code during runtime and the presentation of error information.

Many design patterns are impossible to implement as behaviours. One
example of such a pattern is the Facade pattern [3]. The facade provides a
single and simplified interface to a set of interfaces in a subsystem, minimizing
the communication and coupling between the client and the subsystem. The
structure and content of the facade object is different for each implementation
and depends entirely on the specific application. Thus, the code is completely
different and no general structure can be extracted to form a meaningful
behaviour.

Further, some of the patterns that exist in the literature are only designed
for object-oriented languages since they solve object-oriented problems. These
patterns have no meaning in a language like Erlang.

5.2 The gen fsm behaviour vs. the FSM patterns

A Finite State Machine is a black box that responds to external events.
Seen from the outside, the device appears as if it can occupy any of a finite
number of states. Depending on the current state, a given input causes the
device to issue a particular output and then enter a new state. The change
from one state to another is called a transition and there can be several
transitions from any state. The events decide which transition to take. Finite
State Machines are often described by transition diagrams. The telephone
system in figure 4 taken from [12] is an example of a Finite State Machine
described by such a diagram. Implementing a Finite State Machine gives the
programmer a set of recurring problems to solve. To address these problems,
Yacoub and Ammar have developed a design pattern catalogue for FSM’s
[17]. This catalogue contains 13 patterns and as you will see, the gen fsm be-
haviour has made use of most of them in its implementation. This again shows
that a behaviour is more than just an implementation of a single design pattern.

The gen fsm behaviour provides a way of writing Finite State Machine pro-
cesses. In order to write a FSM the programmer has to write functions for the
transitions. These functions must have the following format:

StateName(Event, StateData) ->
... code for actions here ...
{next_state, StateName’, StateData’}

This means that if the FSM is in state StateName when it receives the event
Event it performs some action and makes a transition to the state StateName’.
If, for example, one were to implement the FSM from figure 4, the function for
the idle state would look like,

6This is something specific for Erlang/OTP applications structured in a supervisor tree.
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Figure 4: A FSM describing the ”Plain Ordinary Telephony Service”

idle({off_hook, A}, A) ->
{next_state, getting_number, {A,[]}};

idle({seize, A}, B) when A /= B ->
{next_state, ringing_b_side, {B, A}};

idle(_, A) ->
{next_state, idle, A}.

were getting number and ringing b side are other states represented by the same
kind of transition function. Note that the programmer has to write some more
functions in order to make the behaviour complete, i.e. init/1, code change/3
and terminate/3, but the StateName/2 function is the most crucial. The rest of
the implementation of the FSM is taken care of by the behaviour. As usual with
behaviours, gen fsm supports the general things that all Erlang applications
must support like the presentation of error information etc. (see section 3.3 on
page 16)

Lets look at how the published FSM patterns fit in this picture. The fol-
lowing section will state each pattern together with a description of it and then
explain how/why they are related to the gen fsm behaviour.

Name: State Object Pattern [3] [18]

Problem: How can you get different behaviour from an object if it changes
according to the objects state?

Solution: Create states for the object, describe its behaviour in each state,
attach a state to the object and delegate the action from the object to its
current state.
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Relation: This is exactly what the gen fsm does. The FSM object has one
function for each state that describes its behaviour in means of events,
actions and transitions. The FSM has one state associated with it at all
times. The difference between this use of the pattern and the use intended
by the authors is that they designed the pattern for object-oriented lan-
guages in which each state is implemented as a new class.

Name: Basic Finite State Machine Pattern [19] [18]

Problem: Your objects state changes according to events in the system. The
state transitions are determined from the object specification. How can
you implement the object behaviour in your design?

Solution: Use the state object pattern and add state transition methods in
response to state transition events.

Relation: This pattern is also incorporated in the implementation of the
gen fsm. The functions for each state, as described above, also serve as
transitions into other states in response to state transition events.

Name: State-Driven Transition FSM Pattern [17] [18]

Problem: How to hide the state transition logic from the object class in the
state machine pattern?

Solution: Have the states of the object initiate the transition from self to the
new state in response to the state-transition event.

Relation: This problem only occurs in the object-oriented solution where the
FSM object holds a reference to the current state class inviting the user
to implement the state transition inside the state object. This leads to
that every event is processed twice, once in the FSM object and another
in the state class. This problem does not occur in the gen fsm solution
since the only place where the programmer handles transitions is in the
StateName function. These functions actually initiate the transitions to
the new states.

Name: Layered Structure FSM Pattern [19] [17]

Problem: You are using a FSM pattern, how can you make your design main-
tainable, easily readable and eligible for reuse?

Solution: Organize your design in a layered structure that de-couples the logic
of state transitions from the object’s behavior defined in terms of actions
and events.

Relation: The gen fsm does not follow this design pattern since the StateName
functions contain actions for the current state in response to a given event
and transitions to the next state. However, the gen fsm behaviour never-
theless has a maintainable design and is easily readable.
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Name: Interface Organization FSM Pattern [17]

Problem: How can other application entities communicate and interface to an
object whose behavior is described by a finite state machine?

Solution: Encapsulate states and logic inside the machine and provide a simple
interface to other application entities that receives events and dispatches
them to the current state.

Relation: This pattern is used in the gen fsm behaviour. States and logic
are encapsulated in the module implemented by the programmer and the
behaviour exports a set of functions, for other entities to use, which makes
up the interface talked about in the pattern.

The FSM catalogue contains other patterns as well, but they must be used or
unused by the programmer since they are alternatives to each other. These
patterns deal with things like the type of the FSM (Meally, Moore or Hybrid),
if the machine should be exposed or encapsulated and if the state instantiation
should be static or dynamic. Thus, these design patterns are not possible to
implement in a behaviour.

The gen fsm behaviour made use of five out of six of the patterns that were
possible to implement in a behaviour.

5.3 The gen server behaviour vs. the Client-Server pat-
tern

The client-server pattern identifies five elements in the pattern: Client, Server,
request, reply, and Connection. The client is responsible for generating a request
that is sent to the server which, in turn, performs its service and delivers a
response in the form a reply. The responsibility for conveying the requests and
replies between the client and server is assigned to an intermediary known as
the connection. The client and server each collaborate directly only with the
connection (but only indirectly with each other). The collaboration between
the elements is defined by the sequence of events beginning with the generation
of a request by the client and its transmission to the server followed by the
generation at the server of a reply and its transmission to the client.

Notice that the pattern does not specify the nature of the service provided,
it could be a name service, a time service, a location service, a file service, a se-
curity service or any other. Neither does the pattern specify how the connection
should be implemented. The connection could be a memory buffer connecting
two procedures within the same process, a memory buffer connecting two dif-
ferent processes on the same machine, or a network link between two processes
on different machines. While these details vary, the pattern remains the same.

Some of the positive consequences of the client-server pattern are that the
client and server may be implemented on different machines allowing each to
take advantage of local specialized hardware or software resources, the client
and server may be totally or largely unaware of and insensitive to the actual
location of each other, and the server may be made available to many clients
at the same time. Two negative consequences of the client-server pattern are
that the client may be left hanging if its request or reply is lost or if the server
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Figure 5: The structure of the client-server design pattern

crashes, and the client cannot demand or control the service from the server -
it can only request such service.

The gen server behaviour provides the general structure for building client-
server applications. For a detailed description see section 3.3 on page 17. The
gen server helps the programmer to construct the server in the client/server
model. The gen server does not specify the nature of the service provided since
it is general enough to let the programmer implement the functionality specific
for the current service.

The implemented server can be called by clients either from the same host
or from a host located on the other side of the earth. The user does not have
to worry about the specifics of the connection since this is handled by the
Erlang/OTP system. The two negative consequences described in the pattern
holds for the behaviour as well. However, Erlang/OTP provides functionality
to increase the robustness and availability of the server. Nevertheless, hardware
failures such as broken wires, are impossible to be completely protected against.

From the above one can conclude that the gen server behaviour follows the
client/server design pattern exactly.
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6 A Pattern Catalogue for Simulations

6.1 Introduction

This section presents a catalogue of design patterns to be used in the develop-
ment of simulation software. The design patterns are mostly for discrete event
simulations, but some of them are suitable for other kinds of simulation as well.

This compilation of patterns is taken from the ideas of several authors.
Some of the patterns are written specially for simulations, while others are
general-purpose patterns [3] that are applicable in the simulation domain.
Further, the author himself wrote some of the patterns. These latter patterns
are created from the study of Sim94 [13] along with ideas from many simulation
researchers, of which Moshe A. Pollatschek [20] and Wolfgang Kreutzer [21]
[22] are the two most famous.

The communicator, tokenizer and synchronizer patterns are ideas ex-
tracted from the design of Sim94 [13]. The FSM patterns, useful for state
programming, are written by Yacoub and Ammar [17]. The time driven,
event driven, random event generation and tally patterns are created from
general simulation principles [20], [21]. The famous Gang of Four patterns [3];
Command, Observer, Mediator, Singleton, State, Strategy, Template Method
and Memento are all useful in the implementation of some simulation aspects.
Finally, five design patterns for simulations created by Miguel Vargas [23] are
presented in compact form.

The patterns in this catalogue are not presented in the format suggested by
the Gang of Four in their Design Patterns book [3]. Instead, another format
which is closer to the original form proposed by Alexander is used since it is
more appropriate for describing non object-oriented design patterns.
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6.2 Design Patterns from Sim94

6.2.1 The Communicator Design Pattern

Problem: Communicate the state of each agent in a simulation to every other
agent.

Context: When developing software for simulations, a recurring problem is
that the agents in the system need to know the state of each other. This
pattern gives the programmer an efficient way of communicating the state
between arbitrarily many agents in a distributed environment.

