
The ICI Programming Language

Tim Long
© 1992-2003 Tim Long
Regular expression portions © 1997-1999 University of Cambridge
Permission granted to reproduce provided copyright notices are preserved.
The ICI Programming Language 1

Chapter 1:

2 The ICI Pro
gramming Language

:
CHAPTER 1 Introduction 11

CHAPTER 2 A brief tutorial for C programmers 13

Hello world 13

Program structure 14

Variables and arithmetic 14

Lexicon, syntax and flow control statements 15

Aggregate data types and the nature of objects 15
Making and manipulating aggregates 17

Literal data items 17

Other operations and core functions 18
Regular expressions 18

CHAPTER 3 Some sample programs 21

Ackermann’s function 21

Array access 22

Count lines/words/characters 22

Echo client/server 23

Exception mechanisms 24

Fibonacci numbers 25

Hash (associative array) access 25

Hashes, part II 25

Heapsort 26

Hello world 27

List operations 27

Matrix multiplication 28

Method calls 29

Nested loops 31

Producer/consumer threads 31

Random number generator 32

Regular expression matching 33

Reverse a file 34

Sieve of Eratosthenes 34

Spell checker 35

Statistical moments 35

String concatenation 36

Sum a column of integers 37

Word frequency count 37
The ICI Programming Language 3

Chapter 2:

4 The ICI Pro
CHAPTER 4 ICI Language Reference 39
The lexical analyser 39
An introduction to variables, modules and scope 40
The parser 41

Expressions 43
Factors 43
An introduction to arrays, sets and structs 44
Built-in literal factors 45
User defined literal factors 47
Primary operators 48
Terms 49
Prefix operators 50
Postfix operators 50
Binary operators 51
Binary operator summary 53

Statements 54
Simple expression statements 54
Compound statements 54
The if statement 55
The while statement 55
The do-while statement 55
The for statement 56
The forall statement 56
The switch, case, and default statements 57
The break and continue statements 58
The return statement 59
The try statement 59
The critsect statement 60
The waitfor statement 60
The null statement 61
Declaration statements 61
Abbreviated function declarations 63
Functions 63

Objects 66
Equality 68
Structure and set keys 70
Structure super types 71
An aside on variables and scope 73

Base types 73
array - An ordered sequence of objects 74
exec - A thread execution context 74
file - An open file reference 75
float - A double precision floating point number 75
func - A function 76
int - A signed 32 bit integer 76
mem - A reference to raw machine memory 76
method - A binding of a function and a subject object 77
ptr - A reference to a storage location 77
regexp - A compiled regular expression 78
set - An unordered collection of objects 78
string - An ordered sequence of 8 bit characters 79
gramming Language

:
struct - An unordered set of mappings 79

Operators 79
Automatic library loading 84

CHAPTER 5 Object-oriented programming in ICI 87
Sub-classes 89
Global methods 92
Taking advantage of dynamic binding 92
Standard global methods 93

CHAPTER 6 Core language functions and variables 95

Core function summary 95

Core language functions 98
float|int = abs(float|int) 98

angle = acos(x) 98

mem = alloc(nwords [, wordz]) 98

string = argv[] 98

array = array(any...) 98

float = asin(x) 98

value = assign(struct, key, value) 98

angle = atan(x) 99

angle = atan2(y, x) 99

array|struct = build(dims... [, options, content...]) 99
float|struct = calendar(struct|float) 100

return = call(func [, any...], array|NULL) 100

float = ceil(x) 101

Change the current working directory to the specified path. 101
close(file) 101

int = cmp(a, b) 101

any = copy(any) 101

any = any:copy() 101

x = cos(angle) 101

float = cputime([float]) 101

file = currentfile(["raw"]) 101

int = debug([int]) 102

del(aggr, key) 102

array = dir([path,] [regexp,] [format]) 103

int = eq(obj1, obj2) 103

int = eof([file]) 103

eventloop() 103

exit([string|int|NULL]) 104

float = exp(x) 104

array = explode(string) 104

fail(string) 104

value = fetch(struct, key) 104

value = float(x) 104

float = floor(x) 104

flush([file]) 104

float = fmod(x, y) 104
The ICI Programming Language 5

Chapter 2:

6 The ICI Pro
file = fopen(name [, mode]) 105

string = getchar([file]) 105

string = getcwd() 105

string = getenv(string) 105

string = getfile([file]) 105

string = getline([file]) 105

string = gettoken([file [, seps]]) 105

array = gettokens([file [, seps [, terms,
[delims]]]]) 106

string = gsub(string, string|regexp,
string) 107

string = implode(array) 107

struct = include(string [, scope]) 107

value = int(any [, base]) 107

subpart = interval(str_or_array, start [,
length]) 107

int = inst|class:isa(any) 108

int = isatom(any) 108

array = keys(struct) 108

any = load(string) 108

float = log(x) 108

float = log10(x) 108

mem = mem(start, nwords [, wordz]) 108

file = mopen(mem [, mode]) 109

int = nels(any) 109

inst = class:new() 109

float = now() 109

number = num(x [, base]) 109

scope = parse(source [, scope]) 109

string = parsetoken(file) 110

any = parsevalue(file) 111

string = path[] 111

any = pop(array) 112

file = popen(string, [mode]) 112

float = pow(x, y) 112

printf([file,] fmt, args...) 112

profile(filename) 112

any = push(array, any) 113

put(string [, file]) 113

putenv(string) 113

int = rand([seed]) 114

reclaim() 114

re = regexp(string [, int]) 114

re = regexpi(string [, int]) 114

rejectchar(file, str) 114

rejecttoken(file) 114

remove(string) 115

any = rpop(array) 115

any = rpush(array, any) 115

current = scope([replacement]) 115

int = seek(file, int, int) 115

set = set(any...) 115

func = signal(string|int [, string|func]) 116
gramming Language

:
string = signam(int) 116

x = sin(angle) 116

sleep(num) 116

array = smash(string [, regexp [, replace...]
[, include_remainder]) 116

file = sopen(string [, mode]) 117

array = sort(array [, func [, arg]]) 117

string = sprintf(fmt, args...) 118

x = sqrt(float) 118

string = strbuf([string]) 118

string = strcat(string [, int] ,
string...) 118

string = string(any) 119

struct = struct([super,] key, value...) 119

string = sub(string, string|regexp,
string) 119

current = super(struct [, replacement]) 119

int = system(string) 120

x = tan(angle) 120

exec = thread(callable, args...) 120

string = tochar(int) 120

int = toint(string) 120

any = tokenobj(file) 120

any = top(array [, int]) 120

int = trace(string) 120

string = typeof(any) 121

string = version() 121

array = vstack([int]) 121

wakeup(any) 121

struct = which(key [, struct]) 122

CHAPTER 7 Regular expressions 123

Regular expression syntax 123

Backslash 124

Circumflex and dollar 126

Full stop (period,dot) 127

Square brackets 127

Vertical bar 128

Internal option settings 129

Subpatterns 130

Repetition 130

Back references 132

Assertions 133

Once-only subpatterns 135

Conditional subpatterns 136

Comments 137

Performance 137

Author 138
The ICI Programming Language 7

Chapter 2:

8 The ICI Pro
CHAPTER 8 Interfacing with C and C++ 139

Universal rules and conventions 139
Include files and libraries 139
The nature of ICI objects 140
Garbage collection, ici_incref() and ici_decref() 140
The error return convention 140
ICI’s allocation functions 142

Common tasks 142
Writing a simple function that can be called from ICI 142
Calling an ICI function or method from C 144
Making new ICI primitive types 144
Using ICI handle types to interface to C/C++ objects 146
Writing and compiling a dynamically loading extension module 149
Referring to ICI strings from C code 150
Accessing ICI array objects from C 151
Using ICI independently from multiple threads 152

Summary of ICI’s C API 152

Detailed description of ICI’s C API 158
ARG 158
ARGS 158
CF_ARG1 158
ICI_BACK_COMPAT_VER 159
ICI_DIR_SEP 159
ICI_DLL_EXT 159
ICI_NO_OLD_NAMES 159
ICI_OBJ_SET_TFNZ 159
ICI_PATH_SEP 160
ICI_VER 160
NARGS 160
hassuper 160
ici_alimit 160
ici_alloc 160
ici_anext 161
ici_argcount 161
ici_argerror 161
ici_array_find_slot 162
ici_array_gather 162
ici_array_get 162
ici_array_nels 162
ici_array_new 162
ici_array_pop 163
ici_array_push 163
ici_array_rpop 163
ici_array_rpush 163
ici_assign 163
ici_assign_base 163
ici_assign_cfuncs 164
ici_assign_fail 164
ici_assign_super 164
ici_astart 164
ici_atexit 165
gramming Language

:
ici_atom 165
ici_atom_probe 165
ici_call 165
ici_callv 165
ici_cfunc_t 166
ici_chkbuf 166
ici_class_new 166
ici_cmp_unique 167
ici_copy_simple 167
ici_debug_t 167
ici_decref 168
ici_def_cfuncs 168
ici_dont_record_line_nums 168
ici_enter 168
ici_error 169
ici_eval 169
ici_fetch 169
ici_fetch_base 169
ici_fetch_fail 169
ici_fetch_super 170
ici_file_close 170
ici_file_new 170
ici_float_new 170
ici_float_ret 171
ici_float_t 171
ici_free 171
ici_ftype_t 171
ici_func 172
ici_funcv 172
ici_get_last_errno 172
ici_get_last_win32_error 173
ici_handle_method_check 173
ici_handle_new 173
ici_handle_probe 174
ici_handle_t 175
ici_hash_unique 176
ici_incref 176
ici_init 176
ici_int_new 177
ici_int_ret 177
ici_int_t 177
ici_interface_check 177
ici_leave 178
ici_main 178
ici_make_handle_member_map 178
ici_mem_new 179
ici_method 179
ici_method_check 179
ici_method_new 179
ici_module_new 180
ici_nalloc 180
ici_need_stdin 180
ici_need_stdout 180
The ICI Programming Language 9

Chapter 2:

10 The ICI Pr
ici_nfree 180
ici_null 180
ici_null_ret 181
ici_obj_t 181
ici_objname 181
ici_objwsup_t 182
ici_parse 182
ici_parse_file 182
ici_parse_fname 182
ici_ptr_new 182
ici_register_type 183
ici_rego 183
ici_ret_no_decref 183
ici_ret_with_decref 183
ici_set_new 184
ici_sopen 184
ici_src_t 184
ici_str_alloc 184
ici_str_buf_new 184
ici_str_get_nul_term 185
ici_str_need_size 185
ici_str_new 185
ici_str_new_nul_term 185
ici_str_ret 185
ici_struct_new 186
ici_struct_unassign 186
ici_talloc 186
ici_tfree 186
ici_type_t 186
ici_typecheck 189
ici_typeof 190
ici_uninit 190
ici_waitfor 190
ici_wakeup 191
ici_yield 191

Building ICI on various platforms 191
Windows 191
UNIX-like systems 191

How it works 192

CHAPTER 9 Obsolete features and mistakes 193
OBSOLETE: Method Calls ### 193
event = waitfor(event...) 194

argc 194

Mistakes 194
ogramming Language

CHAPTER 1 Introduction
ICI is a general purpose interpretive programming language that has dynamic typing and flexi-
ble data types with the basic syntax, flow control constructs and operators of C. It is designed
for use in many environments, including embedded systems, as an adjunct to other programs, as
a text-based interface to compiled libraries, and as a cross-platform scripting language with
good string-handling capabilities.

The ICI language and source is free for any use but without warranties of any kind.

This document is the basic reference for the core language and functions. There is also an exten-
sive man page that includes details of command line invocation not described here. Additional
documentation is provided in the ICI source releases. The ICI web site is maintained by Andy
Newman at http://ici.sf.net/

ICI source code is maintained publicly at Sourceforge (http://sf.net/) under the project name ici.
Releases are available there.

This document relates to ICI version 4.1.

The following people are due much thanks for their contributions: Andy Newman, Chris Amies,
Luke Kendall, Giordano Pezzoli, Philip Hazel, Henry Spencer, Yiorgos Adamopoulos, Gary
Gendel, Alexander Demenshin, Oliver Bock, and Tim Vernum.
The ICI Programming Language 11

http://ici.sf.net/
http://sf.net/

Chapter 1: Introduction

12 The ICI Pr
ogramming Language

CHAPTER 2 A brief tutorial for C
programmers
This chapter is intended as a quick tutorial introduction to ICI for programmers familiar with C
or C++. It does not dwell on formal definitions and exceptions. For precise definitions, see the
next chapter: ICI Language Reference. Because ICI’s syntax and flow control constructs are
based on those of C, a C programmer has a particular advantage in learning to use ICI. This
tutorial will take advantage of that and move quickly through areas that are unsuprising to C
programmers.

This tutorial will also occasionally allude to how things work inside the interpreter as, to a pro-
grammer, this can aid comprehension and give an idea of the implications of using certain con-
structs.