Forces: The simple and naive approach would be to have every agent send its
state to every other agent, see figure 6. However, if the system consists of n
agents, the system will be flooded with n×(n−1) messages, O(n2). As the
size of the simulation grows, this design can lead to extreme redundancy
in storage and computation.

Agent 1 Agent 2 Agent 3 Agent 5Agent 4

Figure 6: The messages in a system using a naive approach

Further, this approach introduces tightly coupled agents, as each agent
is required to know the internal representation of data structures and
interfaces to agents of different types. Each agent also has to know the
locations of the other agents in order to send and receive state information.

Often, the computations performed on the received states will be the same
for each participating agent. Thus, wasting valuable CPU-time.

Solution: The solution introduces a many-to-many dependency that goes
through a central node, the communicator. When an agent wants to com-
municate its state to the others, it simply sends it to the communicator.
The communicator collects the states from all the agents and assembles a
message containing the state of all agents in the system. Then the commu-
nicator broadcasts it to every agent. This pattern may be used in several
ways depending on the application. One way is to construct the communi-
cator so that it queries each agent for their states and then distributes the
combined state back to the agents. Hence, the communicator is in con-
trol. Another way is to create the agents so that they send their states to
the communicator whenever they feel like it and the communicator kindly
waits until it has received the state from each agent. The communicator



6 A PATTERN CATALOGUE FOR SIMULATIONS 31

can be configured to send the state immediately to the agents or to per-
form some computation on the states and pass on the result. The latter
approach significantly reduces the computations in the system compared
to the alternative of each agent computing this itself.

Example: Two of the modules in Sim94 make use this pattern, i.e. the world
and the navigator.

• Since the agents need to know each other’s positions, the world mod-
ule keeps track of them. At the beginning of each interval the world
module calculates which agents are in each other’s vicinity, sends a
message with the result to each agent and at the end of the interval
collects the new positions.

• Information about discovered enemies and forbidden areas is commu-
nicated to the friendly agents, which raises the same communication
problem as for position updates. The nationality process is created
to handle this information. There is one nationality process for each
force to which the agents report their discoveries.

Resulting context: This solution requires only 2 × n, O(n) messages for a
system of n agents, see figure 7. This will drastically decrease the net-
work traffic for systems with many communicating agents. Even though

Agent 1 Agent 2 Agent 3 Agent 5Agent 4

Communicator

Figure 7: The messages in a system using the communicator

the messages sent from the communicator to the agents are larger than
before, this solution will be more efficient since (especially with increas-
ing transmission rates) the overhead of communication (packet assem-
bly/disassembly, error codes, communication setup etc.) is significantly
reduced. An additional benefit of the centralized design is its promotion
of modularization and information hiding since each agent is not required
to know the inner functionality of the others, given that communication
takes place only via the central communicator. This pattern is of even
more use if the communicator computes results on the collected informa-
tion that otherwise would have been computed by the individual agents.
This approach saves computer resources. However, if the computer where
the communicator is placed should be the slower of the involved computers
or if it is choked with work, there is no point in using this pattern since
the communicator becomes the bottleneck on which the agents must wait.
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The major drawback of this pattern is its sensitivity to network failure.
If the node where the communicator is located crashes, the whole system
goes down. A possible solution to this problem is replication. Working
with Erlang gives the programmer the ability to build applications that
automatically recovers from crashes.

Related patterns: The observer pattern from the ”Gang of Four” is similar
to the communicator pattern. However, the observer pattern is one-to-
many while the communicator pattern is many-to-many. This pattern can
be used with great results in conjunction with the synchronizer pattern
described in section 6.2.3 on page 34.

Known uses: The communicator is found in the world and navigator modules
of Sim94, described above.

6.2.2 The Tokenizer Design Pattern

Problem: Provide a programming language independent interface, which has
a minimal interference with the simulation.

Context: In order to control and/or monitor the simulation one needs an in-
terface to the simulation. This is true for all simulations that interact
with users. Often, the implementation of a GUI is very closely dependent
upon the current platform while the kernel can run (perhaps with minor
modifications) on several different platforms. This is because the oper-
ating systems on the market use completely different graphical systems.
If you are programming for Unix/Linux, your GUI’s are written for the
X-windows system while in Win95/98/NT interfaces are written using the
Microsoft API.

Forces: A GUI must be updated whenever something changes inside the simu-
lation. This can be accomplished in two ways, either the GUI uses polling
to check the state of the interesting variables, or the GUI subscribes to
events from the simulation. The latter approach is of course the only
realistic solution since it requires less resource and we have the observer
pattern to use.

The solution must not disturb the simulation. The simulation must con-
tinue running whether or not any clients are connected to it. The per-
formance of the simulation must not decrease significantly due to client
specific code in the simulation.

As always, one wants to have a clear and decoupled solution that makes it
easy to change the involved components. The interface must be program-
ming language independent. This is because the simulation might in the
future be part of some larger system that is written in ”who knows which”
programming language. By making the interface programming language
independent, no changes are needed in this part in order to communicate
with a client written in, for example, Java, C/C++, Ada or even Visual
Basic.

Solution: The solution introduces three new components that will take care
of the communication between the simulation and any connected clients.
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The three components, the Buffer, the Tokenizer and the Socket can be
schematically explained as in figure 8. When the GUI wants to communi-

Simulation

Buffer

Tokenizer

Socket GUI

Events

RPC

Bytes

Bytes

Bytes

Bytes

Figure 8: The structure of the Tokenizer Design Pattern

cate with the simulation, it sends the byte representation of the command
it wants to execute to the socket. Every programming language (almost)
has support for socket communication over TCP/IP. The buffer process
then reads from the socket and sends this to the Tokenizer process. The
Tokenizer converts the byte representation of the command into some-
thing that is understandable for the specific programming language used
to implement the simulation. In the case of Erlang, the tokenizer con-
verts the byte representation into Erlang messages that will be sent to
the simulation. The tokenizer uses synchronized message passing in order
to communicate with the simulation. This is almost identical to what is
called RPC, i.e. Remote Procedure Call. If the GUI wants to receive
updates whenever an event of some type occurs within the simulation the
Tokenizer sends a message about this in the same way, as described above,
to a subscription mechanism in the simulation, implemented with the ob-
server design pattern. When events occur they are sent to the buffer for
immediate transmission to the socket and thus the client. This way the
simulation makes no difference between observers within the simulation
and clients written in other languages.

Resulting Context:

• Allows use in a heterogeneous network
• Minimal interference with the simulation
• Robust

– The buffer works even if the tokenizer hangs, which means that
events will continue to arrive to the client.

– No deadlocks (in the buffer process) due to missed messages since
we use asynchronous communication where unwanted messages
are thrown away.

– Bad messages from either the client or the simulation are ignored.
• Introduces a lot of overhead compared to the solution of direct com-

munication with the simulation.

Example: The communication between the interface written in Scheme Tcl/Tk
and the Sim94 kernel is done through the use of this pattern.

Known Uses: Sim94 [13].
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6.2.3 The Synchronizer Design Pattern

Problem: Provide a synchronization mechanism for the agents participating
in a simulation.

Context: This pattern is applicable in a simulation where the agents are rep-
resented as concurrently executing processes. Synchronization is needed
to make sure that;

• the different agents have the same notion of time and
• the agents get to execute the same amount of time.

Forces: When the involved agents are executing concurrently on different ma-
chines, the time it takes one agent to perform its task might be completely
different than for another agent. This is due to things like, the speed of the
CPU, the amount of available memory or the current load of the machine.

The usual way of programming simulation systems is to use a time queue
to achieve synchronization. Every simulating entity is simulated one at
a time as a discrete event. The first event in the time queue is always
executed, (the time queue is sorted by time), and after it is finished it is
put back into the time queue at its proper place, given which time its next
action is planned to happen. This repeats until the time queue is empty
or the simulation is explicitly stopped. This approach is not possible in
this context since the agents often interact with each other and therefore
sequential execution is out of the question. Moreover, to maximize the
utilization of processor power the agents must execute concurrently.

Solution: Agent synchronization is achieved by dividing the simulation time
into discrete intervals. These intervals are separated by ticks. A tick is
a message sent to all entities, informing them that a new time interval
has begun. Between two consecutive ticks, no synchronization of agents
occurs. The synchronizer initiates each interval by sending a tick to each
entity. An interval is completed when all entities have notified the synchro-
nizer that they have completed their tasks for the current time interval.

Synchronizer

Start(sim_interval,
        real_interval)
Stop()
GetTime()
Add(Agent)
Del(Agent)
Done()

sim_interval
real_interval
elapsed_time

Agent

Execute(Time)

Concrete Agent

Work(Time)

Work(Time)
world->Done()

while true {
    for all a in agents {
        a->Execute(sim_interval)
    }
    Work()
    elapsed_time += real_interval
    sleep(until done ==#agents)
}

synchronizer

done ++

agents

while (Time > 0) {
     do something ...
}

Concrete
Synchronizer

Work()

Figure 9: The structure of the Synchronizer Design Pattern
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Example: The World module in Sim94 is a synchronizer.

Resulting context: This solution introduces, just like the communicator pat-
tern, a failure sensitive system. See the description of the communicator
on page 30 for further details. Another negative effect shows up when
this pattern is applied to a distributed environment. Either the agents
executing on computers that are slower than the average will not be able
to do as much work during their execution, or implemented another way,
the speed of the entire simulation will depend on the slowest computer in
the simulation.

Related patterns: The synchronizer pattern could be used together with the
communicator pattern for increased efficiency. This way, the synchroniza-
tion could be the state gathering messages and the work performed each
step by the synchronizer could be to compute some interesting results on
the state of the simulation. This is how the World module of Sim94 is
implemented.

Known uses: This pattern is found in Sim94 [13].
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6.3 General Simulation Patterns

6.3.1 Time-Driven Execution

Problem: Provide a way of controlling the time and execution of a simulation.

Context: This pattern answers the question of how to implement a Simulation.
The solution described has been used for building simulations since the
early 50’s. The pattern is designed to help novices in simulation program-
ming. The solution is simple and straightforward to implement.
This design pattern can be used to develop simulations where time is part
of the model. It is not a pattern for use in Monte Carlo simulations.
The pattern should be used in simulations where events are frequently
occurring. A time-driven simulation is ideal in the case where we know
that at least one event happens at every step.

Forces: Simulations that are interacting with users must use the time-driven
execution model since time cannot jump forward to the next scheduled
event. This is because the user might give some input (between two sched-
uled events) that needs an immediate response or action.

Solution: In a ”time-driven” simulation, we have a variable that holds the
current time, and we increment that time by some fixed amount at every
step of the simulation. After each time step, we check all possible event
types to determine if an event of that type happened at the current time,
and handle it if it does. The simulation stops either when time reaches a
specific value (allowing us to answer questions like ”how far can we get in
that much time”, for example) or when a specific state is reached in the
system (allowing us to answer questions like ”how long would it take to get
as far as this”, for example). For each time step, we collect statistics from
the current state and at the end of the simulation, we use these statistics
to compute the results of the entire simulation.

Initialize

T = T + dt

Generate Events

Event 1 Event 2 Event 3 No Event

T < TMaxTerminate
YesNo

Figure 10: The structure of the Time-Driven Design Pattern

Initialization Initial preprocessing, i.e. state initialization, random
number initialization, time initialization and event queue initializa-
tion.
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Time Keeps track of the time, increments it each step and checks whether
it has reached the end or not.

Event generation Creates the necessary events according to the current
state and behaviour of the simulation.

Event An occurrence at a point in time that may change the state of the
system.

Event queue A queue holding every event that is scheduled to happen.

Statistics gathering Compute statistics on the current state, events and
other.

Termination Necessary post processing, computing the results and
cleaning up.

Example: The following is a simple example in the C programming language
where customers arrives and departs to a simulated store.

initialization();

while (clock <= closetime) {

if (depart_event.time == clock) process_departure(...);

if (arrival_event.time == clock) process_arrival(...);

clock = clock + 1;

}

termination();

Resulting context: This approach of programming simulations can be ex-
tremely inefficient if there are few events occurring in the system. Few
events in the system means that most of the time the simulator will just
be waiting, thus wasting valuable time. The problem with a discrete
time-driven simulation is that it can waste a lot of computing time just
advancing the clock tick by tick to the next event. The problem is worse
when the events occur infrequently compared to the granularity of the
clock. Moreover, the numerical accuracy of this approach is only as good
as the size of the time steps. Increasing the time steps leads to faster
simulations, but at the same time they become less accurate. If we in-
stead decrease the time steps, the accuracy of the simulation increases,
but instead the simulation becomes slower and slower as the size of the
time step decreases.

Related Patterns: As an alternative to this pattern, the event-driven execu-
tion pattern can be used. When the time between two events is varying,
event-driven simulation is preferable since it jumps directly to the time of
the next event. Thereby becoming much more efficient.

Known Uses:

HyperReal One (HR1) [24] HyperReal One is an experimental plat-
form for Hard-Real-Time (HRT) systems, which has been developed
in the context of the HyperReal project. It is focused on the experi-
mentation of architectural abstractions related to configuration and
timing for deeply embedded applications.
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A Compiler by IBM for the PowerPC [25] The list-scheduling al-
gorithm executes a time-driven simulation that dispatches instruc-
tions in each cycle that are expected to dispatch on the target pro-
cessor during the equivalent cycle.

DSP Design Toolset The MathWorks Inc. announced a new version of
The MathWorks DSP Workshop, a single integrated software envi-
ronment comprised of MATLAB, Simulink, DSP Blockset, and the
Signal Processing Toolbox.

6.3.2 Event-Driven Execution

Problem: Provide a way of controlling the time and execution of a simulation.

Context: We know what we want to simulate and are about to implement our
ideas as a simulation. As long as time is part of our model this pattern
should be applicable.

Forces:

• The solution must be efficient since we do not want to wait forever
for the simulation to complete.

• At the same time the simulation must be accurate and not loose in
precision due to the efficient execution.

• The two goals above often interfere with each other.

• Further, the solution must be maintainable and therefore easy to
understand and as simple as possible.

Solution: The central concept in this pattern is event scheduling. Occurrences
that may directly or indirectly change present or future states are called
events. An important implication of this definition of an event is that
between two consecutive events, the state does not change. Lets say that
the first event occurs at time 10. The next event processed happens to be
at time 15, and we would simply just jump to that time because that is
what happens next. From a philosophical standpoint, nothing happens in
the universe that interests us so we just skip over those times. We make
use of a queue to hold events that are going to happen, and we order that
queue by time - so that events that are supposed to happen occur in the
order they would in the natural system. When we know that predictable
events are going to occur, we can insert an event into the queue at the
correct point to allow the event to occur at the specified time. As an
event occurs, it can spawn other events. These subsequent events are
placed into the queue as well. Execution continues until all events have
been processed. The purpose of initialize is to set up the initial state and
generate the initial events. Without those initial events the simulation
would terminate immediately. The figure 11 below shows the structure of
event-driven simulation.

Resulting context: There is a certain elegance in all this that you will notice
when you have a finished simulation running: no matter what the events
occurring are or how complex they may be, the simulator itself is simply
peeling events off the end of a queue and feeding them to a set of routines
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Initialize

T = Time of Next Event

Case: Next Event

Event 1 Event 2 Event 3 Event 4

DoneTerminate

Yes No

Update State

Determine Next Event

Generate New Event
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Generate New Event
�

Generate New Event
�

Generate New Event
�

Figure 11: The structure of the Event-Driven Design Pattern

to process whatever the events are supposed to do. Provided those routines
insert future events as appropriate, the simulator simply chugs along, and
the world naturally follows what the natural system being modeled would
do.

• Very precise and accurate handling of the time and therefore also
good accuracy in the gathered statistics.

• This approach is very efficient and has just a minimal overhead for
the queue operations.

• The fact that the time jumps in non-uniform steps makes this solu-
tion inappropriate for certain kinds of simulations that involves user
interaction.

• Structuring the simulation according to this pattern makes it easy to
modify. Since this is the way that most simulations are implemented
following this pattern makes it easy for other developers to quickly
understand the code.

Related patterns: To be used in conjunction with event-driven execution the
patterns tally, event queue, random events, patterns from Sim94 [13] and
patterns by Vargas [23] are given later in this catalogue. The time-driven
design pattern is an alternative to this pattern.

Known uses: Event-driven simulation is a popular simulation technique which
is the most common way of implementing simulations today. Almost every
text-book about simulations teaches event-driven simulation. This is the
case in both [20] and [21]. Sjöland & Thyselius have been involved in
about 15 large simulation projects in which event-driven simulation have
been used almost exclusively. [26]
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6.3.3 The Tally Design Pattern

Problem: Simulations are often constructed in order to monitor the
size/space/number of a certain entity in a system. It could be a store
wanting to know how large parking lot they need or a shop wanting to
know how much shelf space is needed for their inventories. What we most
often are interested in is the minimum, maximum and average values of
the monitored entity. Most simulations involve several entities that needs
to be monitored. The problem is how to record changes and compute
statistics on the entities in a discrete event simulation.

Solution: The solution introduces a tally for each of the monitored variables.
A tally is designed to keep track of the changes of a certain variable. A
tally provides the three following methods.

• create() - This method is called only once and is used to initialize
the internals of the tally.

• observation(value) - This method is called whenever a change of the
variable should be registered.

• result() - This method computes and returns the result.

A simulation program creates a new tally by issuing t = new tally(), and
displays the result at the end of the simulation by calling t.result(). To
record observations during the simulation the programmer simply calls
t.observation(current value) repeatedly. The nice thing here is that if the
programmer decides that he wants to include a histogram or perhaps com-
pute the statistical variance of the observed entity, changes are needed only
to the tally itself. Not a single line in the simulation program needs modifi-
cation. The following diagram shows the interaction between a simulation
and a tally:

Simulation Tally

| |

| create() ------------> |

| | initializing

| <--------------- tally |

| |

| observation(3) ------> |

| . | computing statistics

| . |

| observation(2) ------> |

| | computing statistics

| |

| result() ------------> |

| | generating result

| <-------------- result |

Resulting context: Since a tally is called only through the three methods de-
scribed above, what it computes can change without changing a single line
in the simulation. For example, the internals of the tally can change from
computing just the min and max of the observed variable to computing
the average, the standard deviation or even an histogram of the changes
in the variable without affecting the simulation even the slightest. It is
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important that the implementation of the tally is efficient since it will be
called extremely often when the simulation is executing. The performance
of the entire simulation might be dragged down by an inefficient tally im-
plementation. The use of tallies gives the simulation a clean and easy to
understand structure. The alternatives often give the simulation a more
cluttered look.

Example:

/** An example implementation of a tally class that computes

the minimum, maximum and average of the observed entity. */

public class tally {

private double initial_time, last_observation,

last_time, min, max, sum;

public tally() {

this.initial_time = time(),

this.last_observation = 0,

this.last_time = 0,

this.min = 0,

this.max = 0,

this.sum = 0,

}

public observation(double value) {

if (value > max) max = value;

if (value < min) min = value;

sum += (time() - last_time) * last_observation;

last_observation = value;

last_time = time();

}

public result() {

double time = last_time - initial_time;

double average = sum / time;

System.out.println("Statistics for time = " + time + ":");

System.out.println("Min = " + min +

", Max = " + max +

", Average = " + ".");

}

}

Known Uses: Tallies have been used for decades in the simulation commu-
nity. In ”System Simulation: Programming styles and languages” [21], W.
Kreutzer talks about the use of tallies. The SSS simulation library writ-
ten by Moshe A. Pollatschek and distributed with his book ”Programming
Discrete Simulations” [20] is another use of tallies.