Hello world

The ICI hello world program is simply:

printf("Hello world.\n");

ICI’s printf is the same as C’s. You can verify your ICI execution environment by placing that
single line in a file (often with a .ici suffix) and running it with:

ici hello.ici

And of course on UNIX like systems you can place:

#!/usr/local/bin/ici

in the first line to allow direct execution of the file (provided ICI is installed in /usr/local).
The ICI Programming Language 13

Chapter 2: A brief tutorial for C programmers

14 The ICI Pr
Program structure

An ICI program file is a sequence of statements. These statements include both executable state-
ments as you would expect to find within C functions, and declaration statements as you would
expect to find at the file level of a C program. Thus:

printf("Let's define a function.\n");

static
func()
{
 printf("Hello from func.\n");
}

printf("Now let's call it.\n");
func();

Will produce:

Let's define a function.
Now let's call it.
Hello from func.

Variables and arithmetic

Because ICI is a dynamically typed language, the nature of a variable is of course different from
those of C. But for typical arithmetic the differences are invisible. All ICI variables refer to stor-
age that records both the type and data of the variable’s current value . Thus we can say:

x = 1;

which makes x refer to the integer one. Then

x = 1.0;

which updates x to refer to the float one. Then

x = "one";

which updates x to refer to the string "one".

As a C programmer, you can consider all ICI variables to be typless pointers to objects that
record both type and value. But because ICI’s built in operators know this is the case, they read
and generate the pointed-to values automatically. Thus ordinary arithmetic is unsurprising:

fahr = 100.0;
celsius = (5.0 / 9.0) * (fahr - 32.0);
printf("%g deg. F is %g deg. C\n", fahr, celsius);

works as one would expect. So most of the time you don’t need to consider this at all. All
objects in ICI are subject to automatic garbage collection, so no explicit freeing is required.

Because ICI variable are dynamically typed, you don’t need to declare them. But ICI supports
hierarchical modularisation and it is often desirable to declare at what scope a variable lives.
Thus we have:
ogramming Language

Lexicon, syntax and flow control statements:
extern xxx; /* xxx is visible to other files. */
static sss; /* sss is visible in this file. */
auto aaa; /* aaa is visible in the local scope. */

The word static is used in the C sense of the value being persistent. This variable will exist with
persistent value as long as functions in this module are still callable. Extern variables are also
persistent, they just have more global scope. Consider:

static
func(arg)
{
 auto local;

 local = 10;
 for (i = 0; i < local; ++i)
 printf("%d\n", i * arg);
}

This function (which is declared static) has an auto variable. Auto variables are, as in C, the var-
iables that spring into existence (on the stack) for the duration of a single execution of a func-
tion. The function also uses the variable i. If an undeclared variable is assigned to, it is
implicitly declared auto. That can be dangerous in large programs with many variables of more
global scope that may already exist, so as a style rule, implicit autos are normally kept to one or
two characters, and more global variables should not be.

Auto variables, and their implicit declaration, also work at the file level. They have a similar (in
a sense) semantics. While the file is being parsed, they exist. But they evaporate afterwards.
They are not visible to functions defined within the file. We used implicit auto variables in our
fahrenheit to celsius conversion above.

Lexicon, syntax and flow control statements

ICI’s lexicon is (basically) the same as C’s. Same tokens, comments (including //) and literal
data values. Sorry, no preprocessor.

ICI’s syntax is, wherever possible, the same as C’s. Naturally differences arise due to the differ-
ent nature of the environment, as we have seen above.

As we have seen, expressions are as in C. There are of course additional data types, literals, and
operators, but these build from the initial C compatible set.

The flow control constructs if-else, while, for, do-while, switch (including case and default),
continue, break and return all have the same basic syntax and semantics as C. But there is no
goto.

In addition to these classic C statements forms, ICI has forall, try-onerror, waitfor, and critsect.
But before considering these, we will look at aggregate data types and the nature of objects,
which is the one aspect a C programmer needs to understand before writing effective ICI code.

Aggregate data types and the nature of objects

ICI supports a number of “aggregate” data types. Principly:
The ICI Programming Language 15

Chapter 2: A brief tutorial for C programmers

16 The ICI Pr
array Simple ordered collections of values that can be indexed by integers.
The first item is at index 0. They can be efficiently pushed and
popped at either end.

struct Mappings from an index (any object) to a value. Also known as as-
sociative arrays, dictionaries, maps, hashes, etc in other languages.
Adding entries, lookup and deletion are all efficient operations irre-
spective of the complexity of the objects involved.

set Simple unordered collections of values.

Each of these hold a collection of references to other objects. There is a significant distinction
between these aggergate types and the simple types such as int, float, and string. These simple
types have no modifiable internal structure. They are read-only. In fact, when an object of one of
these types is required (say as the result of some arithmetic operation) it is looked for in a hash
table of all such objects, and the entry found there is used. It is created and added if it does not
exist.

Thus we can see that all strings “xyz” in an ICI program are just pointers to the same single
object in memory. The same is true for integers (which are 32 bit signed values) and floats
(which are double precision values). An object that has been resolved to its single unique (read-

only) version is said to be atomic.1

Aggregates, on the other hand, are internally modifiable in-place.

In ICI, “indexing” an aggregate is the most primitive way of accessing internal elements. But
we use the term indexing in a more general sense than simple array indexing. For example,
array indexing is unsurprising, so:

a[0] = 3;

sets the first element of an array a to 3. With a sruct s we might say:

s.value = 3;

which sets the value field of the struct to 3. But this is just an “indexing” operation on the struct.
In fact it is just a syntactic variation on:

s["value"] = 3;

Arrays, structs and sets are all objects that support indexing to refer to internal values (i.e. object
references) for read or write. Each varies only in how they are structured internally, and how
they interpret the “key”, or index, applied to them.

• Arrays are growable circular buffers of object references that can only be indexed by inte-
gers, which are interpreted as an offset from the first element.

• Structs are hash tables that map one object reference to another. The index reference itself is
the basis for indexing, not the details of the index object (that is, the indexing operation only
looks at the index as a pointer, not at what it points to). But because ints, strings, floats, etc
are already resolved to unique pointers based on their values, this behaviour is indistinguish-
able from full value hashing and comparison for simple (atomic) types.

1. This type of mechanism is typical for dynamically typed interpretive langauges such as ICI. Although it
is less common to apply it to uniformly for all data types of the language, even numbers.
ogramming Language

Literal data items: Making and manipulating aggregates
• Sets are hash tables that merely record the presence or absence of an object in the same man-
ner as structs, but they have no associated value. Although they have an “implicit” value of 1
if the object is in the set.

Arrays, structs and sets all return the special object NULL if the key is not in their current
domain.

Making and manipulating aggregates

The simplest ways to make aggregates are the functions array(), set() and struct(). For example:

a = array(1, 2.5, "hello");
b = set("bye", 5.5, 9);
c = struct("a", 12, "b", 13);

The struct() function interprets its arguments pair-wise as key-value pairs. If, after executing the
above code, we do:

printf("a[2] = %s\n", a[2]);
if (b[9])
 printf("The set b contains 9.\n");
printf("c.a = %d\n", c.a);

we will see:

a[2] = hello
The set b contains 9.
c.a = 12

It is equally common to see these functions used to make empty aggregates that are then added
to through further code. For example:

things = array();
while ((thing = get_next_thing()) != NULL)

push(things, thing);

Or:

node = struct();
node.name = name;
node.left = a;
node.right = b;

Literal data items

ICI supports in-line literal aggregates. That is, like an initialised structure in C, but instead of
being tied to a variable declaration, they are self-describing, and can be used anywhere. For
example:

[array 1, 2, 3]

is a term in an expression. Just like a literal string in C:

"Hello world.\n"
The ICI Programming Language 17

Chapter 2: A brief tutorial for C programmers

18 The ICI Pr
the compiler builds the data structure in memory somewhere and the term evaluates to a refer-
ence to it. Examples of array, set, and struct literals are:

a = [array 1, 2.5, "hello"];
b = [set "bye", 5.5, 9];
c = [struct a = 12, b = 13];

Arrays and sets have syntax almost identical to the run-time functions that create the same
types. But structs have a more convinient syntax for the commonest activity; associating values
with named keys.

Be careful not to confuse literals with the run-time functions of the same name. Confusion often
arises because at the file level where a statement is parsed, then immediately executed, there
isn’t much effective difference. But in a loop or function there is a very big difference.

Other operations and core functions

Common to all dynamically typed interpreted languages, execution speed is very different from
fully compiled statically typed languages. Achieving useful performance relies heavily on the
use of operations and functions that perform the “inner loops” of a program, but are fully com-
piled and carefully optimised.

ICI is no exception to this principle. So it is wise to be aware of the full repertoire of operations,
core functions, and extension modules available. However, in this brief tutorial we won’t
attempt to enumerate all such features. They are listed in subsequent chapters, and a skim
through Operators in the ICI Language Reference chapter, the Core language functions, chap-
ter, and Some extension modules is recommended. Having said that, a few of the commonest
non-C features and idioms are worth illustrating here.

Regular expressions

Regular expressions are “simple” (atomic) types in ICI, just like ints, floats and strings. A literal
regular expression is delimited by # characters (like a string is delimited by " characters). For
example:

while ((line = getline()) != NULL)
{
 if (line ~ #^abc#)
 printf("%s\n", line);
}

will print all lines starting with abc. The ~ operator is read as “matches” and !~ is read as
“doesn’t match”. Other operators exist which extract sub-matches. Regular expressions can be
very useful for avoiding character-by-character operations on text. They are a very efficient way
of matching and breaking up text.

For example, one of my first resorts in dealing with some new regular text file is to load the
entire file, use a function called smash() to break it up into lexical units based on regular expres-
sions, then rearrange the result into the data I want. Consider doing this to load a “CSV” file
(Comma Separated Fields - each line is comma separated fields, each field optionally sur-
rounded by double quotes).

/*
 * Smash the file into fields and separators. Each
ogramming Language

Other operations and core functions: Regular expressions
 * seperator is either a "," or a "\n". Fields are
 * either plain or quoted, but the quotes
 * are removed. Notice the regular expression is
 * broken into two parts for clarity.
 */
csv = smash
(
 getfile(f), /* The file. */
 #(([^,"\n]*)|"([^"\n]*)")# /* ... or "..." */
 #([,\n])#, /* then , or \n */
 "\\2\\3", /* For each.. */
 "\\4" /* ..push these*/
);
/*
 * Re-build the linear array into an array of arrays
 * based on the "\n" seperators.
 */
a = array(aa = array());
while (nels(csv) > 0)
{
 push(aa, rpop(csv));
 if (rpop(csv) == "\n")
 push(a, (aa = array()));
}

The ICI Programming Language 19

Chapter 2: A brief tutorial for C programmers

20 The ICI Pr
ogramming Language

CHAPTER 3 Some sample programs
This chapter contains a small collection of very simple sample programs. These programs are
not random. They are based on the set of simple language benchmark tests used in The Great
Computer Language Shootout by Doug Bagley (http://www.bagley.org/~doug/shootout/) and
The Great Win32 Computer Language Shootout by Aldo Calpini (http://dada.perl.it/shootout/).
These programs have been chosen because at those sites you can view programs written to
exactly the same specification in almost any programming language you are likely to know.

The specification of this benchmark suite demands that some of the programs are implemented
the same way as they are implemented in the other languages. Others are merely required to do
the same thing.

Many of the tests take a single optional command-line argument being the integer number of
times some loop is to be repeated. This is typically obtained in each program with a line like:

n = argv[1] ? int(argv[1]) : 1;

Some tests expect input data, which is generally read from standard input. See the sites men-
tioned above for further details.

No comment will be made on code that should be unsurprising to someone who knows C.

Ackermann’s function

This test must be implemented in the same recursive manner in all languages. It is designed to
stress recursion by computing Ack(3, N) for various (small) N.

static
Ack(M, N)
{
 return M ? (Ack(M - 1, N ? Ack(M, N - 1) : 1)) : N + 1;
}

n := argv[1] ? int(argv[1]) : 1;
The ICI Programming Language 21

http://www.bagley.org/~doug/shootout/
http://dada.perl.it/shootout/

Chapter 3: Some sample programs

22 The ICI Pr
printf("Ack(3,%d): %d\n", n, Ack(3, n));

Array access

This test must be implemented in the same way in all languages. It must first build an array full
of integers, then repeatedly add them to a second array, with each loop running backwards
through the array.

Notice the use of the build() function to make the first array. The "i" argument to build() causes
the content to be auto-incrementing integers, the 1 is the start value.

The second call to build() makes an array of size n with each element initialised to 0. The "c"
argument means “apply the initialiser(s) cyclically to leaf elements of the built data”.

n = argv[1] ? int(argv[1]) : 1;

x = build(n, "i", 1);
y = build(n, "c", 0);

for (k = 0; k < 1000; ++k)
{
 for (i = n - 1; i >= 0; --i)
 y[i] += x[i];
}

printf("%d %d\n", y[0], y[n - 1]);

Count lines/words/characters

This test must count lines, words and characters from standard input and must do the same thing
as the versions in other languages. However, it is not allowed to read the whole input at once,
but must limit its read to no more than 4K bytes. There is no easy way to do this ICI except by
reading lines.

Notice the use of the smash() function to get the words of each line. smash() is the most com-
mon method of breaking up strings. The \S+ pattern matches one or more non-whitespace char-
acters. If we really wanted the words, the last argument to the smash() call would have been
"\\&" (meaning append the matched portion to the array being built). However, we only want to
count the words, so we just push empty strings. This saves the cost of actually extracting and
creating the string.

The nels() function returns the number of elements in an array or string (or anything else).

nl = nw = nc = 0;
while (l = getline())
{
 ++nl;
 nc += nels(l) + 1;
 nw += nels(smash(l, #\S+#, ""));
}
printf("%d %d %d\n", nl, nw, nc);
ogramming Language

Echo client/server:
Echo client/server

For this test, each language is required to do the same thing. The specification says it should
fork a child process that repeatedly sends a message to the parent (server), which echoes it back
to the child (client), which checks it is correct. Because fork() is only available in versions of
ICI running on UNIX-like systems (in the sys module), we actually use a thread here.

This test uses the ICI net module, which provides sockets-based networking primitives (it is
documented separately).

Notice the use of waitfor to wait for the child thread to finish. The status field of the child thread
will be "active" until the echo_client function returns (or fails). The thread object istself is
waited on. A wakeup is automatically done on any thread object on thread termnation.

Notice also that the iteration count n is implicitly created by simple assignment, but data is
explicitly declared static. Implicit variable are always created in the innermost scope. At the file
parse level there is a local “auto” scope which exists and is visible only at the file parse level,
just as the “auto” variables of a function only exist and are visible within an invocation of a
function. The n isn’t visible to the running function echo_client and doesn’t need to be. How-
ever data does need to be. The static declaration of data gives it a sufficiently outer scope to be
visible inside the running function echo_client. (The function is also running in a separate
thread, but that doesn’t change the scoping at all.)

Finally, notice the use of the := operator to assign to sock in echo_client. This is the commonest
way of introducing new local (auto) variables in a function. The := operator forces the assign-
ment to be in the most-local scope, even if a variable of the same name already existed in an
outer scope.

n = argv[1] ? int(argv[1]) : 1;
static data = "Hello there sailor\n";

static
echo_client(n, port)
{
 sock := net.connect(net.socket("tcp/ip"), port);
 for (i := 0; i < n; ++i)
 {
 net.send(sock, data);
 if ((ans := net.recv(sock, nels(data))) != data)
 fail(sprintf("received \"%s\", expected \"%s\"",
 ans, data));
 }
 net.close(sock);
}

ssock = net.listen(net.bind(net.socket("tcp/ip"), 0));
client = thread(echo_client, n, net.getportno(ssock));
csock = net.accept(ssock);
t = 0;
while (str = net.recv(csock, nels(data)))
{
 net.send(csock, str);
 t += nels(str);
}
waitfor(client.status != "active"; client)
 ;
printf("server processed %d bytes\n", t);
The ICI Programming Language 23

Chapter 3: Some sample programs

24 The ICI Pr
Exception mechanisms

For this test, each language is required to implement it the same way. The outer loop calls
hi_function() which calls lo_function() which calls blowup(). The blowup() function throws two
types of exceptions, one of which must be caught by lo_function() and the other by
hi_function().

ICI cannot selectively catch exceptions, so in lo_function() we must catch and re-throw the
exception that is not for us. ICI exceptions are very simple, just being a string. They really are
intended just for errors, not as a general programming mechanism. (Although they are reasona-
bly efficient.)

N = argv[1] ? int(argv[1]) : 1;

static HI = 0;
static LO = 0;

static
blowup(n)
{
 fail(n & 1 ? "low" : "hi");
}

static
lo_function(n)
{
 try
 blowup(n);
 onerror
 {
 if (error !~ #low#)
 fail(error);
 ++LO;
 }
}

static
hi_function(n)
{
 try
 lo_function(n);
 onerror
 ++HI;
}

static
some_function(n)
{
 try
 hi_function(n);
 onerror
 fail(error + " -- we shouldn't get here");
}

ogramming Language

Fibonacci numbers:
while (N)
 some_function(N--);

printf("Exceptions: HI=%d / LO=%d\n", HI, LO);

Fibonacci numbers

In this test each language is required to compute a fibonacci number by the same recursive
method.

static
fib(n)
{
 return n < 2 ? 1 : fib(n - 2) + fib(n - 1);
}

printf("%d\n", fib(argv[1] ? int(argv[1]) : 1));

Hash (associative array) access

All languages must implement this test the same way. We store the integers from 1..N in an
array indexed by the hex string of the integer, then access it with decimal strings. Only some of
the decimal strings will strike values we stored under the hex string keys, we must print how
many.

Notice that the “struct” is ICI’s associative array type (a.k.a. hash, map, dict, etc).

n = argv[1] ? int(argv[1]) : 1;

x = struct();
for (i = 1; i <= n; ++i)
 x[sprintf("%x", i)] = i;

c = 0;
for (i = n; i > 0; --i)
 c += x[string(i)] != NULL;

printf("%d\n", c);

Hashes, part II

This is like the above, but isn’t swamped by the time to make strings. The strings are made first,
then used repeatedly.

Notice the use of the forall statement in the main loop. This could have been a for loop with
some variable stepping from 0 to 10000. However, when looping over all the elements of an
aggregate, a forall loop is generally clearer and faster. Notice that in this case there are two loop
variables, v, the values in the aggregate, and k, the key (i.e. index) you would use to find that
value.
The ICI Programming Language 25

Chapter 3: Some sample programs

26 The ICI Pr
n = argv[1] ? int(argv[1]) : 1;

h1 = struct();
for (i = 0; i < 10000; ++i)
 h1[sprintf("foo_%d", i)] = i;

h2 = struct();
for (i = 0; i < n; ++i)
{
 forall (v, k in h1)
 {
 if (h2[k] == NULL)
 h2[k] = 0;
 h2[k] += v;
 }
}

printf("%d %d %d %d\n", h1["foo_1"], h1["foo_9999"],
 h2["foo_1"], h2["foo_9999"]);

Heapsort

In this test each language is required to implement an in-place heapsort in the same way. Notice
again the explicit declaration of some variables static to make them visible inside functions.
Also notice the declaration of last as static inside the gen_random() function. This is almost
completely pointless, as it gets exactly the same visibility as the ones declared outside the func-
tion.

static IM = 139968;
static IA = 3877;
static IC = 29573;

static
gen_random(max)
{
 static last = 42;

 return max * (last = (last * IA + IC) % IM) / IM ;
}

static
heapsort(n, ra)
{
 ir = n;
 l = (n >> 1) + 1;
 for (;;)
 {
 if (l > 1)
 {
 rra = ra[--l];
 }
ogramming Language

Hello world:
 else
 {
 rra = ra[ir];
 ra[ir] = ra[1];
 if (--ir == 1)
 {
 ra[1] = rra;
 return;
 }
 }
 i = l;
 j = l << 1;
 while (j <= ir)
 {
 if (j < ir && ra[j] < ra[j+1])
 ++j;
 if (rra < ra[j])
 {
 ra[i] = ra[j];
 j += (i = j);
 }
 else
 {
 j = ir + 1;
 }
 }
 ra[i] = rra;
 }
}

N = argv[1] ? int(argv[1]) : 1;
ary = array();
for (i = 0; i <= N; ++i)
 ary[i] = gen_random(1.0);
heapsort(N, ary);
printf("%.10f\n", ary[N]);

Hello world

Couldn’t get much simpler than this. We use put() which is raw unformatted output, unlike
printf() (which would have worked just as well).

put("hello world\n");

List operations

All languages must implement this test the same way. In short, using a native data structure,
make a list of integers from 1 through 10000, then copy it, then item by item transfer the head
The ICI Programming Language 27

Chapter 3: Some sample programs

28 The ICI Pr
item to the end of a new list, then item by item transfer the end item of that list to the end of a
new list, then reverse the new list.

For this test we use arrays, which can be efficiently pushed and popped at both ends. Notice the
use of build() again to make the array of integers. There is no built-in reverse function in ICI, so
it is done manually. Notice the use of the swap operator, <=>, in the reversal code.

NUM = argv[1] ? int(argv[1]) : 1;

static SIZE = 10000;

static
test_lists()
{
 li1 := build(SIZE, "i", 1);
 li2 := copy(li1);
 li3 := array();
 while(nels(li2))
 push(li3, rpop(li2));
 while (nels(li3))
 push(li2, pop(li3));
 n := SIZE / 2;
 for (i := 0; i < n; ++i)
 li1[i] <=> li1[SIZE - i - 1];
 if (li1[0] != SIZE || li1 != li2)
 return 0;
 return nels(li1);
}

for (i = 0; i < NUM; ++i)
 result = test_lists();
printf("%d\n", result);

Matrix multiplication

In this test each language is required to multiply two 30 x 30 matrices.

As it happens, the required data in the matricies are the numbers from 1 to 30 in row-column
order. We can use the build() function to easily make these. This is a good illustration of the way
the build function separates the structure being built, from the generation of the content used to
fill leaf elements. This is a simple two-dimensional array, but more complex data structures can
be built, also including nested structures.

Note that there are no true multi-dimensional arrays in ICI. Each matrix is a single 30 element
array of 30 element sub-arrays.

The actual matrix multiplication might be most naturally done by three nested for loops over the
array dimensions. However, forall loops have been used here because they turned out to be
slightly faster. The two outer forall loops loop over the sub-arrays (columns) and the leaf values
within them of the output matrix. This is a bit artificial in the middle loop because the loop var-
iable val is not used. The inner-most loop foralls over one of the columns of the first input
matrix, while it steps along the rows of the second matrix.

static
ogramming Language

Method calls:
mmult(rows, cols, m1, m2, m3)
{
 forall (col, i in m3)
 {
 m1i := m1[i];
 forall (val, j in col)
 {
 val = 0;
 forall (m1ik, k in m1i)
 val += m1ik * m2[k][j];
 col[j] = val;
 }
 }
}

SIZE := 30;
n := argv[1] ? int(argv[1]) : 1;
m1 := build(SIZE, SIZE, "i", 1);
m2 := build(SIZE, SIZE, "i", 1);
mm := build(SIZE, SIZE);
for (i = 0; i < n; ++i)
 mmult(SIZE, SIZE, m1, m2, mm);
printf("%d %d %d %d\n", mm[0][0], mm[2][3], mm[3][2],
 mm[4][4]);

Method calls

Each language is required to implement this test in the same way. In short, we must make a class
Toggle with a state member, and a sub-class NthToggle with additional count and count_max
members. Toggle has an acivate() method that flips the state. But NthToggle’s overridden acti-
vate() does an extra flip every count_max calls.

Instances of classes, and classes themselves, are just structs. They are in scope when executing
methods. So note below in the activate() methods we can simply refer to state, count, and
count_max, rather than this.state (which would also work). However, the only way to call a
method is with the : or :^ operators, and they require an object on the left, so you have to use
this when you call another method in your own class, even though the function itself is directly
visible in your current scope.

An imporant thing to note here is the explicit calls to super-class functions with, for example,
this:^new(). In general, the : operator is used to reference a function of an object and make a cal-
lable method, as in toggle:activate(). The :^ operator is used (in methods) to reference a func-
tion in a super class, as opposed to calling yourself again (or even worse, a sub-class function of
the same name).

Notice that new() is a “class” method, while activate() is an “instance” method. There is no dis-
tinction in their declaration, it is just what they do that makes it so.

static Toggle = [class

 new(start_state)
 {
 t := this:^new();
The ICI Programming Language 29

Chapter 3: Some sample programs

30 The ICI Pr
 t.state := start_state;
 return t;
 }

 activate()
 {
 state = !state;
 return this;
 }

 value()
 {
 return state;
 }
];

static NthToggle = [class:Toggle,

 new(start_state, count_max)
 {
 t := this:^new(start_state);
 t.count_max := count_max;
 t.counter := 0;
 return t;
 }

 activate()
 {
 this:^activate();
 if (++counter >= count_max)
 {
 state = !state;
 counter = 0;
 }
 return this;
 }
];

n := argv[1] ? int(argv[1]) : 1;

toggle := Toggle:new(1);
for (i = 0; i < n; ++i)
 val = toggle:activate():value();
printf(val ? "true\n" : "false\n");

ntoggle := NthToggle:new(val, 3);
for (i = 0; i < n; ++i)
 val = ntoggle:activate():value();
printf(val ? "true\n" : "false\n");
ogramming Language

Nested loops:
Nested loops

Each language is required to implement this the same way. This is a very simple test, but here
are two methods. The first is slightly faster.

n := argv[1] ? int(argv[1]) : 1;
x := 0;
z := build(n, "i");
forall (a in z)
 forall (b in z)
 forall (c in z)
 forall (d in z)
 forall (e in z)
 forall (f in z)
 ++x;
printf("%d\n", x);

The following is probably more natural.

n := argv[1] ? int(argv[1]) : 1;
x := 0;
for (a = n; a--;)
 for (b = n; b--;)
 for (c = n; c--;)
 for (d = n; d--;)
 for (e = n; e--;)
 for (f = n; f--;)
 ++x;
printf("%d\n", x);

Producer/consumer threads

Each language must implement this test in the same way. In this test two threads share the com-
mon data variable, which the producer uses to pass successive integers to the consumer. Access
to the shared data variable is gated with a flag count.