6.3.4 The Random Event Generation Pattern

Problem: How to organize the creation and scheduling of random events.
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Context: Simulation is to imitate the real thing with something that is sim-
pler and easier to study, and which at the same time is equivalent to the
real system in all important aspects. Therefore, we need a mechanism
that allows events to occur as they would in the real world. This is why
random distributions are frequently used in simulations. A distribution is
a probability law according to which a random variate is generated. The
distribution law states mathematically which values have a greater chance
than others in a lottery. In discrete distributions, the random variable can
have only integer values; in continuous distributions, any (real) value in a
given range is possible. Binomial and Poisson are discrete distributions;
Beta, Gamma, Erlang, Exponential, Weibull, Normal, Log-Normal, Uni-
form and Triangular are continuous distributions. You have a random
generator that acts according to the distribution needed in your simula-
tion. How do you make the events happen according to the distribution?

Forces:

• Creating all the events at once and inserting them into the event-
queue makes the queue enormous and thus very memory consuming
and slow to work with. If we do not know the duration of the sim-
ulation it is even impossible since we are unaware of the number of
events needed.

• In a time-stepped simulation we could generate and schedule the
events at certain intervals but in event-driven simulations we only
visit those times where events occur.

Solution: Create one initial event scheduled to occur according to the distri-
bution of your choice. Then, delegate the job of creating the next event
to the function assigned to handle events of this type. The event handling
routine handles the arriving event and thereafter calls the random distri-
bution to get the time until the next occurrence. The amount of time
returned from the distribution is added to the current simulation time
and the event is scheduled according to this. This way, events will happen
according to the random distribution.

Resulting context: A minimal amount of work is needed in the event handling
routines to accomplish the generation and scheduling of the next event.
However, this way the size of the queue of events waiting to happen will
be kept to a minimum since only one random event, of each type, will
be stored in the queue at any time. This allows for good efficiency and
reduced memory consumption.

Known uses: This is the usual way of generating random events in simulation
software. Programming Discrete Simulations [20] by Moshe A. Pollatschek
teaches simulation according to this principle.
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6.4 GoF-Patterns for Discrete Event Simulations

6.4.1 Introduction

This section is put together from A Case Study: Designing a Discrete Event
Simulation by David Blackledge [27]. It shows how to use several of the GoF-
patterns in the implementation of discrete event simulations.

6.4.2 Design Problems

We will examine several problems with discrete event simulation design:

Event Queuing We would like multiple types of events to occur, but we need
our events queued in a simple, easy to understand, and easy to process
manner.

Multiple Views of Simulation Data Beyond simply seeing a display of all
our entities, which we may want in more than one window, we would like
to see some statistics information updated with each event as well. All of
these views must share the data from the individual watched entities.

Choice of Action Based on Condition and Event Our entities are not
simple stimulus-response pair. They will choose the appropriate action
that is best for them at the particular time depending on their condition
and what is going on around them.

Actions Done independently of Condition and Event Even with the
above, the entities can have some particular behaviors that affect actions
independently of the current conditions, which may differ between entities.

Allowing Apparent Parallel Action on Events One major issue with this
kind of DES is that results from one entity’s actions may have bearing on
what another entity decides to do, so we want to have all entities act only
based on what was true at the end of the last event even though by the
time a particular entity gets its turn to act on the new event, many other
entities have already acted, changing the current environment.

We discuss these problems in the sections that follow. Each problem has an
associated set of goals plus constraints on how we achieve those goals. We
explain the goals and constraints in detail before proposing a specific solution.
The problem and its solution will illustrate one or more design patterns.

6.4.3 Event Queuing

The backbone of the simulation is the Event Generator. It will create a stream
of events that shape how and when the entities act. Each event, however, will
require significant processing to occur before it is complete, so we would like to
queue the generated events to be processed later. Also, we would like to have
multiple kinds of events rather than simple step execution. We would like the
queuing to work simply and independently of what events we have in the queue
and have it be general enough that we can decide to add more kinds of events
to the simulation later on without having to change a lot of code. The way to
do this is to allow the queue to work with a generic event object so it does not
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need to know what kind of event it is, and new events would be of the same
super-class, so the queue would automatically work with them as well.

We can solve this issue with the Command pattern [3] which objectifies code,
allowing it to effectively be passed around at will. The Event Generator will
generate, somewhat at random, different events from the list of commands it
has available, and place them in a queue. A separate function will de-queue and
execute the commands when processing of previous commands has completed.
We might, for instance, have a NormalEvent concrete command that simply
allows each entity to go about its business for another step. We might also
have a BadEvent concrete command that, depending what subclass of bad it is,
chooses particular entities to affect negatively, and contrastingly, we could have
a GoodEvent that affects entities positively.

This also allows us to use threading or multiple processes at once: one
queuing events, another extracting and executing them.

6.4.4 Multiple Views of Simulation Data

To make the simulation interesting, we would like to watch it as it progresses,
viewing areas of the world and all of the entities in it. We would also like a list
of running statistics to give an overall view of the system. All of these things
will need to share the data from any given entity, but will only be interested in
a change in that data. They will commonly only be interested in certain entities
at a time and within the current area of the world.

Each of our views needs to be updated when an entity they are watching
changes. However, since many entities will affect the data of other entities
around them, many changes may take place for the same entity during the
same event. These complex interactions are such that we would like to update
the views only when all the changes have taken place to a particular entity
rather than repeatedly updating the view every time the entity changes.

Three patterns make their way into the solution of these problems. The
Observer pattern [3] is used by each of the views. It allows the subjects being
watched to notify the list of observers that a change has taken place so that
they may update themselves. Because of the complex interactions causing us
to delay the update until all changes have taken place, the Mediator pattern [3]
can be used to strategize the decision of when the update actually takes place.
Finally, we only want one Mediator, and we want it to be available globally to
all of the appropriate objects. The pattern that facilitates this is the Singleton
pattern [3].

6.4.5 Choice of Action Based on Condition and Event

Each entity has a mind of its own, so to speak. An entity decides which its
next action will be based on its current state, its goals, and its perception of the
world around it. We would like to have changes, in what an entity decides to
do next, to be transparent to the rest of the program. This allows requests to
an entity to look the same to the requester, no matter what the entity’s current
state and plans are.

We will solve this problem two-fold by using the patterns State [3] and
Strategy [3]. The State pattern will allow an entity to change its entire set of



6 A PATTERN CATALOGUE FOR SIMULATIONS 45

functions, while keeping the same interface, by simply changing what State ob-
ject it currently contains. The State object contains functions oriented towards
whatever goal is most appropriate for that state.

The second part of the solution, the Strategy Pattern, allows an entity,
within the current State, to choose different methods of meeting its goals. If
one method of getting from point A to point B is not working, it can change its
Strategy for the next try. Different strategies may be appropriate for different
events as well.

6.4.6 Actions Done Independently of Condition and Event

Each entity can have its own, independent ”ideals” that it feels it must act on
no matter what state it is in or what is going on around it. For example, an
entity with a ”propensity towards violence” may feel that it necessary to attack
every other entity around itself before continuing. However, we would like the
entity to have a general form that does not have to cater directly to those ideals.
We would like to allow the sub-classes of an entity to decide what to do before
and after the requests without directly affecting the code of the super-class.

The perfect solution to this problem is the Template Method [3] pattern.
Using this pattern says that when you write the main function, you have it
execute some otherwise empty operations prior to and/or following (or even in
the middle of) the main function’s execution. You then allow sub-classes to
redefine those two functions, adding any additional personal behaviors they like
without changing the definitions of the base functions of movement and action.

6.4.7 Allowing Apparent Parallel Action on Events

During the invocation of an event in the simulation, we would like to keep a
copy of the current state of each entity because the next entity that does its
work for the same event needs to base its choices on what was true for the first
entity when the event began rather than the future state of the first entity. The
problem is that we do not want to violate encapsulation when we keep that
copy. We should not look at the internals of the entity, but we need to keep the
information that is stored there without knowing what it represents.

This is a complex problem, but it can be solved with the Memento pattern
[3]. With this pattern, we will ask the entity to give us a copy of itself. The
entity itself will decide which data it needs to keep track of so it may reinstate
itself in the current form. It then places that data in a structure that nobody
else knows how to examine. When the entity has finished its actions for the
current event, we get another memento so we may give the entity its new state
when the entire event has ended. Finally, we give the entity the first memento so
it is returned to its pre-event state, allowing the proper actions to be performed
by all of the entities that still need to execute for this event. When all entities
have done their work, they are all restored with the saved mementos of their
newly calculated states and the event execution has completed.

6.4.8 Summary

We have applied eight different GoF-patterns to the DES design:
Command to allow different and easily queueable events, Observer to allow

multiple views of the same information, Mediator to prevent excessive updates of
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Observers, Singleton to assure a single, global Mediator, State to allow actions
based on the current state, Strategy to allow different options to perform an
action, Template Method to allow independent behavior attached to actions,
and Memento to allow apparent parallel actions. There are many, many aspects
to the Discrete Event Simulation, and all parts included could incorporate even
more design patterns. Many of the ideas applied in this example are also easily
applied to numerous other applications. This was only meant as an overview of
the kinds of uses one can make of design patterns.



6 A PATTERN CATALOGUE FOR SIMULATIONS 47

6.5 Design Patterns by Miguel Vargas

6.5.1 Introduction

The following design patterns are taken from a report written by Miguel Vargas
titled Patterns for simulation [23]. Due to limited space the patterns are given
in a more compact form than in the original document. For a more detailed and
complete description of the patterns see [23].