This test illustrates the use of waitfor and wakeup(). Notice that waitfor has an expression that it
waits to be true, and a second arbitrary object that is “waited” on. That is, if the expression is not
true, it suspends execution until that object is “woken up”, then it re-evaluates the expression.
We have used the string "count change" as the object to wait on because it is clear, and, as
strings are atomic, it will be the same string object wherever it is written. Everything in a wait-
for statement is indivisible except the wait it does on the object. This includes the compound
statement that it executes at completion when the condition is finally met.

Finally, note the method of waiting for each thread to finish. The thread object returned by
thread() is woken up automatically when a the thread finishes. The status field of the thread
object reveals its state.

static n = argv[1] ? int(argv[1]) : 1;
static count = 0;
static consumed = 0;
static produced = 0;
static data = 0;
The ICI Programming Language 31

Chapter 3: Some sample programs

32 The ICI Pr
static
producer()
{
 for (i := 1; i <= n; ++i)
 {
 waitfor (count == 0; "count change")
 {
 data = i;
 count = 1;
 wakeup("count change");
 }
 ++produced;
 }
}

static
consumer()
{
 do
 {
 waitfor (count != 0; "count change")
 {
 i = data;
 count = 0;
 wakeup("count change");
 }
 ++consumed;

 } while (i != n);
}

p := thread(producer);
c := thread(consumer);
waitfor (p.status != "active"; p)
 ;
waitfor (c.status != "active"; c)
 ;
printf("%d %d\n", produced, consumed);

Random number generator

Each language is required to implement this test the same way. The random number generator is
exactly specified and is the same one used in the heapsort test above. The specification says we
should use symbolic constants (and have maximum performance).

Notice the use of the $ pseudo-operator which we use to evaluate the symbolic names at parse-
time (i.e. compile time). This gives the same run-time behaviour as if the numbers had been
typed in directly, for a slight performance improvement. The $ operator can be used to evaluate
any expression at “compile time”. Like $sqrt(2.0).

static IM = 139968;
ogramming Language

Regular expression matching:
static IA = 3877;
static IC = 29573;
static last = 42;

static
gen_random(max)
{
 return max * (last := (last * $IA + $IC) % $IM) / $IM;
}

n = argv[1] ? int(argv[1]) : 1;
while (--n)
 gen_random(100.0);
printf("%.9f\n", gen_random(100.0));

Regular expression matching

Each language is required to implement this test the same way. A file of lines, some of which
contain phone numbers, is loaded into an array of strings. Then they are repeatedly matched
against a regular expression and the components of any phone number extracted. Matching
numbers are printed in a normalised form on the last iteration.

Notice the use of gettokens() to read all the input as an array of lines. The functions gettokens()
and gettoken() are one of the commonest and most efficient ways to read text files. The other is
to read the entire file with getfile() and then break it up with smash(). This is also reasonably
efficient as long as you don’t mind reading the file all at once.

Notice both the operator ~~~ and the literal compiled regular expression enclosed in # charac-
ters. The ~~~ operator matches and extracts the matched sub-expressions. Notice that the regu-
lar expression was too long for one line, and so was broken in two. Both strings and regular
expression literals can be broken up in this way (like string literals in C).

n := argv[1] ? int(argv[1]) : 1;
lines = gettokens(stdin, '\n', "");
j = 0;
while (n--)
{
 forall (l in lines)
 {
 a = l ~~~ #^[^\d(]*(?:\((\d\d\d)\)|(\d\d\d)) #
 #(\d\d\d)[-](\d\d\d\d)(?:\D|$)#;
 if (n == 0 && a)
 printf("%d: (%s%s) %s-%s\n", ++j, a[0], a[1],
 a[2], a[3]);
 }
}

The ICI Programming Language 33

Chapter 3: Some sample programs

34 The ICI Pr
Reverse a file

In this test, each language is required to do the same thing — reverse lines from standard input
to standard output.

Notice the use of smash() to break the whole file into an array of lines. The call to smash()
repeatedly matches the regular expression against the input file. The string "\\&" instructs it to
push each matched portion onto the new array it will return. The smash() function is often the
first step in text parsing. Its tokenising ability is limited only by the complexity of the regular
expression you need to write.

f = smash(getfile(), #[^\n]*\n#, "\\&");
while (nels(f))
 put(pop(f));

Below is an alternative version that is slightly faster because it avoids the many one line calls to
put(). Instead it builds a new array with the elements in reverse, then uses implode() to concate-
nate all the strings in that array into a single string for output.

f = smash(getfile(), #[^\n]*\n#, "\\&");
r = array();
forall (l in f)
 rpush(r, l);
put(implode(r));

Sieve of Eratosthenes

Each language is required to implement this test the same way. Notice again the use of build() to
build the initial sieve flags as an array of 1s.

n := argv[1] ? int(argv[1]) : 1;
while (n--)
{
 count := 0;
 flags := build(8193, "c", 1);
 for (i := 2; i <= 8192; ++i)
 {
 if (flags[i])
 {
 for (k := i + i; k <= 8192; k += i)
 flags[k] = 0;
 ++count;
 }
 }
}
printf("Count: %d\n", count);
ogramming Language

Spell checker:
Spell checker

Each language is required to implement this test the same way. In short, load a dictionary of
words, then read words, one per line, from stdin, and print the ones that aren’t in the dictionary.

Notice the use of a set to store the words in. A set is simply an unordered collection (hash table)
of objects where the only thing you are interested in is whether an object is in the set or not.
Compared with, say, a struct where there is also an associated value.

dict := set();
forall (w in gettokens(fopen("Usr.Dict.Words"), "\n", ""))
 dict[w] = 1;

while (w = getline())
{
 if (!dict[w])
 printf("%s\n", w);
}

Statistical moments

For this test, each language is required to do the same thing. In short, we must read numbers
from standard input, then compute a bunch of statistics on them in double precision.

ICI’s “float” type is always double precision. Overall this code is unremarkable. Note the use of
sort() to sort the list and find the median. Here it is used with a default comparison function, but
an explicit comparison function can be given.

sum := 0.0;
nums := array();
forall (f in gettokens(stdin, "\n", ""))
{
 push(nums, f = float(f));
 sum += f;
}

n := nels(nums);
mean := sum / n;

deviation := 0.0;
average_deviation := 0.0;
standard_deviation := 0.0;
variance := 0.0;
skew := 0.0;
kurtosis := 0.0;

forall (num in nums)
{
 deviation = num - mean;
 average_deviation += abs(deviation);
 variance += (t := deviation * deviation);
 skew += (t *= deviation);
 kurtosis += (t *= deviation);
The ICI Programming Language 35

Chapter 3: Some sample programs

36 The ICI Pr
}
average_deviation /= n;
variance /= (n - 1);
standard_deviation = sqrt(variance);

if (variance > 0.0)
{
 skew /= n * variance * standard_deviation;
 kurtosis = kurtosis / (n * variance * variance) - 3.0;
}

sort(nums);
mid := n / 2;
if (n % 2 == 0)
 median = (nums[mid] + nums[mid - 1])/2;
else
 median = nums[mid];

printf("n: %d\n", n);
printf("median: %f\n", median);
printf("mean: %f\n", mean);
printf("average_deviation: %f\n", average_deviation);
printf("standard_deviation: %f\n", standard_deviation);
printf("variance: %f\n", variance);
printf("skew: %f\n", skew);
printf("kurtosis: %f\n", kurtosis);

String concatenation

Each language is required to implement this test the same way. In short, start with an empty
string, then, n times, append the string "hello\n".

This illustrates the use of non-atomic (mutable) strings in ICI. Strings are almost invariably
atomic (immutable) objects in ICI. Their use as variable names is based on this. However muta-
ble strings can be created with the strbuf() function. These can be modified by assigning to indi-
vidual characters and grown by appending, as is done here, with the strcat() function. (Note that
a non-atomic string will not access the same element of a struct as an atomic string of the same
value. They must be eq to access the same element, not just equal as in the == operator.)

n := argv[1] ? int(argv[1]) : 1;
s := strbuf();
for (i = 0; i < n; ++i)
 strcat(s, "hello\n");
printf("%d\n", nels(s));

Non-atomic (mutable) strings are important for the efficiency of operations like this. The fol-

lowing implementation of this test uses ordinary atomic strings. But this method will be O(n2),
and given this is normally run with 40,000 iterations, the performance will be very bad:

n := argv[1] ? int(argv[1]) : 1;
s := "";
for (i = 0; i < n; ++i)
ogramming Language

Sum a column of integers:
 s += "hello\n"; /* Don’t do this for large n */
printf("%d\n", nels(s));

In the above version, each time the += is done, a new string is formed.

Sum a column of integers

Each language is required to implement this test the same way. In short, use built-in line-ori-
ented I/O to sum a column of integers in constant space.

The only aspect of note here is the int() function to convert the string to an integer. The float()
and string() functions allow similar simple conversions.

count := 0;
while (l = getline())
 count += int(l);
printf("%d\n", count);

Word frequency count

For this test, each language is required to do the same thing. In short, from standard input,
extract all the words, convert them to lowercase, and count their frequency. The program should
run in constant space (i.e. not read the whole file at once). The output is lines of counts and
words sorted in descending order.

This test shows that ICI has no built-in transliteration function.

The main loop is unremarkable. The smash() function is used to get words from each line. We
only call our tolower() function when there are upper-case letters in the word for efficiency.

The tolower() function itself shows the commonest way of dealing with a string at the character
level. That is, first of all explode() it into an array of integers, then manipulate the array or make
a new one (which can be a mixture of integer character codes and strings) then implode() the
array back into an atomic string. Notice the use of $ to evaluate the sub-expression once only
when the statement is parsed.

The program finishes by pushing the output lines onto an array. The forall over the counts struct
will produce output in (pseudo) random order. The array is then sorted with sort(). However the
default comparison function won’t do because the result must be descending. We don’t bother to
declare a separate named function for this, but just put an unnamed function literal in-line as an
argument. We could have declared a named function in the normal manner and placed it’s name
as the second argument to sort() with the same effect.

static counts = struct()

static
tolower(s)
{
 s = explode(s);
 forall (c, i in s)
 {
 if (c >= 'A' && c <= 'Z')
The ICI Programming Language 37

Chapter 3: Some sample programs

38 The ICI Pr
 s[i] += $('a' - 'A');
 }
 return implode(s);
}

while (l = getline())
{
 forall (w in smash(l, #\w+#, "\\&"))
 {
 if (w ~ #[A-Z]#)
 w = tolower(w);
 if (counts[w] == NULL)
 counts[w] = 1;
 else
 ++counts[w];
 }
}

out = array();
forall (c, w in counts)
 push(out, sprintf("%7d\t%s\n", c, w));
sort(out, [func(a, b){return a > b ? -1 : a < b;}]);
put(implode(out));
ogramming Language

CHAPTER 4 ICI Language Reference
The ICI interpreter's execution engine calls on the parser to read and compile a statement from
an input stream. The parser in turns calls on the lexical analyser to read tokens. Upon return
from the parser the execution engine executes the compiled statement. When the statement has
finished execution, the execution engine repeats the sequence.

The lexical analyser

The ICI lexical analyser breaks the input stream into tokens, optionally separated by white-
space (which includes comments as described below). The next token is always the longest
string of following characters which could possibly be a token. The following are tokens:

The following are also tokens:

• The character ' (single quote) followed by a single character (other than a newline) or a sin-
gle backslash character sequence (described below), followed by another single quote. This
token is a character-code. A single quote followed by other than the above sequence will
result in an error.

• The character " (double quote) followed by any sequence of characters (other than a
newline) and backslash character sequences, up to another double quote character. This
token is a string.

/ /= $ @ () { }

, ~ ~~ ~~= ~~~ [] .

* *= % %= ^ ^= + +=

++ - -= -- -> > >= >>

>>= < <= <=> << <<= = ==

! != !~ & && &= | ||

|= ; ? : := :^
The ICI Programming Language 39

Chapter 4: ICI Language Reference

40 The ICI Pr
A backslash character sequence is any of the following:

Consecutive string-literals, separated only by white-space, are concatenated to form a single
string-literal.

• The character '#' followed by any sequence of characters except a newline, then another '#'.
This token is a regular-expression literal. A first regular-expression literal followed by con-
secutive regular-expression literals and/or string literals separated only by white space are
concatendated to form a single regular-expression literal.

• Any upper or lower case letter, any digit, or '_' (underscore) followed by any number of the
same (or other characters which may be involved in a floating point number while that is a
valid interpretation). A token of this form may be one of three things:

If it can be interpreted as an integer, it is an integer-number.

Otherwise, if it can be interpreted as a floating point number, it is a floating-point-number.

Otherwise, it is an identifier.

Notice that keywords are not recognised directly by the lexical analyser. Instead, certain identi-
fiers are recognised in context by the parser as described below.

There are two forms of comments (which are white-space). One starts with the characters /*
and continue until the next */. The other starts with the characters // and continues until the
next end of line. Also, lines which start with a # character are ignored (this is not regarded as a
comment, but as a provision for preprocessors). Lines may be terminated with linefeed, carriage
return or carrage return plus linefeed.

An introduction to variables, modules and scope

Variables are simple identifiers which have a value associated with them. They are in them-
selves typeless, depending on the type of the value currently assigned to them.

The term module in ICI refers to a collection of functions, declarations and code which share the
same variables. Typically each source file is a module, but not necessarily.

\n newline (ASCII 0x0A)

\t tab (ASCII 0x09)

\v vertical tab (ASCII 0x0B)

\b back space (ASCII 0x08)

\r carriage return (ASCII 0x0D)

\f form feed (ASCII 0x0C)

\a audible bell (ASCII 0x07)

\e escape (ASCII 0x1B)

\\ backslash (ASCII 0x5C)

\’ single quote (ASCII 0x27)

\" double quote (ASCII 0x22)

\? question mark (ASCII 0x3F)

\cx control-x

\xx.. the character with hex code x...

\n the character with octal code n. (1, 2 or 3 octal
digits)
ogramming Language

: The parser
In ICI, modules may be nested in a hierarchical fashion. Within a module, variables can be
declared as either static or extern. When a variable is declared as static it is visible to code
defined in the module of its definition, and to code defined in sub-modules of that one. This is
termed the scope of the variable.

When a variable is defined as extern it is declared static in the parent module. Thus the parent
module and all sub-modules of the parent module have that variable in their scope. Variables of
this type, whether originally declared extern or static, will be henceforward referred to as static
variables.

Static variables are persistent variables. That is they remain in existence even when execution
completely leaves their scope, despite not being visible to any executing code. They are visible
again when code flow again enters their scope.

The scoping of static variables is strictly governed by the nesting of the modules, not by the
flow of execution. For example. Suppose two neighbouring modules (call them module A and
module B) each define a variable called theVariable. When some code in module A calls a
function defined in module B and that function refers to theVariable; it is referring to the ver-
sion of theVariable defined in module B, not the one defined in module A.

Variables in sub scopes hide variables of the same name defined in outer scopes.

The second type of variable in ICI is the automatic, or auto, variable. Automatic variables are
not persistent. They last only as long as a module is being parsed or a function is being exe-
cuted. For instance, each time a function is entered a copy is made of the auto variables which
were declared in the function. This group of variables generally only persists during the execu-
tion of the function; once the function returns they are discarded.

The parser

The parser uses the lexical analyser to read a source input stream. The parser also has reference
to the variable-scope within which this source is being parsed, so that it may define variables.

When encountering a variable definition, the parser will define variables within the current
scope. When encountering normal executable code at the outermost level, the parser returns its
compiled form to the execution engine for execution.

For some constructs the parser will in turn recursively call upon the execution engine to evalu-
ate a sub-construct within a statement.

The following sections will work through the syntax of ICI with explanations and examples.
Occasionally constructs will be used ahead of their full explanation. Their intent should be
obvious.

The following notation is used in the syntax in these sections.

As noted previously there are no reserved words recoginsed by the lexical anaylyser, but certain
identifiers will be recognised by the parser in certain syntactic positions (as seen below). While

bold The bold text is literal ASCII text.

italic The italic text is a construct further described elsewhere.

[xxx] The xxx is optionally present.

xxx... The xxx may be present zero or more times.

(xxx | yyy) Either xxx or yyy may be present.
The ICI Programming Language 41

Chapter 4: ICI Language Reference

42 The ICI Pr
these identifiers are not otherwise restricted, special action may need to be taken if they are used
as simple variable names. They probably should be avoided. The complete list is:

We now turn our attention to the syntax itself.

Firstly consider the basic statement which is the unit of operation of the parser. As stated earlier
the execution engine will call on the parser to parse one top-level statement at a time. We split
the syntax of a statement into two categories (purely for semantic clarity):

That is, a statement is either an executable-statement or a declaration. We will first consider the
executable-statement.

These are statements that, at the top-level of parsing, can be translated into code which can be
returned to the execution engine. This is by far the largest category of statements:

These are the basic executable statement types. Many of these involve expressions, so before
examining each statement in turn we will examine the expression.

NULL auto break case

continue critsect default do

else extern for forall

if in onerror return

static switch try waitfor

while

statement executable-statement

declaration

executable-statement

expression ;
compound-statement

if (expression) statement

if (expression) statement else statement

while (expression) statement

do statement while (expression) ;
for ([expression] ; [expression] ; [expression]) statement

forall (expression [, expression] in expression) statement

switch (expression) compound-statement

case parser-evaluated-expression :
default :
break ;
continue ;
return [expression] ;
try statement onerror statement

waitfor (expression ; expressiion) statement

critsect statement

;

ogramming Language

Expressions: Factors
Expressions

We will examine expressions by starting with the most primitive elements of expressions and
working back up to the top level.

Factors

The lowest level building block of an expressions is the factor:

The constructs integer-number, character-code, floating-point-number, string, and regular-
expression are primitive lexical elements (described above). Each is converted to its internal
form and is an object of type int, int, float, string, or regexp respectively.

A factor which is an identifier is a variable reference. But its exact meaning depends upon its
context within the whole expression. Variables in expressions can either be placed so that their
value is being looked up, such as in:

a + 1

Or they can be placed so that their value is being set, such as in:

a = 1

Or they can be placed so that their value is being both looked up and set, as in:

a += 1

Only certain types of expression elements can have their value set. A variable is the simplest
example of these. Any expression element which can have its value set is termed an lvalue
because it can appear on the left hand side of an assignment (which is the simplest expression
construct which requires an lvalue). Consider the following two expressions:

1 = 2 /* WRONG */
a = 2 /* OK */

factor integer-number

character-code

floating-point-number

string

regular-expression

identifier

NULL
(expression)
[array expression-list]
[set expression-list]
[struct [(: | =) expression ,] assignment-list]
[class [(: | =) expression ,] assignment-list]
[func function-body]
[module [(: | =) expression ,] statement...]
[identifier user-data...]
The ICI Programming Language 43

Chapter 4: ICI Language Reference

44 The ICI Pr
The first is illegal because an integer is not an lvalue, the second is legal because a variable ref-
erence is an lvalue. Certain expression elements, such as assignment, require an operand to be
an lvalue. The parser checks this.

The next factor in the list above is NULL. The keyword NULL stands for the value NULL
which is the general undefined value. It has its own type, NULL. Variables which have no
explicit initialisation have an initial value of NULL. Its other uses will become obvious later in
this document.

Next is the construct (expression). The brackets serve merely to make the expression within the
bracket act as a simple factor and are used for grouping, as in ordinary mathematics.

Finally we have the constructs surrounded by square brackets. These are textual descriptions of
other data items; typically known as literals. For example the factor:

[array 5, 6, 7]

is an array of three items, that is, the integers 5, 6 and 7. Each of these square bracketed con-
structs is a textual description of a data type named by the first identifier after the starting square
bracket. Six data types are built-in, with other cases handled by user defined code. An explana-
tion most of the built-in literal forms first requires an explanation of the fundamental aggregate
types.

An introduction to arrays, sets and structs

There are three fundamental aggregate types in ICI: arrays, sets, and structs. Certain properties
are shared by all of these (and other types as will be seen later). The most basic property is that
they are each collections of other values. The next is that they may be "indexed" to reference
values within them. For example, consider the code fragment:

a = [array 5, 6, 7];
i = a[0];

The first line assigns the variable a an array of three elements. The second line assigns the vari-
able i the value currently stored at the first element of the array. The suffixing of an expression
element by an expression in square brackets is the operation of "indexing", or referring to a sub-
element of an aggregate, and will be explained in more detail below.

Notice that the first element of the array has index zero. This is a fundamental property of ICI
arrays.

The next ICI aggregate we will examine is the set. Sets are unordered collections of values. Ele-
ments "in" the set are used as indicies when working with the set, and the values looked up and
assigned are interpreted as a booleans. Consider the following code fragment:

s = [set 200, 300, "a string"];
if (s[200])

printf("200 is in the set\n");
if (s[400])

printf("400 is in the set\n");
if (s["a string"])

printf("\"a string\" is in the set\n");
s[200] = 0;
if (s[200])

printf("200 is in the set\n");

When run, this will print:
ogramming Language

Expressions: Built-in literal factors
200 is in the set
"a string" is in the set

Notice that there was no second printing of "200 is in the set" because it was removed from the
set on the third last line by assigning zero to it.

Now consider structs. Structs are unordered collections of values indexed by any values. Other
properties of structs will be discussed later. The typical indicies of structs are strings. For this
reason notational shortcuts exist for indexing structures by simple strings. Also, because each
element of a struct is actually an index and value pair, the syntax of a struct literal is slightly dif-
ferent from the arrays and sets seen above. Consider the following code fragment:

s = [struct a = 123, b = 456, xxx = "a string"];
printf("s[\"a\"] = %d\n", s["a"]);
printf("s.a = %d\n", s.a);
printf("s.xxx = \"%s\"\n", s.xxx);

Will print:

s["a"] = 123
s.a = 123
s.xxx = "a string"

Notice that on the second line the structure was indexed by the string "a", but that the assign-
ment on line 1 in the struct literal did not have quotes around the a. This is part of the notational
shortcut which will be discussed further, below. Also notice the use of s.a in place of s["a"] on
line 3. This is a similar shortcut, also discussed below.

Built-in literal factors

The built-in literals factors, which in summary are:

involve three further constructs, the expression-list, which is a comma separated list of expres-
sions; the assignment-list, which is a comma separated list of assignments; and the function-
body, which is the argument list and code body of a function. The syntax of the first of these is:

The expression-list is fairly simple. The construct empty is used to indicate that the whole list
may be absent. Notice the optional comma after the last expression. This is designed to allow a
more consistent formatting when the elements are line based, and simpler output from program-
matically produced code. For example:

[array

[array expression-list]
[set expression-list]
[struct [(: | =) expression ,] assignment-list]
[class [(: | =) expression ,] assignment-list]
[module [(: | =) expression ,] statement...]
[func function-body]

expression-list empty

expression [,]
expression , expression-list
The ICI Programming Language 45

Chapter 4: ICI Language Reference

46 The ICI Pr
"This is the first element",
"This is the second element",
"This is the third element",

]

The assignment list has similar features:

Each assignment is either an assignment to a simple identifier or an assignment to a full expres-
sion in brackets. The assignment to an identifier is merely a notational abbreviation for an
assignment to a string. The following two struct literals are equivalent:

[struct abc = 4]
[struct ("abc") = 4]

The syntax of a function-body is:

That is, an identifier-list is an optional comma separated list of identifiers with an optional trail-
ing comma. Literal functions are rare in most programs; functions are normally named and
defined with a special declaration form which will be seen in more detail below. The following
two code fragments are equivalent; the first is the abbreviated notation:

static fred(a, b){return a + b;}

and:

static fred = [func (a, b){return a + b;}];

The meaning of functions will be discussed in more detail below.

Aggregates in general, and literal aggregates in particular, are fully nestable:

[array
[struct a = 1, c = 2],
[set "a", 1.2, 3],
"a string",

]

assignment-list empty

assignment [,]
assignment , assignment-list

assignment struct-key

struct-key = expression

struct-key function-body

struct-key identifier

(expression)

function-body (identifier-list) compound-statement

identifier-list empty

identifier [,]
identifier , identifier-list
ogramming Language

Expressions: User defined literal factors
Note that aggregate literals are entirely evaluated by the parser. That is, each expression is eval-
uated and reduced to a particular value, these values are then used to build an object of the
required type. For example:

[struct a = sin(0.5), b = cos(0.5)]

Causes the functions sin and cos to be called during the parsing process and the result assigned
to the keys a and b in the struct being constructed. It is possible to refer to variables which may

be in existence while such a literal is being parsed
1
.

This ends our consideration of the lowest level element of an expression, the factor.

User defined literal factors

User defined literal factors, which have the form:

provide a mechanism for user supplied code to gain control of the parse-stream in order to inter-
pret a custom syntax and return, presumably, a custom data item. The identifier is interpreted as
a variable and its value determined (auto-loading extension modules as necessary). The value is
used to determine a parser function. If the value is callable, it is the parser function, else it is
indexed by the string parser to find the parser function.

In any case, the parser function is called with a single argument, being a special file object
layerd on top of the interpreter’s internal parser. Any normal file reading functions may be used
to read this file (such as getchar(), gettoken() and others), as well as a set of special functions
that use the interpreters internal lexical analyser and parser. These functions are parsetoken(),
and parservalue(), and the associated functions rejecttoken(), rejectchar() and tokenobj(). They
are described in detail in the chapter on core language functions. After reading the user data, the
user parser function must leave the parse stream ready to read the closing square bracket token,
and return the object that represents the literal value.