6.5.2 Achievable Goal Pattern

Problem How should the goal of the simulation be stated?

We are going to use simulation for measuring the performance of a new
software solution. Either we have come out with a new software solution
or are willing to figure one out. The system where the solution is intended
to run is very large, or not available, or not suitable for making tests on.
We might also be dealing with a heuristic solution.

Projects without clear goals continue forever and are eventually termi-
nated when the funding runs out.

Solution Specify clear numbers instead of qualitative words such as low, high,
rare, small, etc. Set reasonable and realizable numerical values for the
requirements. Apply our experience. Take into account all possible out-
comes of the simulation.

Now we have a quantified goal, which we can use for verifying whether
the software meets the requirements or not. Based on the goal, we know
the scope of our work and can focus on issues relevant to our target. Our
simulation has an end point.

6.5.3 Level Of Detail Pattern

Problem How to make an appropriate abstraction of a real system in such a
way that its real sensitiveness can be modeled and tested by simulation?

We are going to test a new design solution which is intended to work
in a large-scale system. To generalize, we can think of the solution as an
algorithm. Generally, simulation is also required when the problem, which
is being solved by the algorithm, is just an approximation to the optimal
solution. At this stage, we already have identified all the variables that
interact in the system and have an idea of their impact on the system
behaviour.

• If we include fewer variables in the model, the development is easier
but the simulation is less realistic.

• A simulator can be in construction forever, as we can always enhance
our simulation in order to approximate it to the reality.

• A more detailed simulation requires more time to be developed.

• A more detailed simulation is more liable to contain bugs, so the
debugging time increases.

• A more detailed simulation requires more computer time to run.
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• Sometimes, the behaviour of certain variables of the system is un-
known and making assumptions is not reliable.

Solution Instead of starting with a detailed model of the system, we start with
a less detailed model, get some results, study sensitivities, and introduce
details in the areas that have the highest impact on the results. We iterate
until the level of detail is such that the variables included in the simulation
are enough for accomplishing the goal. 7

By including the strictly necessary variables we are optimizing the devel-
opment, debugging, and running time of the simulation.

At this point, it does not matter how realistic our model is as soon as we
are modeling all we need for accomplishing our goal.

There is nothing we can do when modeling unknown variables besides
making assumptions based on prior experience.

6.5.4 Divide and Simulate

Problem How to structure a large-scale simulation tool?

• Incorrectly structured large-scale simulation tools are highly liable to
fail, producing undetectable misleading results. The obtained results
are of vital importance for claiming that our solution will be efficient
in the real world.

• Simulating real systems is always a complicated task, difficult to
maintain and enhance. Real systems change with time and new mod-
els of simulation are required. A scalable and maintainable structure
is desired.

• The simulation tool must be independent of the algorithm that is be-
ing simulated. However, making an algorithm-dependent simulation
tool may facilitate its development.

Solution Have one class responsible for generating the framework where the
simulation is going to act.

Have another class responsible for managing a list of events but delegate
the actions triggered by the events to a set of classes, which model the
simulated object.

Delegate the simulation time control to a class dedicated exclusively to
keep track of the time.

Have another class dedicated to polling the set of simulated objects in
order to obtain their current state periodically.

• EventScheduler: Keeps a list of events waiting to happen. The Sched-
uler allows the events to be manipulated in various ways:

– Schedule event X at time T
– Cancel a previously scheduled event X
– etc...

7According to Magnus Sjoland, one of the hardest problems with simulation design is to
remove what is unnecessary in order to simplify the reality.
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• SimulationTime: This class implements the mechanism for keeping
track of the simulated time.

• SimulatedObject: This class models an independent object of the
system and implements the mechanisms that are going to be tested
on the simulator.

• SystemState: This class keeps track of the SimulatedObjects and
implements the methods for consulting the variables of the system.

• Framework: This class is responsible for generating the structure
and initial conditions of the system. The structure is characterized
by the number of SimulatedObjects and the relationship between
them. This class participates at the beginning of each iteration of
the simulation.

6.5.5 Initial Conditions Pattern

Problem How to choose realistic initial conditions for the simulation?

As experts in the context of the algorithm we are going to test, it is implied
that we have at least an intuition of the current conditions of the system
but want to make sure that our intuition is a good approximation to the
reality.

• The results are more accurate if measured in a stable state of the
simulation, that is, when the initial conditions are not affecting the
course of the simulation any more; this state is also called the steady
state. Therefore, we want to initialize the system with the most
realistic set of conditions.

• Though the developers of the tool are supposed to have knowledge
of the system being modeled, they cannot know for sure how the
simulation have to be initialized.

Solution We use the results of previous simulations, if there are any. If it
is possible, make measurements in the real world that will help us to
figure out the initial conditions of our simulation. Otherwise, we have a
brainstorming with the people knowledgeable with the system, and make
sure that all of us agree as much as possible with the initial conditions.

If measurements in the real world are possible, the initial conditions will
be almost perfect but unfortunately, in many cases there are no such
systems, and the best we can do is to compile knowledge from members
of the developing team.

Most of the time, we are dealing with huge systems, composed of many
independent objects, each in different states, which keeps changing with
time. The best we can do is an approximation, which accuracy depends on
previous simulations or on the abilities and experience of the designers.
Even if we can make measurements in the real world, it could be too
difficult (or event impossible) to get a verbatim copy of the real system
conditions.
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6.5.6 Long Enough Simulation Pattern

Problem How long a simulation has to be in order to get reliable results?

• Short simulations can produce undetectable misleading results. The
obtained results are of vital importance for claiming that our solution
will be efficient in the real world.

• At the beginning, the simulator starts running with initial conditions,
this stage is called transient state. Transient state results are not
reliable so we need to get rid of them.

• The results are urgent. Moreover, if the simulation is too long, we
will unnecessarily be wasting resources.

• If the simulation was initiated with proper initial conditions, the
simulation is in a state close to the expected steady state.

• Generally, variability of results during the steady state is less than
that during the transient state.

Solution Observe the variability of the results. We might assume that when
the variability of the results are stable the simulation has reached the
steady state. Once the steady state has been identified we can discard all
earlier results and only consider the new ones.

If the simulation reaches a steady state, our problem has been solved.
Many simulations will never reach a steady state, in which case, it is still
unknown when to stop the simulation.
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7 The implemented behaviours

7.1 Installing a new behaviour

In order to add a new behaviour to your Erlang/OTP installation a number
of things needs to be done. These instructions all assume that you have Er-
lang/OTP installed in your /usr/local/lib/erlang/ directory.

7.1.1 otp internal.erl

To extend Erlang with, for example the observer behaviour, two of the functions
in the otp internal.erl file, located in /usr/local/lib/erlang/lib/stdlib-1.8.1/src,
must be rewritten from

behaviour_info() ->
[application, gen_server, gen_event, gen_fsm,
supervisor, supervisor_bridge].

to the following code where the observer atom is added last in the list,

behaviour_info() ->
[application, gen_server, gen_event, gen_fsm,
supervisor, supervisor_bridge, observer].

and from

behaviour_info(application) ->
[{start,2}, {stop,1}];

behaviour_info(gen_server) ->
...

to the following code where a new clause is added.

behaviour_info(observer) ->
[{init,0}, {code_change,3},
{terminate,2}, {aspect,2}];

behaviour_info(application) ->
[{start,2},{stop,1}];

behaviour_info(gen_server) ->
...

The first function, behaviour info/0, makes it possible for Erlang to recognize
the new behaviour and the second function, behaviour info/1, tells Erlang which
functions must be exported from the call-back module using the behaviour.

7.1.2 Where to place the files

To make it possible for Erlang to load the new behaviour, the behaviour specific
files must be placed in directories know by the Erlang system.

The source and binary files of the behaviour must therefore be placed in
/usr/local/lib/erlang/lib/stdlib-1.8.1/src/ and
/usr/local/lib/erlang/lib/stdlib-1.8.1/ebin/.
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7.1.3 Startup scripts

The last change needed before one can start programming with the new be-
haviour is to add the name of the behaviour to the following two files, located
in /usr/local/lib/erlang/bin/ :

• start.script

• start sasl.script

Now the Erlang/OTP system is capable of loading the new behaviour.

7.2 The Observer as a Behaviour

This is an implementation of the observer design pattern in the form of an
Erlang behaviour. It defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are notified and updated
automatically, see [3] for details. The observer pattern is one of the most known
and used design patterns, especially in the implementation of graphical user
interfaces.

The observer behaviour provides a standard way of writing the subjects [3]
from the observer design pattern. The subject is a process with a state which
other processes are interested in monitoring. By using the observer pattern to
build the subject, observers can register with the subject and thereafter receive
updates whenever the state of the subject changes.

7.2.1 Exported functions

The observer behaviour provides the following functions:

start(Name, Mod, Aspects) → ignore | {ok, Pid} | {error, Reason}
This function starts an instance of the subject. Name is the name by
which the subject will be registered. Mod is the name of the callback
module that has implemented the callback functions described in sec-
tion 7.2.2 on page 53. Aspects is a list containing the different aspects
that an observer can subscribe to. The return value is a tuple containing
the atom ok, indicating that the behaviour started correctly, along with
the Pid of that process.

start link(Name, Mod, Aspects) → ignore | {ok, Pid} | {error, Reason}
Same as the function above except that the calling process will be linked
to the subject process. This means that if any of the two processes dies,
both will be terminated.

stop(Name) → ok This function terminates the subject process. Before ex-
iting the subject informs each of its observers that it is shutting down.
This is done by sending the {terminating, Name}-tuple to the observers,
where Name is the name of the subject. The name has to be included
in the message since an observer might subscribe to aspects from several
different subjects.

attach(Name, Aspect) → ok Calling this function adds the calling process
to the list of processes subscribing on the aspect Aspect from subject
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Name. After invoking this function the process will receive a notification
each time the Aspect changes. The subscribing process will now also
receive the {terminating, Name}-tuple, described above, when the subject
dies.

detach(Name, Aspect) → ok When the observer process no longer wants
to receive any updates of a given aspect from a given subject, this is the
function to call.

notify(Name, Aspect) → ok Whenever this function is called, each process
subscribing to the given aspect gets notified. A notification looks like:
{update, Name, Aspect, State} where Name is the name of the subject,
Aspect is the aspect that has changed and State is the changed informa-
tion. This function should be called by the module using the behaviour.

get state(Name) → State Returns the current State of the subject process.
This state is in the format chosen by the programmer when he imple-
mented the init/0 function described in section 7.2.2 on page 53.

set state(Name, NewState) → ok Changes the internal state of the subject
named Name to NewState.

7.2.2 Callback functions

The observer behaviour requires that the following functions are exported from
the callback module in order to function properly:

init() → {ok, State} | {stop, StopReason} This function is called once
when the subject is starting. The purpose of this function is to create
the initial state and perform other initializations required for the partic-
ular application. If the initializing procedure fails, the reason is supplied
as StopReason with the {stop, StopReason} return value.

terminate(Reason, State) → ok This is called just before the subject is
shutting down. Here the programmer should do all the necessary cleaning
up. Reason contains the reason to why the program is terminating and
State is the current state of the subject.

code change(OldVsn, State, Extra) → {ok, NewState} This function is
called when a code change is performed, which implies that the internal
data structures of the server has changed. This function is supposed to
convert the old state to the new one. OldVsn is the vsn attribute of the
old version of the module. If no such attribute was defined, the atom
undefined is sent. Extra is an optional term which is typically defined in
the release upgrade script [28].

aspect(Aspect, State) → StateInfo Whenever the notify function is called
the observer behaviour calls the aspect/2 function with the given aspect.
The purpose of aspect/2 is to compute the information that the observers,
subscribing to the current aspect, should receive. State is the internal
representation of the state in the subject process. The callback module
using the observer module must provide one clause for each aspect it
provides. See the next section for details.
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7.2.3 How to use the observer behaviour

As said before, the observer behaviour is provided to simplify the implementa-
tion of a one-to-many dependency between a subject and a set of observers. This
section describes how to, with the help of the observer behaviour, implement a
subject and its observers.

7.2.4 Implementing an observer

When the observer behaviour have been used to implement a subject it is ex-
tremely easy to write an observer process. Lets say that you want an observer
that subscribes to time updates from a clock subject. The following simple code
is all that is needed to receive an update every time the clock changes minute:

The first thing an observer needs to do is to attach itself to the subject. This
is done by issuing the following command:

observer:attach(clock, minute)

In order to handle the updates the process needs a loop that receives two kinds
of messages. The loop can be written as:

loop(State) ->
receive

{update, clock, minute, Update} ->
do something interesting
...
;

{terminating, clock} ->
do something interesting
...

end,
loop(State).

One last thing is needed when the observer no longer wants to receive updates
from the subject, and that is to detach itself from the subject:

observer:detach(clock, minute)

7.2.5 Implementing the subject

Lets say that the people behind ”The Search for Extraterrestrial Intelligence”
needs to notify people around the world when they eventually discover life in
outer space. To accomplish this they can implement a seti-subject like the
following, which allows computers around the world to attach themselves and
then receive updates whenever contact to outer space is established.

init() -> {ok, []}.
terminate(_, _) -> ok.
code_change(_, State, _) -> State.

aspect(hostile_aliens, State) -> {warning, hostile_info(State)};
aspect(friendly_aliens, State) -> {success, friendly_info(State)}.



7 THE IMPLEMENTED BEHAVIOURS 55

start() ->
observer:start(seti, seti,

[hostile_aliens, friendly_aliens]),
loop().

loop() ->
case query_radar() of

hostile_aliens ->
observer:notify(seti, hostile_aliens);

friendly_aliens ->
observer:notify(seti, friendly_aliens);

_ ->
loop()

end,
loop().

7.3 The Communicator as a Behaviour

This is an implementation of the communicator design pattern in the form of an
Erlang behaviour. It defines a many-to-many dependency between objects so
that objects that need to share state can go through the communicator instead
of sending their state directly to all the other agents. Further, the communicator
can compute something on the collected states and then distribute the result
among the agents. See section 6.2.1 on page 30 for details about this pattern.

The communicator behaviour provides a standard way of writing communi-
cators like the navigator and world modules of the Sim94 simulator.

7.3.1 Exported functions

The communicator behaviour provides the following functions:

start(Name, Mod, Timeout, Agents) → ignore | {ok, Pid} | {error, Reason}

This function starts an instance of the communicator. Name is the name
by which the communicator will be registered. Mod is the name of the
callback module that has implemented the callback functions described in
section 7.3.2 on page 56. Timeout is the number of milliseconds that the
communicator will wait for replies from the involved agents. Agents is a
list containing the different process identifiers of the agents participating
in the simulation.

start link(Name, Mod, Timeout, Agents) → ignore | {ok, Pid} | {error, Reason}

Same as the function above except that the calling process will be linked
to the communicator process. This means that if any of the two processes
dies, both will be terminated.

stop(Name) → ok This function terminates the communicator process.
Name is the name of the subject and it has to be included since their
might be several different communicators in the simulation.

add(Name, Agent) → ok Calling this function adds the Agent to the list of
Agents that are participating in the simulation. Agent is the process iden-
tifier of the agent that wants to join and Name is the name by which the
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communicator is registered. This function performs no checks to determine
whether or not the agent already has joined. It is left to the programmer
to make sure that this is the case. This is for increased efficiency.

del(Name, Aspect) → ok When an agent no longer want to be part of the
simulation it can be removed by calling the del/2 function. The arguments
are as in add/2 above. This function assumes that the agent to be removed
actually is in the list.

go(Name) → ok Whenever this function is called, each agent process receives
a request to send their states to the communicator. The Communicator
gathers the replies from every agent and then calls the call-back function
of the module that is implementing the communicator behaviour. The
result returned by that function is sent back to all of the agents.

7.3.2 Callback functions

The communicator behaviour requires that the following functions are exported
from the callback module in order to function properly:

init() → {ok, State} | {stop, StopReason} This function is called once
when the communicator is starting. The purpose of this function is to
create the initial state and perform other initializations required for the
particular application. If the initializing procedure fails, the reason is
supplied as StopReason with the {stop, StopReason} return value.

terminate(Reason, State) → ok This function is called just before the com-
municator is shutting down. Here the programmer should do all the nec-
essary cleaning up. Reason contains the reason to why the program is
terminating and State is the current state of the communicator.

code change(OldVsn, State, Extra) → {ok, NewState} This function is
called when a code change is performed, which implies that the internal
data structures of the server has changed. This function is supposed to
convert the old state to the new one. OldVsn is the vsn attribute of the
old version of the module. If no such attribute was defined, the atom
undefined is sent. Extra is an optional term which is typically defined in
the release upgrade script [28].

compute(AgentStates, State) → Result When the communicator be-
haviour has collected each of the agents states it calls the compute function
in the call-back module. AgentStates is a list of {State, Agent}-tuples,
one for each agent. State is the state used by the callback module to store
relevant information initially created by init/0. This function should com-
pute some interesting result based on the AgentStates-list and the internal
State. The returned result is sent by the communicator to every agent in
the simulation.

7.3.3 How to use the observer behaviour

This section describes how to, with the help of the communicator behaviour,
implement a communicator and its agents.
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7.3.4 Implementing a communicator

init() -> {ok, []}.
terminate(_, _) -> ok.
code_change(_, State, _) -> {ok, State}.

compute(AgentStates, State) ->
compute something interesting with AgentStates
...

7.3.5 Implementing the agents

An agent that is working with a communicator must receive two special kinds
of messages. First of all, the {get state, From}-message must be received. It is
a request from the communicator that it wants the agent to send its state. The
agent must respond to this message by sending the {state, self(), State}-tuple
to the communicator. The second message that an agent must receive is the
{set result, Result}-message. Where Result contains anything that the callback
module using the communicator behaviour has computed.

loop(State) ->
receive ->

{get_state, From} ->
From ! {state, self(), State};

{set_result, Result} ->
do_something interesting with Result
...

end,
loop(State).

7.4 The Tokenizer as a Behaviour

This is an implementation of the tokenizer design pattern in the form of an
Erlang behaviour. It defines an interface between a program implemented in
Erlang and programs written in other programming languages. For details about
the tokenizer design pattern see section 6.2.2 on page 32.

The gen tokenizer behaviour provides a way of specifying the interaction
between an Erlang process and connected clients implemented in other lan-
guages. It also provides facilities that enables clients to subscribe on events
generated by modules inside the Erlang program by using the observer be-
haviour, gen observer.

7.4.1 Exported functions

The tokenizer behaviour provides the following functions:

start(Port, Mod) → ignore | {ok, Pid} | {error, Reason} This func-
tion starts an instance of the tokenizer. Port is the port through which
the communication should take place and Mod is the name of the callback
module implementing the specific functionality.
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start link(Port, Mod) → ignore | {ok, Pid} | {error, Reason} Same
as above except the fact that the calling process gets linked to the
tokenizer.

stop() → ok This function terminates the tokenizer process.