By using either raw character-level reading (with getchar and ilk), token oriented reading (with
parsetoken), or whole expression level reading (with parsevalue) the user code can interpret
either a completely custom syntax, a sytax built from the pre-exiting token types, a syntax that
includes arbitrary expressions, or some combination thereof.

For example, consider a function to interpret a complex number literal:

static
cmplx(f)
{
 c := struct();
 c.r := parsevalue(f);
 if (parsetoken(f) != ",")
 fail("comma expected");
 c.i := parsevalue(f);
 return c;
}

1. Literal aggregates are analogous to literal strings in K&R C. And likewise they have the property that
modifications to the literal during program execution are persistent. If the flow of control returns to the
original use of the literal after it has been modified, it does not magically restore to its original value.

[identifier user-data]
The ICI Programming Language 47

Chapter 4: ICI Language Reference

48 The ICI Pr
After defining this function we can use literals such as:

x = [cmplx 3.0 + 1, 2];

Primary operators

A simple factor may be adorned with a sequence of primary-operations to form a primary-
expression. That is:

The first primary-operation (above) we have already seen. It is the operation of "indexing"
which can be applied to aggregate types. For example, if xxx is an array:

xxx[10]

refers to the element of xxx at index 10. The parser does not impose any type restrictions
(because typing is dynamic), although numerous type restrictions apply at execution time (for
instance, arrays may only be indexed by integers, and floating point numbers are not able to be
indexed at all).

Of the other index operators, . identifier, is a notational abbreviation of ["identifier"] , as seen
previously. The bracketed form is again just a notational variation. Thus the following are all
equivalent:

xxx["aaa"]
xxx.aaa
xxx.("aaa")

And the following are also equivalent to each other:

xxx[1 + 2]
xxx.(1 + 2)

Note that factors may be suffixed by any number of primary-operations. The only restriction is
that the types must be right during execution. Thus:

xxx[123].aaa[10]

is legal.

The two constructs

primary-expression factor primary-operation...

primary-operation [expression]
index-operator identifier

index-operator (expression)

index-operator Any of:

. -> : :^

-> identifier

-> (expression)
ogramming Language

Expressions: Terms
are again notational variations. In general, constructs of the form:

are re-written as:

The unary operator * used here is the indirection operator, its meaning is discussed later.

The index operators : and :^ index the primary expression to discover a function — the result of
the operation is a callable method. These operators and methods are discussed in more detail
below.

The last of the primary-operations:

is the call operation. Although, as usual, no type checking is performed by the parser; at execu-
tion time the thing it is applied to must be callable (for example, a function or method object).
For example:

my_function(1, 2, "a string")

and

xxx.array_of_funcs[10]()

are both function calls. Function calls will be discussed in more detail below.

This concludes the examination of a primary-expression.

Terms

Primary-expressions are combined with prefix and postfix unary operators to make terms:

That is, a term is a primary-expression surrounded on both sides by any number of prefix and
postfix operators. Postfix operators bind more tightly than prefix operators. Both types bind
right-to-left when concatenated together. That is: -!x is the same as -(!x). As in all expression
compilation, no type checking is performed by the parser, because types are an execution-time
consideration.

primary-expression -> identifier

primary-expression -> (expression)

(* primary-expresion) . identifier

(* primary-expression) . (expression)

(expression-list)

term [prefix-operator...] primary-expression [postfix-operator...]

prefix-
operator

Any of:

* & - + ! ~ ++ -- @ $

postfix-operator Any of:

++ --
The ICI Programming Language 49

Chapter 4: ICI Language Reference

50 The ICI Pr
Some of these operators touch on subjects not yet explained and so will be dealt with in detail in
later sections. But in summary:

Prefix operators

Postfix operators

One of these operators, $, is only a pseudo-operator. It actually has its effect entirely at parse
time. The $ operator causes its subject expression to be evaluated immediately by the parser
and the result of that evaluation substituted in its place. This is used to speed later execution, to
protect against later scope or variable changes, and to construct constant values which are better
made with running code than literal constants. For example, an expression involving the square
root of two could be written as:

x = y + 1.414213562373095;

Or it could be written more clearly, and with less chance of error, as:

x = y + sqrt(2.0);

But this construct will call the square root function each time the expression is evaluated. If the
expression is written as:

x = y + $sqrt(2.0);

The square root function will be called just once, by the parser, and will be equivalent to the first
form.

When the parser evaluates the subject of a $ operator it recursively invokes the execution engine
to perform the evaluation. As a result there is no restriction on the activity which can be per-
formed by the subject expression. It may reference variables, call functions or even read files.
But it is important to remember that it is called at parse time. Any variables referenced will be
immediately interrogated for their current value. Automatic variables of any expression which
is contained in a function will not be available, because the function itself has not yet been
invoked; in fact it is clearly not yet even fully parsed.

* Indirection; applied to a pointer, gives target of the pointer.

& Address of; applied to any lvalue, gives a pointer to it.

- Negation; gives negative of any arithmetic value.

+ Positive; no real effect.

! Logical not; applied to 0 or NULL, gives 1, else gives 0.

~ Bit-wise complement.

++ Pre-increment; increments an lvalue and gives new value.

-- Pre-decrement; decrements an lvalue and gives new value.

@ Atomic form of; gives the (unique) read-only version of any value.

$ Immediate evaluation; see below.

++ Post-increment; increments an lvalue and gives old value.

-- Post-increment; decrements an lvalue and gives old value.
ogramming Language

Expressions: Binary operators
The $ operator as used above increased speed and readability. Another common use is to avoid
later re-definitions of a variable. For instance:

($printf)("Hello world\n");

Will use the printf function which was defined at the time the statement was parsed, even if it is
latter re-defined to be some other function. It is also slightly faster, but the difference is small
when only a simple variable look-up is involved. Notice the bracketing which has been used to
bind the $ to the word printf. Function calls are primary operations so the $ would have other-
wise referred to the whole function call as it did in the first example.

This concludes our examination of a term (remember that the full meaning of other prefix and
postfix operators will be discussed in later sections).

Binary operators

We will now turn to the top level of expressions where terms are combined with binary opera-
tors:

That is, an expression can be a simple term, or two expressions separated by an infix-operator.
The ambiguity amongst expressions built from several binary-operator separated expressions is
resolved by assigning each operator a precedence and also applying rules for order of binding

amongst equal precedence levels
2
. The lines of binary operators in the syntax rules above sum-

marise their precedence. Operators on higher lines have higher precedence than those on lower
lines. Thus 1+2*3 is the same as 1+(2*3). Operators which share a line have the same prece-
dence. All operators except those on the second last line group left-to-right. Those on the sec-
ond last line (the assignment operators) group right-to-left. Thus

expression term

expression infix-operator expression

infix-
operator

Any of:

@
* / %
+ -
>> <<
< > <= >=
== != ~ !~ ~~ ~~~
&
^
|
&&
||
:
?
= := += -= *= /= %= >>= <<= &= ^= |= ~~= <=>
,

2. The precedences and rules are identical to those of C.
The ICI Programming Language 51

Chapter 4: ICI Language Reference

52 The ICI Pr
a * b / c

is the same as:

(a * b) / c

But:

a = b += c

is the same as:

a = (b += c)

As with unary operators, the full meaning of each will be discussed in a later section. But in
summary:
ogramming Language

Expressions: Binary operator summary
Binary operator summary

This concludes our consideration of expressions.

@ Form pointer

* Multiplication, Set intersection

/ Division

% Modulus

+ Addition, Set union

- Subtraction, Set difference

>> Right shift (shift to lower significance)

<< Left shift (shift to higher significance)