7.4.2 Callback functions

The tokenizer behaviour requires that the following functions are exported from
the callback module in order to function properly.

init() → {ok, State} | {stop, StopReason} This function is called once
when the tokenizer is starting. The purpose of this function is to create
the initial state and perform other initializations required for the partic-
ular application. If the initializing procedure fails, the reason is supplied
as StopReason with the {stop, StopReason} return value.

terminate(Reason, State) → ok This is called just before the tokenizer is
shutting down. Here the programmer should do all the necessary cleaning
up. Reason contains the reason to why the program is terminating and
State is the current state of the subject.

code change(OldVsn, State, Extra) → {ok, NewState} This function is
called when a code change is performed, which implies that the internal
data structures of the server has changed. This function is supposed to
convert the old state to the new one. OldVsn is the vsn attribute of the
old version of the module. If no such attribute was defined, the atom
undefined is sent. Extra is an optional term which is typically defined in
the release upgrade script [28].

request(Message, From, State) → {reply, Reply, NewState} | {noreply, NewState}

This is the most important function of this behaviour. Its purpose is to
handle requests from clients written in other languages. Message is a
message from a client in string representation. From is the pid of the
buffer representing the client application. Messages sent to From are
immediately delivered to the client application. These messages must be
on the form {reply, Message}. But the real purpose of giving the From
pid is not to provide a way of sending replies to the client, since this can
be done with the return value of this function. Rather, the purpose is
that this pid can be given to an observer and this way the client gets
updated each time the subject notifies its observers. State is the internal
state of the callback module. If a response should be sent to the client
application this is done by returning the {reply, Reply, NewState}-tuple
and if no response is required, {noreply, NewState} is returned.

7.4.3 Example usage

This example shows how the tokenizer can be used to communicate between
Java and Erlang. Lets assume that the a Java client need a way of getting the
state of a simulation and a way of telling the simulation to attack its enemies.
For this purpose the two messages “get state” and “attack” are used. The
Erlang code looks like:
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-module(test).

-behaviour(gen_tokenizer).

init() -> {ok, []}.

terminate(_, _) -> ok.

code_change(_, State, _) -> {ok, State}.

start() ->

gen_tokenizer:start(5678, test).

request("get_state", From, State) ->

{reply, "state", State};

request("attack", From, State) ->

attack(),

{reply, "ok", State};

request(Other, From, State) ->

{noreply, State}.

And the Java code on the client side might look like:

socket = new Socket(InetAddress.getLocalHost(), 5678);

out = socket.getOutputStream();

in = socket.getInputStream();

String request1 = "get_state";

String request2 = "attack";

byte reply[] = new byte[100];

out.write(request1.getBytes());

in.read(reply);

System.out.println(new String(reply));

out.write(request2.getBytes());

in.read(reply);

System.out.println(new String(reply));

The output created by executing this java client when the tokenizer is up and
running is:

state

ok

7.5 The Synchronizer as a Behaviour

This is an implementation of the synchronizer design pattern in the form of an
Erlang behaviour. The gen sync provides the ability to synchronize a set of
agents represented as erlang processes.

The gen sync behaviour provides a standard way of writing a synchronizer
process to which agents can be added and thereafter become synchronized with
the other agents in the simulation.
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7.5.1 Exported functions

The following functions are exported in order to control the synchronizer.

start(Mod, Agents, Start, Stop, Step, Timeout) → ignore | {ok, Pid} | {error, Reason}

This function starts an instance of the synchronizer. Mod is the name
of the callback module. Agents is a list of pids of the agents that will
participate in the simulation. Start is the starting time of the simulation,
Stop is the finishing time and Step is the amount of time (simulated
time) the agents will execute each interval. Timeout is the number of
milliseconds that the synchronizer will wait for the agents to finish (real
time).

start link(Mod, Agents, Start, Stop, Step, Timeout) → ignore | {ok, Pid} | {error, Reason}

Same as above, except that the calling function gets linked to the syn-
chronizer.

pause() → ok pause/0 puts the simulation to sleep. The synchronizer and the
agents will kindly wait for the resume function.

resume() → ok resume/0 starts a simulation after that it has been suspended
by the pause/0 function .

stop() → ok Terminates the simulation. The agents participating in the sim-
ulation will now receive the synchronizer stopping-message.

get time() → Time Returns the current simulated time.

set time(Time) → ok Sets the current simulated to Time

add agent(Agent) → ok Adds a new agent to the set of agents currently
being synchronized. Agent is the process identifier of the joining process.

del agent(Agent) → ok Removes an agent from the synchronizer. Agent is
the process identifier of the leaving process.

7.5.2 Callback functions

Besides the usual init/0, terminate/2 and code change/3, which are imple-
mented as usual, the following functions must be supplied:

work(TimeStep, State) → {ok, State} | {stop, Reason} work/2 is
called each interval by the synchronizer in order to let the callback
module perform some work of its own. TimeStep is the length of the
interval and State is the internal state of the callback module.

timeout(Agents, State) → {ok, State} | {stop, Reason} If, for some
reason, some agents were unable to complete there intervals and the syn-
chronizer timed out, this functions is called with the pids of the unfinished
agents and the internal state of the callback module.
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7.5.3 Example usage

The agents must receive two kinds of messages, {execute, From, Period} and
terminate. The first message tells the agents to execute their intervals. From
is the pid of the synchronizer and Period is the amount of time the agents are
allowed to execute. When an agents has done its work for the current interval
it must respond to the synchronizer by sending the {done, self()}-message. The
terminate message is sent to every agent when the simulation has ended. An
example loop might look like the following:

loop() ->

receive

{execute, From, Period} ->

do something ...

From ! {done, self()},

loop();

terminate ->

clean up ...

ok

end.

The structure of the callback module should look like:

-module(sync).

-behaviour(gen_sync).

init() ->

{ok, []}.

terminate(Reason, State) ->

ok.

code_change(_ ,State, _) ->

{ok, State}.

work(Period, State) ->

do something ...

{ok, State}.

timeout(Agents, State) ->

handle the non responding agents in Agents ...

{ok, State}.

go(Agents) ->

gen_sync:start(sync, Agents, 0, 10000, 10, 5000).
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7.6 The gen sim behaviour

7.6.1 Introduction

The gen sim behaviour provides a general framework for the construction of
discrete event simulations (DES). The gen sim behaviour is built using the
gen server behaviour and therefore provides all the behaviour specific stuff dis-
cussed through out this report. This behaviour is constructed from the following
patterns:

• The Event-Driven Execution Pattern

• The Tally Pattern

• The Random Event Generation Pattern

To summarize, gen sim provides the following simulation specific functionality:

Time: The behaviour handles all aspects of time, i.e. the current time, the
elapsed time, the elapsed “real” time and the finish time. It also incre-
ments the time according to the events and checks when the simulation
has reached the end.

Event handling: The behaviour takes care of events by placing the generated
events in an internal queue sorted in time-stamp order. The behaviour
then executes the events one after another, inserting new events as they
occur, until the queue is empty and the simulation ends.

Tallies: Tallies are a construction for computing statistics on variables in the
simulation. Tallies are created for each variable we want to observe. Each
time a variable changes we call the tally, which updates the statistics for
that variable.

Random distributions: One of the most fundamental concepts in simulation
design are random numbers. In order to correctly model phenomenon from
the world, simulations make use of different random distributions. The
gen sim behaviour provides the following distributions: Binomial, Pois-
son, Beta, Gamma, Erlang, Exponential, Weibull, Normal, Log-Normal,
Uniform and Triangular.

Queues: The behaviour also provides queues that the programmer may use
for storing entities and other values. Three different types of queues are
supported, i.e. FIFO, LIFO, PRIO.

Statistics: During the execution of the simulation the behaviour gathers statis-
tics from the tallies, the queues, the simulated time and the real time.
When the simulation has reached the end, the behaviour prints a statisti-
cal report.

The next two sections will describe the functions that must be implemented by
the callback module and the functions exported from the behaviour. The last
section provides two examples of “real” problems solved using this behaviour.
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7.6.2 Exported functions

The gen sim behaviour provides the following functions:

start(Mod, Start, Stop) → ignore | {ok, Pid} | {error, Reason} This
function starts an instance of the simulator. Mod is the name of the
callback module that has implemented the callback functions described
in section 7.6.3 on page 64. Start is the starting time of the simulation
and Stop is the finish time.

start link(Mod, Start, Stop) → ignore | {global, Pid} | {error, Reason}
Same as start/3 except the fact that the calling process gets linked to the
simulation.

stop() → ok Immediately terminates the simulation. The simulation produces
a statistical report with the finish time set to the current time.

enqueue(Queue, Element, Time) → ok This function adds an element to
a queue. Queue is the name of a queue constructed in the init/0 of
the callback module. The queue can be any of the types: LILO, FIFO or
PRIO. Element is any Erlang variable and its place in the queue is decided
by the type of the queue. Time is the current time and is supplied for
statistical purposes.

dequeue(Queue, Time) → Element This functions removes an element
from the queue named Queue. Which element is removed from the queue
is decided by the type of the queue. Time is the current time and is
supplied for statistical purposes.

queue len(Queue) → Length Returns the number of elements currently in
the queue named Queue.

elapsed() → Time Returns the amount of time units that have passed since
the simulation begun.

current() → Time Returns the current time of the simulation.

tally(Name, Value, Time) → ok This function corresponds to the tally de-
sign pattern and is used to observe a value through the lifetime of the
simulation. Name is the name given in the init/0 function of the callback
module. Value is the current value of the observed variable and Time is
the current simulated time.

statistics() → ok Calculates a statistical summary of the simulation so far
and prints it.

ra() Uniform distribution between 0 and 1.

un(I, C) Uniform distribution between I and C.

ex(M) Exponential distribution with mean M.

tr(I, B, C) Triangular distribution between I and C with mode B.

np(M) Poisson distribution with mean M.
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er(M, K) Erlang distribution with K stages and mean K*M.

ga(M, K) Gamma distribution; ga(M,K) same as er(M,K) for integer K.

be(W, U) Beta distribution with mean W/(U+W).

rn(M, S) Normal distribution with mean M and standard deviation S.

rl(M, S) Log-normal distribution with mean M and standard deviation S.

bi(N, P) Binomial distribution with P probability of success in each of N trials.

we(M, U) Weibull distribution; we(M,1) is the same as ex(M).