< Logical test for less than, Proper subset

> Logical test for greater than, Proper superset

<= Logical test for less than or equal to, Subset

>= Logical test for greater than or equal to, Superset

== Logical test for equality

!= Logical test for inequality

~ Logical test for regular expression match

!~ Logical test for regular expression non-match

~~ Regular expression sub-string extraction

~~~ Regular expression multiple sub-string extraction

& Bit-wise and

^ Bit-wise exclusive or

| Bit-wise or

&& Logical and

|| Logical or

: Choice separator (must be right hand subject of ? operator)

? Choice (right hand expression must use : operator)

= Assignment

:= Assignment to most local scope or context

+= Add to

-= Subtract from

*= Multiply by

/= Divide by

%= Modulus by

>>= Right shift by

<<= Left shift by

&= And by

^= Exclusive or by

|= Or by

~~= Replace by regular expression extraction

<=> Swap values

, Multiple expression separator
The ICI Programming Language   53



Chapter 4: ICI Language Reference

54   The ICI Pr
Statements

We will now move on to each of the executable statement types in turn.

Simple expression statements

The simple expression statement:

Is just an expression followed by a semicolon.  Actually, the semicolon is optional where the 
expression is followed by either a closing curly brace or end-of-file.

The parser translates the expression to its executable form.  Upon execution the expression is 
evaluated and the result discarded. Typically the expression will have some side-effect such as 
assignment, or make a function call which has a side-effect, but there is no explicit requirement 
that it do so.  Typical expression statements are:

printf("Hello world.\n");
x = y + z;
++i;

Note that an expression statement which could have no side-effects other than producing an 
error may be completely discarded and have no code generated for it.

Compound statements

The compound statement has the form:

That is, a compound statement is a series of any number of statements surrounded by curly 
braces. Apart from causing all the sub-statements within the compound statement to be treated 
as a syntactic unit, it has no effect.  Thus:

printf("Line 1\n");
{

printf("Line 2\n");
printf("Line 3\n");

}
printf("Line 4\n");

When run, will produce:

Line 1
Line 2
Line 3
Line 4

Note that the parser will not return control to the execution engine until all of a top-level com-
pound statement has been parsed.  This is true in general for all other statement types. 

expression ;

{ statement... }
ogramming Language



Statements: The if statement
The if statement

The if statement has two forms:

The parser converts both to an internal form.  Upon execution, the expression is evaluated.  If 
the expression evaluates to anything other than 0 (integer zero) or NULL, the following state-
ment is executed; otherwise it is not.  In the first form this is all that happens, in the second 
form, if the expression evaluated to 0 or NULL the statement following the else is executed; 
otherwise it is not.

The interpretation of both 0 and NULL as false, and anything else as true, is common to all log-
ical operations in ICI.  There is no special boolean type.

The ambiguity introduced by multiple if statements with an lesser number of else clauses is 
resolved by binding else clauses with their closest possible if.  Thus:

if (a) if (b) dox(); else doy();

If equivalent to:

if (a)
{

if (b)
dox();

else
doy();

}

The while statement

The while statement has the form:

The parser converts it to an internal form.  Upon execution a loop is established.  Within the 
loop the expression is evaluated, and if it is false (0 or NULL) the loop is terminated and flow of 
control continues after the while statement.  But if the expression evaluates to true (not 0 and not 
NULL) the statement is executed and then flow of control moves back to the start of the loop 
where the test is performed again (although other statements, as seen below, can be used to 
modify this natural flow of control).

The do-while statement

The do-while statement has the following form:

The parser converts it to an internal form.  Upon execution a loop is established.  Within the 
loop the statement is executed.  Then the expression is evaluated and if it evaluates to true, flow 
of control resumes at the start of the loop.  Otherwise the loop is terminated and flow of control 
resumes after the do-while statement.

if ( expression ) statement

if ( expression ) statement else statement

while ( expression ) statement

do statement while ( expression ) ;
The ICI Programming Language   55



Chapter 4: ICI Language Reference

56   The ICI Pr
The for statement

The for statement has the form:

for ( [ expression ]; [ expression ]; [ expression ] ) statement

The parser converts it to an internal form.  Upon execution the first expression is evaluated (if 
present).  Then, a loop is established.  Within the loop: If the second expression is present, it is 
evaluated and if it is false the loop is terminated.  Next the statement is executed.  Finally, the 
third expression is evaluated (if present) and flow of control resumes at the start of the loop.  For 
example:

for (i = 0; i < 4; ++i)
printf("Line %d\n", i);

When run will produce:

Line 0
Line 1
Line 2
Line 3

The forall statement

The forall statement has the form:

forall ( expression [ ,expression ] in expression ) statement

The parser converts it to an internal form.  In doing so the first and second expressions are 
required to be lvalues (that is, capable of being assigned to).  Upon execution the first expres-
sion is evaluated and that storage location is noted.  If the second expression is present the same 
is done for it.  The third expression is then evaluated and the result noted; it must evaluate to an 
array, a set, a struct, a string, or NULL; we will call this the aggregate.  If this is NULL, the 
forall statement is finished and flow of control continues after the statement; otherwise, a loop 
is established.

Within the loop, an element is selected from the noted aggregate.  The value of that element is 
assigned to the location given by the first expression.  If the second expression was present, it is 
assigned the key used to access that element.  Then  the statement is executed.  Finally, flow of 
control resumes at the start of the loop.

Each arrival at the start of the loop will select a different element from the aggregate.  If no as 
yet unselected elements are left, the loop terminates.  The order of selection is predictable for 
arrays and strings, namely first to last.  But for structs and sets it is unpredictable.  Also, while 
changing the values of the structure members is acceptable, adding or deleting keys, or adding 
or deleting set elements during the loop will have an unpredictable effect on the progress of the 
loop.

As an example:

forall (colour in [array "red", "green", "blue"])
printf("%s\n", colour);

when run will produce:

red
green
blue
ogramming Language



Statements: The switch, case, and default statements
And:

forall (value, key in [struct a = 1, b = 2, c = 3])
printf("%s = %d\n", key, value);

when run will produce (possibly in some other order):

c = 3
a = 1
b = 2

Note in particular the interpretation of the value and key for a set.  For consistency with the 
access method and the behavior of structs and arrays, the values are all 1 and the elements are 
regarded as the keys, thus:

forall (value, key in [set "a", "b", "c"])
printf("%s = %d\n", key, value);

when run will produce:

c = 1
a = 1
b = 1

But as a special case, when the second expression is omitted, the first is set to each "key" in turn, 
that is, the elements of the set.  Thus:

forall (element in [set "a", "b", "c"])
printf("%s\n", element);

when run will produce:

c
a
b

When a forall loop is applied to a string (which is not a true aggregate), the "sub-elements" will 
be successive one character sub-strings.

Note that although the sequence of choice of elements from a set or struct is at first examination 
unpredictable, it will be the same in a second forall loop applied without the structure or set 
being modified in the interim.

The switch, case, and default statements

These statements have the forms:

switch ( expression ) compound-statement
case expression :
default :

The parser converts the switch statement to an internal form.  As it is parsing the compound 
statement, it notes any case and default statements it finds at the top level of the compound 
statement.  When a case statement is parsed the expression is evaluated immediately by the 
parser.  As noted previously for parser evaluated expressions, it may perform arbitrary actions, 
but it is important to be aware that it is resolved to a particular value just once by the parser.  As 
The ICI Programming Language   57



Chapter 4: ICI Language Reference

58   The ICI Pr
the case and default statements are seen their position and the associated expressions are noted 
in a table.

Upon execution, the switch statement's expression is evaluated.  This value is looked up in the 
table created by the parser.  If a matching case statement is found, flow of control immediately 
moves to immediately after that case statement.  If there is a default statement, flow of control 
immediately moves to just after that.  If there is no matching case and no default statement, flow 
of control continues just after the entire switch statement.

For example:

switch ("a string")
{
case "another string":

printf("Not this one.\n");
case 2:

printf("Not this one either.\n");
case "a string":

printf("This one.\n");
default:

printf("And this one too.\n");
}

When run will produce:

This one.
And this one too.

Note that the case and default statements, apart from the part they play in the construction of the 
look-up table, do not influence the executable code of the compound statement.  Notice that 
once flow of control had transferred to the third case statement above, it continued through the 
default statement as if it had not been present.  This behavior can be modified by the break state-
ment described below.

It should be noted that the "match" used to look-up the switch expression against the case 
expressions is the same as that used for structure element look-up. That is, to match, the switch 
expression must evaluate to the same object as the case expression.  The meaning of this will be 
made clear in a later section.

The break and continue statements

The break and continue statements have the form:

break ;
continue ;

The parser converts these to an internal form.  Upon execution of a break statement the execu-
tion engine will cause the nearest enclosing loop (a while, do, for or forall) or switch statement 
within the same scope to terminate.  Flow of control will resume immediately after the affected 
statement.  Note that a break statement without a surrounding loop or switch in the same func-
tion or module is illegal.

Upon execution of a continue statement the execution engine will cause the nearest enclosing 
loop to move to the next iteration.  For while and do loops this means the test.  For for loops it 
means the step, then the test.  For forall loops it means the next element of the aggregate.
ogramming Language



Statements: The return statement
The return statement

The return statement has the form:

return [ expression ] ;

The parser converts this to an internal form.  Upon execution, the execution engine evaluates the 
expression if it is present.  If it is not, the value NULL is substituted.  Then the current function 
terminates with that value as its apparent value in any expression it is embedded in.  It is an 
error for there to be no enclosing function.

The try statement

The try statement has the form:

try  statement onerror statement

The parser converts this to an internal form.  Upon execution, the first statement is executed. If 
this statement executes normally flow continues after the try statement; the second statement is 
ignored.  But if an error occurs during the execution of the first statement control is passed 
immediately to the second statement.

Note that "during the execution" applies to any depth of function calls, even to other modules or 
the parsing of sub-modules.  When an error occurs both the parser and execution engine unwind 
as necessary until an error catcher (that is, a try statement) is found.

Errors can occur almost anywhere and for a variety of reasons.  They can be explicitly generated 
with the fail function (described below), they can be generated as a side-effect of execution 
(such as division by zero), and they can be generated by the parser due to syntax or semantic 
errors in the parsed source.  For whatever reason an error is generated, a message (a string) is 
always associated with it.

When any otherwise uncaught error occurs during the execution of the first statement, two 
things are done:

• Firstly, the string associated with the failure is assigned to the variable error.  The assign-
ment is made as if by a simple assignment statement within the scope of the try statement.

• Secondly, flow of control is passed to the statement following the onerror keyword.

Once the second statement finishes execution, flow of control continues as if the whole try state-
ment had executed normally.

For example:

static
div(a, b)
{

try
return a / b;

onerror
return 0;

}

printf("4 / 2 = %d\n", div(4, 2));
printf("4 / 0 = %d\n", div(4, 0));

When run will print:
The ICI Programming Language   59



Chapter 4: ICI Language Reference

60   The ICI Pr
4 / 2 = 2
4 / 0 = 0

The handling of errors which are not caught by any try statement is implementation dependent.  
A typical action is to prepend the file and line number on which the error occurred to the error 
string, print this, and exit.

The critsect statement

The critsect, or “critical section”, statement has the form:

critsect statement

The parser converts this to an internal form.  Upon execution, the  statement is executed indivis-
ibly with respect to other threads. Thus:

critsect x = x + 1;

will increment x by 1, even if another thread is doing similar increments. Without the use of the 
critsect statement we could encounter a situation where both threads read the current value of x 
(say 2) at the same time, then both added 1 and stored the result 3, rather than one thread incre-
menting the value to 3, then the other to 4.

The indivisibility bestowed by a critsect statement applies as long as the code it dominates is 
executing, including all functions that code calls. Even operations that block (such as the wait-
for statement) will be affected. The indivisibility will be revoked once the critsect statement 
completes, either through completing normally, or through an error being thrown by the code it 
is dominating.

The waitfor statement

The waitfor statement has the form:

waitfor ( expression ; expression ) statement

The parser converts this to an internal form.  Upon execution, a critical section is established 
that extends for the entire scope of the waitfor statement (except for the special exception 
explained below). Within the scope of this critical section, the waitfor statement repeatedly 
evaluates the first expression until it is true (that is, neither 0 nor NULL). Once the first expres-
sion evaluates to true, control passes to the statement (still within the scope of the critical sec-
tion). After executing statement the critical section is released and the waitfor statement is 
finished.

However, each time the first expression evalutes to a false value, the second expression is evalu-
ated and the object that it evaluates to is noted. Then, indivisibly, the current thread sleeps wait-
ing for that object to be signaled (by a call to the wakeup() function), and the critical section is 
suppressed (thus allowing other thread to run). The thread will remain asleep until it is woken 
up by a call to wakeup() with the given object as an argument. Each time this occurs, the critical 
section is again enforced and the process repeats with the evaluation and testing of the first 
expression. While the thread is asleep it consumes no significant CPU time.

The waitfor statement is the basic method of inter-thread communication and control in ICI. It is 
typically used to gate control of some data that is passing from one thread to another. For exam-
ple, suppose jobs is an array that is shared between two processes. In one thread we might write:

waitfor (nels(jobs) > 0; jobs)
job = rpop(jobs);
ogramming Language



Statements: The null statement
/*
 * Process job...
 */

While in a second thread that is generating jobs we might write:

push(jobs, new_job);
wakeup(jobs);

In this example, the list object jobs is the object we are using to wait on and wakeup, but any 
object can be used. One technique is to use a commonly agreed string (strings being intrinsically 
atomic, will naturally be the same object without any explicit commonality between the 
threads). In some circumstances it may be necessary to apply a critsect to the access to the 
shared data (jobs in this example) in the thread doing the waking up.

It is very important to only perform the call to wakeup() after the condition that allows release of 
the wait has been established. To illustrate, suppose we had written:

wakeup(jobs);               /* WRONG */
enqueue(jobs, new_job);       /* WRONG */

In this case the waiting thread may have run between the two statements, evaluated the test to 
false, and gone to sleep again, possibly never to wake.

Similarly, the waitfor condition must be a true reflection of a condition that implies a wakeup 
will occur, at some stage, on the object being waited on. Do not assume that because the thread 
has woken up, the wakeup has been for the expected reason. For example, it would be wrong to 
write:

wait_once = 0;
waitfor (wait_once++; jobs) /* WRONG */

jobs = dequeue(jobs);

The null statement

The null statement has the form:

;

The parser may convert this to an internal form. Upon execution it will do nothing.

Declaration statements

There are two types of declaration statements:

declaration storage-class declaration-list ;
storage-class identifier function-body

storage-class extern
static
auto

The first is the general case while the second is an abbreviated form for function definitions.  
Declaration statements are syntactically equal to any other statement, but their effect is made 
entirely at parse time.  They act as null statements to the execution engine.  There are no restric-
tion on where they may occur, but their effect is a by-product of their parsing, not of any execu-
tion.
The ICI Programming Language   61



Chapter 4: ICI Language Reference

62   The ICI Pr
Declaration statements must start with one of the storage-class keywords listed above
3
.  Con-

sidering the general case first, we next have a declaration-list.

declaration-list identifier [ = expression ]
declaration-list , identifier [ = expression ]

That is, a comma separated list of identifiers, each with an optional initialisation, terminated by 
a semicolon.  For example:

static a, b = 2, c = [array 1, 2, 3];

The storage class keyword establishes which scope the variables in the list are established in, as 
discussed earlier.  Note that declaring the same identifier at different scope levels is permissible 
and that they are different variables.

A declaration with no initialisation first checks if the variable already exists at the given scope.  
If it does, it is left unmodified.  In particular, any value it currently has is undisturbed.  If it does 