7.6.3 Callback functions

The gen sim behaviour requires the following functions to be exported from the
callback module in order to function properly:

To use the gen sim behaviour one must implement (besides terminate/2 and
code change/3, which are implemented as usual) the two functions init/0 and
handle event/3, which are described below:

init() → {ok, {State, Events, Tallies, Queues}} | {stop, StopReason}
This function is called once when the simulation is starting. The purpose
of this function is to create the initial state and the different components
of the simulation. If the initializing procedure fails, the reason is supplied
as StopReason with the {stop, StopReason} return value. State is the
internal state of the callback module. Events is a list of initial events.
The syntax of this list:

[{EventName1, Time1}, {EventName2, Time2}, ... {EventNameN, TimeN}],

where Time1 . . . TimeN are the points in time when the events are sched-
uled to happen. Next, Tallies is a list of tallies, described above. The
tallies are created as

[{TallyName1, Init1}, {TallyName2, Init2}, ... {TallyNameN, TimeN}],

where

Init = {sample} | {sample, Value} | {time} | {time, Value}.

The sample keyword is used for gathering statistics on variables that are
time independent and time is used, of course, for gathering statistics on
time dependent variables. Both of these can be created with or without
an initial value. The last thing init/0 does is to create a list of queues.
The syntax of the list is:

[{QueueName1, Type1}, {QueueName2, Type2}, ... {QueueName3, Type3}],

where

Type = fifo | lifo | prio
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The queues will be subject to statistical calculations, which will be printed
in the summary at the end of the simulation.

handle call(Event, Time, State) | {State’, Events} The second function
needed by the behaviour is the handle event/3 function which is called by
the gen sim behaviour with arguments Event, Time and State. Event is
the event occurring. Time is the current time of the simulation. State is
the internal state of the callback module. The purpose of this function is
to handle events, take appropriate actions and then schedule new events
by returning the tuple {State’, Events} where State’ is the new internal
state and Events are a list of events as described for the init/0 function.
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7.6.4 Examples using the gen sim behaviour

Introduction

This section shows some actual examples of how to implement simulations with
the help of the gen sim behaviour. The examples are taken from Programming
Discrete Simulations [20] by Moshe A. Pollatschek. These examples are chosen
since [20] also provides implementations of the examples, using the SSS-library,
which allows us to compare our solution to the solution suggested in [20].

Each section contains a problem, the solution to the problem using the
gen sim behaviour and a discussion about the solution.

Camera

Problem

“Simulate the inventory of a single type of camera at a photo shop. There is a
customer for the camera every 2 days on average. The shop gets new cameras
every 30 days, so the shop starts each new 30-day period with 15 cameras on
the shelf, no matter how many have been sold. Simulate three 30-day periods to
evaluate the number of requests that cannot be satisfied and the average stock.”

Solution

-module(camera).

-behaviour(gen_sim).

init() ->

{ok, {{15, 0},

[{customer, 0}, {cameras, 30}, {cameras, 60}],

[{stock, time}, {unsatisfied, samples}], []}}.

handle_event(customer, Time, {0, U}) ->

gen_sim:tally(unsatisfied, U+1, Time),

{{0, U+1}, [{customer, gen_sim:ex(2)}]};

handle_event(customer, Time, {C, U}) ->

gen_sim:tally(stock, C-1, Time),

{{C-1, U}, [{customer, gen_sim:ex(2)}]};

handle_event(cameras, Time, {C, U}) ->

gen_sim:tally(stock, C+15, Time),

{{C+15, U}, []}.

Discussion

As you can see this solution requires no more than 15 lines of Erlang-code while
the solution in [20] requires 27 lines of C-code.

init/0 creates the state {C, U}; C for Cameras and U for Unsatisfied Cus-
tomers. These are initialized to {15, 0} since we have 15 cameras to begin with
and zero unsatisfied customers. Next init/0 creates three events; one customer
event and two camera events. The first customer is scheduled to arrive at time
zero and the camera events are scheduled to occur on day 30 and day 60. The



7 THE IMPLEMENTED BEHAVIOURS 67

last thing in init/0 is the creation of two tallies; stock, which is time dependent,
and unsatisfied, which is independent of time. handle event/3 has three differ-
ent clauses. Clause one and two handles the arrival of customers. Clause one
handles the case where the cameras in stock are zero in which case we increment
the number of unsatisfied customers, record the observation and schedule the
next customer to arrive in approximately 2 days. This is an example usage of the
random event generation pattern from page 6.3.4. Clause two handles the case
where we still have cameras in the store, in which case we decrease the number
of cameras, record the observation using the tally pattern from page 6.3.3 and
schedule the next customer in the same manner as clause one. The third clause
handles the arrival of new cameras in which case we increase the number of
cameras by 15 and record the observation.

This code is then executed by calling gen sim:start(camera, 0, 90) which
executes the simulation for 90 days and creates the following output:

The simulation took 22.0000 milliseconds.

stock - Statistics for 90 time units:

Average = 11.3412, Standard Deviation = 3.80722

Minimum = 3, Maximum = 22

unsatisfied - No statistics collected!

Parking

Problem

“Determine the satisfactory size of a parking lot for a shop, assuming that at
peak hours the arrival rate is 30 customers per hour and the customers spend
an average of 20 minutes in the shop. Assume each customer arrives in one car
and the cars are of approximately the same size.”

Solution

-module(parking).

-behaviour(gen_sim).

init() ->

{ok, {0, [{arrival, 0}], [{parking, {time, 0}}], []}}.

handle_event(arrival, Time, C) ->

gen_sim:tally(parking, C+1, Time),

{C+1, [{arrival, gen_sim:ex(2)},

{departure, gen_sim:ex(20)}]};

handle_event(departure, Time, C) ->

gen_sim:tally(parking, C-1, Time),

{C-1, []}.

Discussion

The solution requires no more than 11 lines of Erlang-code while the solution
in [20] requires 49 (!) lines of C-code.
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init/0 creates the initial state C, where C is the number of customers in
the parking lot. It is initialized to zero. init/0 then creates the initial event
which is a customer arrival, scheduled to happen at time zero. Finally init/0
creates a time dependent tally initialized to zero for observing the customers
in the parking lot. The handle event/3 function has two clauses; one for the
arrival of new customers and one for the departure of customers. The first clause
increments the number of customers in the parking lot, records the observation
with the tally function and schedules two new events. The first event is the
arrival of the next customer which will be scheduled in approximately 2 minutes.
This way customers will arrive in 2 minute intervals which corresponds to the
arrival rate of 30 customer per hour. The other event is the departure of the
arriving event which is scheduled to occur in about 20 minutes. The second
clause handles customer departures. This is done by decrementing the number
of customers and recording this observation by using the tally function.

This code is executed by calling gen sim:start(parking, 0, 40) which executes
the simulation for 40 minutes and creates the following output:

The simulation took 23.0000 milliseconds.

parking - Statistics for 40 time units:

Average = 6.19630, Standard Deviation = 2.08790

Minimum = 0, Maximum = 10
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8 Conclusion

Design patterns can be a valuable tool in the development of software applica-
tions. They capture working ideas, explain the pros and cons of their solutions,
and improve the communication between developers. Still, the design pattern
community can be improved by better organization and a common standard
for pattern writing. Other deficiencies of design patterns includes the relatively
large amount of work needed to be fluent in applying patterns, patterns might
be overkill when applied to a simple problem, and since they often are written
for object-oriented languages it is hard for programmers using other paradigms
to adapt the patterns to their languages.

Behaviours are formalizations of design patterns, which means that they
are implemented in a programming language. A behaviour can be seen as a
framework, i.e. software implementing the context while keeping the specific
functionality open by using callback functions. Behaviours are as general
as written code can be, but are still less general then the corresponding
design pattern. The two behaviours that have corresponding published design
patterns, the gen server and the gen fsm, follows their patterns very closely.
Further, behaviours provide more than design patterns. This includes specific
functionality for debugging, code change, presentation of errors, etc. Behaviours
significantly increase the speed of software development since they decrease the
amount of code that needs to be written and therefore also the number of bugs.

Providing a catalogue of design patterns for simulations can be of great use,
especially for novices in the area of simulations. Experts, having implemented
simulations for several years, will not gain anything from a catalogue of design
patterns. Rather they are the kind of people suitable for writing design
patterns. Behaviours however, might be of even more use since they can be
used by both novices and experts, to speed up their daily programming.

This report has demonstrated a catalogue of design patterns for simulations.
These patterns include four patterns for concurrent agent simulation [13], four
patterns for general discrete simulations, several patterns by Miguel Vargas
[23] handling everything from how to decide the goals of a simulation to
its implementation, and finally a discussion about how to use eight of the
GoF-patterns [3] in the implementation of a simulation.

The design patterns for concurrent agent simulations have been imple-
mented as three unique behaviours, i.e. gen communicator, gen tokenizer and
gen sync. For discrete event simulations a single behaviour named gen sim has
been developed. Gen sim provides as much as possible of the corresponding
design patterns and makes the implementation of a simulation relatively
easy. This report shows two examples of using the gen sim behaviour, which
results in programs with half the size of the same programs written in C using
Pollatschek’s SSS-library [20].

This report also provides an implementation of the famous observer pattern
as the behaviour gen observer.
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