not exist it is established and is given the value NULL.

A declaration with an initialisation establishes the variable in the given scope and gives it the 
given value even if it already exists and even if it has some other value.

Note that initial values are parser evaluated expressions.  That is they are evaluated immediately 
by the parser, but may take arbitrary actions apart from that.  For example:

static
fibonacci(n)
{

if (n <= 1)
return 1;

return fibonacci(n - 1) + fibonacci(n - 2);
}

static fib10 = fibonacci(10);

The declaration of fib10 calls a function.  But that function has already been defined so this will 
work.

Note that the scope of a static variable is (normally) the entire module it is parsed in.  For exam-
ple:

static
func()
{

static aStatic = "The value of a static.";
}

printf("%s\n", aStatic);

when run will print:

The value of a static.

3. Note that, unlike C, function definitions must be prefixed by a storage class.  As executable code may 
occur anywhere, this is required to distinguish them from a function call.
ogramming Language



Statements: Abbreviated function declarations
That is, despite being declared within a function, the declaration of aStatic has the same effect 
as if it had been declared outside the function.  Also notice that the function has not been called.  
The act of parsing the function caused the declaration to take effect.

The behavior of extern variables has already been discussed, that is, they are declared as static 
in the parent module.  The behavior of auto variables, and in particular their initialisation, will 
be discussed in a later section.

Abbreviated function declarations

As seen above there are two forms of declaration.  The second:

storage-class identifier function-body

is a shorthand for:

storage-class identifier = [ func function-body ] ;

and is the normal way to declare simple functions.  Examples of this have been seen above.

Functions

As with most ICI constructs there are two parts to understanding functions; how they are parsed 
and how they execute.

When a function is parsed four things are noted:

• the names and positions of the formal parameters;

• the names and initialisation of auto variables;

• the static scope or class in which the function is declared;

• the code generated by the statements in the function.

The formal parameters (that is, the identifiers in the bracket enclosed list just before the com-
pound statement) are actually implicit auto variable declarations.  Each of the identifiers is 
declared as an auto variable without an initialisation, but in addition, its name and position in 
the list is noted.

Upon execution (that is, upon a function call), the following takes place:

• The auto variables, as noted by the parser, along with any initialisations, are copied as a 
group.  This copy forms the auto variables of this invocation.

• Any actual parameters (that is, expressions provided by the caller) are matched positionally 
with the formal parameter names, and the value of those expressions are assigned to the auto 
variables of those names.

• If there were more actual parameters than formal parameters, and there is an auto variable 
called vargs, the remaining argument values are formed into an array which is assigned to 
vargs.

• If this is a method call (see below) the auto variable this is set to the subject object of the 
call, and the auto variable class is set to the class (if any).

• The variable-scope is set such that the auto variables are the inner-most scope.

• Successive outer scopes are set to the static scope, or, if this is a method call, the class noted 
when the function was parsed.

• The flow of control is diverted to the code generated by parsing the function.
The ICI Programming Language   63



Chapter 4: ICI Language Reference

64   The ICI Pr
A return statement executed within the function will cause the function to return to the caller 
and act as though its value were the expression given in the return statement.  If no expression 
was given in the return statement, or if execution fell through the bottom of the function, the 
apparent return value is NULL.  In any event, upon return the scope is restored to that of the 
caller.  All internal references to the group of automatic variables are lost (although as will be 
seen later explicit program references may cause them to remain active).

Simple functions have been seen in earlier examples.  We will now consider further issues.

It is very important to note that the parser generates a prototype set of auto variables which are 
copied, along with their initial values, when the function is called.  The value which an auto var-
iable is initialised with is a parser evaluated expression just like any other initialisation.  It is not 
evaluated on function entry.  But on function entry the value the parser determined is used to ini-
tialise the variable.  For example:

static myVar = 100;

static
myFunc()
{

auto anAuto = myVar;

printf("%d\n", anAuto);
anAuto = 500;

}

myFunc();
myVar = 200;
myFunc();

When run will print:

100
100

Notice that the initial value of anAuto was computed just once, changing myVar before the sec-
ond call did not affect it.  Also note that changing anAuto during the function did not affect its 
subsequent re-initialisation on the next invocation.

As stated above, formal parameters are actually uninitialised auto variables.  Because of the 
behaviour of variable declarations it is possible to explicitly declare an auto variable as well as 
include it in the formal parameter list.  In addition, such an explicit declaration may have an ini-
tialisation.  In this case, the explicit initialisation will be effective when there is no actual 
parameter to override it.  For example:

static
print(msg, file)
{

auto file = stdout; /* Default value. */

fprintf(file, "%s\n", msg);
}

print("Hello world");
print("Hello world", stderr);
ogramming Language



Statements: Functions
In the first call to the function print there is no second actual parameter.  In this case the explicit 
initialisation of the auto variable file (which is the second formal parameter) will have its effect 
unmolested.  But in the second call to print a second argument is given.  In this case this value 
will over-write the explicit initialisation given to the argument and cause the output to go to 
stderr.

As indicated above there is a mechanism to capture additional actual parameters which were not 
mentioned in the formal parameter list.  Consider the following example:

static
sum()
{

auto vargs;
auto total = 0;
auto arg;

forall (arg in vargs)
total += arg;

return total;
}

printf("1+2+3 = %d\n", sum(1, 2, 3));
printf("1+2+3+4 = %d\n", sum(1, 2, 3, 4));

Which when run will produce:

1+2+3 = 6
1+2+3+4 = 10

In this example the unmatched actual parameters were formed into an array and assigned to the 
auto variable vargs, a name which is recognised specially by the function call mechanism.

And also consider the following example where a default initialisation to vargs is made.  In the 
following example the function call is used to invoke a function with an array of actual parame-
ters, the function array is used to form an array at run-time, and addition is used to concatenate 
arrays; all these features will be further explained in later sections:

static
debug(fmt)
{

auto fmt = "Reached here.\n";
auto vargs = [array];

call(fprintf, array(stderr, fmt) + vargs);
}

debug();
debug("Done that.\n");
debug("Result = %d, total = %d.\n", 123, 456);

When run will print:

Reached here.
Done that.
Result = 123, total = 456.
The ICI Programming Language   65



Chapter 4: ICI Language Reference

66   The ICI Pr

x

y

x

y

x

y

In the first call to debug no arguments are given and both explicit initialisations take effect.  In 
the second call the first argument is given, but the initialisation of vargs still takes effect.  But in 
the third call there are unmatched actual parameters, so these are formed into an array and 
assigned to vargs, overriding its explicit initialisation.

Objects

Up till now few exact statements about the nature of values and data have been made.  We will 
now examine values in more detail.  Consider the following code fragment:

static x;
static y;

x = [array 1, 2, 3, 4];
y = x;

After execution of this code the variable x refers to an array.  The assignment of x to y causes y 
to refer to the same array. Diagrammatically:

If the assignment:

y[1] = 200;

is performed, the result is:

We say that x and y refer to the same object.  Now consider the following code fragment:

static x;
static y;

x = [array 1, 2, 3, 4];
y = [array 1, 2, 3, 4];

Diagrammatically:

In this case, x and y refer to different objects, despite that fact they are equal.

1 2 3 4

1 200 3 4

1 2 3 4

1 2 3 4
ogramming Language



Objects: Functions

x

y

x

y

x

y

Now consider one of the unary operators which was only briefly mentioned in the sections 
above.  The @ operator returns a read-only version of the sub-expression it is applied to.  Con-
sider the following statement:

y = @y;

After this has been executed the result could be represented diagrammatically as:

The middle array now has no reference to it and the memory associated with it will be collected 
by the interpreter's standard garbage collection mechanism. Now consider the following state-
ment:

x = @x;

This is similar to the previous statement, except that this time x is replaced by a read-only ver-
sion of its old value.  But the result of this operation is:

Notice that x now refers to the same read-only array that y refers to.  This is a fundamental prop-
erty of the @ operator. It returns the unique read-only version of its argument value. Such read-
only objects are referred to as atomic objects.  The array which x used to refer to was non-
atomic, but the array it refers to now is an atomic array.  Aggregate types such as arrays, sets and 
structs are generally non-atomic, but atomic versions can be obtained (as seen above).  But most 
other types, such as integers, floats, and (normally) strings are intrinsically atomic.  That is, no 
matter how a number, say 10, is generated, it will be the same object as every other number 10 
in the interpreter.  For-instance, consider the following example:

x = "ab" + "cdefg";
y = "abcde" + "fg";

After this is executed the situation can be represented diagrammatically as:

It is important to understand when objects are the same object, when they are different and the 
effects this has.

1 2 3 4

1 2 3 4

1 2 3 4
Read-only

1 2 3 4

1 2 3 4
Read-only

"abcdefg"
The ICI Programming Language   67



Chapter 4: ICI Language Reference

68   The ICI Pr

x

y

Equality

We saw above how two apparently identical arrays were each distinct objects.  But these two 
arrays were equal in the sense of the equality testing operator ==.  If two values are the same 

object they are said to be eq
4
, and there is a function of that name to test for this condition.  Two 

objects are equal (that is ==) if:

• they are the same object (i.e. eq); or

• they are both arithmetic (int and float) and have equivalent numeric values; or

• they are aggregates of the same type and all the sub-elements are the same objects (i.e. eq).

This definition of equality is the basis for resolving the merging of aggregates into unique read-
only (atomic) versions.  Two aggregates will resolve to the same atomic object if they are equal.  
That is, they must contain exactly the same objects as sub-elements, not just equal objects.  For 
example:

static x = [array 1, [array 2, 3], 4, 5];
static y = [array 1, [array 2, 3], 4, 5];

Could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

4.As in LISP.

1 4 5

1 4 5

2 3

2 3
ogramming Language



Objects: Equality

x

y

x

y

x

y

The result could be represented diagrammatically as:

That is, both x and y refer to new read-only objects, but they refer to different read-only objects 
because they have an element which is not the same object.  The simple integers are the same 
objects because integers are intrinsically atomic objects.  But the two sub-arrays are distinct 
objects.  Being equal was not sufficient.  The top-level arrays needed to have exactly the same 
objects as contents to make x and y end up referring to the same read-only array.  In contrast to 
this consider the following similar situation:

static z = [array 2, 3];
static x = [array 1, z, 4, 5];
static y = [array 1, z, 4, 5];

This could be represented diagrammatically as:

Now, if the following statements were executed:

x = @x;
y = @y;

The result could be represented diagrammatically as:

1 4 5

1 4 5

2 3

2 3

Read-only

Read-only

1 4 5

1 4 5

2 3z

2 3

1 4 5
Read-only
The ICI Programming Language   69



Chapter 4: ICI Language Reference

70   The ICI Pr

x

y

x

In this case both x and y refer to the same read-only array because the original arrays where 
equal, that is, all their elements were the same objects.  Notice that one of the elements is still a 
writeable array.  The read-only property is only referring to the top level array.  The sub-array 
can be changed, but the reference to it from the top level array can not.  Thus:

x[1][0] = 200;

will result in:

whereas the statement:

x[1] = 200;

will just result in an error.

Structure and set keys

Any object, not just a string, can be used as a key in a structure.  For instance:

static x = [struct];
static z = [array 10, 11];

x["abc"] = 1;
x[56] = 2;
x[z] = 3;

Could be represented diagrammatically as:

And the assignment:

x[z] = 300;

would replace the 3 in the above diagram with 300.  But the assignment:

x[[array 10, 11]] = 300;

would result in a new element being added to the structure because the array given in the above 
statement is a different object from the one which z refers to.

Similarly, elements of sets may be any objects.

200 3

1 4 5
Read-only

10 11

1 3

5"abc" 56

2

ogramming Language



Objects: Structure super types
Indexing structures by complex aggregates is as efficient as indexing by intrinsically atomic 
types such as strings and integers.

Structure super types

Up till now structures have been described as simple lookup tables which map a key, or index, 
to a value.  But a structure may have associated with it a super structure.

The function super can be used to discover the current super of a struct and to set a new super.  
With just one argument it returns the current super of that struct, with a second argument it also 
replaces the super by that value.

When a key is being looked-up in a structure for reading, and it is not found and there is a super 
struct, the key is further looked for in the super struct, if it is found there its value from that 
struct is returned.  If it is not found it will be looked for in the next super struct etc.  If no struc-
tures in the super chain contain the key, the special value NULL is returned.

When a key is being looked up in a structure for writing, it will similarly be searched for in the 
super chain.  If it is found in a writeable structure the value in the structure in which it was 
found will be set to the new value.  If it was never found, it will be added along with the given 
value to the very first struct, that is, the structure at the base, or root, of the super chain.

Consider the following example:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct x = 100, y = 200];

super(theStruct, theSuper);

After this statement the situation could be represented diagrammatically as:

then if the following statements were executed:

theStruct.a = 123;
theStruct.x = 456;
theStruct.z = 789;

100 200

1 3

5"a" "b"

2

"x" "y"

"c"

theStruct
The ICI Programming Language   71



Chapter 4: ICI Language Reference

72   The ICI Pr
the situation could be diagrammatically represented as:

If a super struct is not writeable (that is, it is atomic) values will not be written in it and will 
lodge in the base structure instead.  Thus consider what happens if we replace the super struc-
ture in the previous example by its read-only version:

super(theStruct, @theSuper);

The situation could now be represented diagrammatically as:

If the assignment statement:

theStruct.a += 10;

were executed, the value of the element a will first be read from the super structure, this value 
will then have ten added to it, and the result will be written back into the base structure; because 
the super structure is read-only and cannot be modified.  The finally situation can be represented 
diagrammatically as:

Note that many structs may share the same super struct.  Thus a single read-only super struct 
can be used hold initial values; saving explicit initialisations and storage space.

456 200

123 3

5"a" "b"

2

"x" "y"

"c"

theStruct
789

"z"

456 200

123 3

5"a" "b"

2

"x" "y"

"c"

theStruct
789

"z"

Read-only

133 456

123 3

5"a" "b"

2

"a" "x"

"c"

theStruct
200

"y"

Read-only

789

"z"
ogramming Language



Base types: An aside on variables and scope
The function assign may be used to set a value in a struct explicitly, without reference to any 
super structs; and the function fetch may be used to read a value from a struct explicitly, without 
reference to any super structs.

Within a struct-literal a colon prefixed expression after the struct identifier is used as the super 
struct.  For example, the declarations used in the previous example could be written as:

static theSuper = [struct a = 1, b = 2, c = 3];
static theStruct = [struct:theSuper, x = 100, y = 200];

An aside on variables and scope

Now that structs and their super have been described a more precise statement about variables 
and scope can be made.

ICI variables are entries in ordinary structs. At all times, the execution context holds a reference 
to a struct that is the current scope for the lookup of simple variables. An un-adorned identifier 
in an expression is just an implicit reference to an element of the current scope structure.  The 
inheritance and name hiding of the variable scope mechanism is a product of the super chain.

During both module parsing and function execution, the auto variables are the entries in the base 
structure.  The super of this is the struct containing the static variables. The next super struct 
contains the externs, and successive super structs are successive outer scopes.

Auto, static and extern declarations make explicit assignments to the appropriate structure.

The function scope can be used to obtain the current scope structure; and to set it (use with 
care).

But there is a difference in the handling of undefined entries. Whereas normal lookup of unde-
fined entries in a structure produces a default value of NULL, the implicit lookup of undefined 
variables triggers an attempt to dynamically load a library to define the variable (see Undefined 
variables and dynamic loading below), and failing that, produce an error (“%s undefined”).

Base types

ICI supports a base set of standard data types.  Each is identified by a simple name.  In summary 
these are:

array An ordered sequence of objects.

exec A thread execution context.

file An open file reference.

float A double precision floating point number.

func A function.

int A signed 32 bit integer.

list An ordered set of objects.

mem References to raw machine memory.

method A binding of a function and a subject object.

ptr A reference to a storage location.

regexp A compiled regular expression.
The ICI Programming Language   73



Chapter 4: ICI Language Reference

74   The ICI Pr
set An unordered collection of  objects.

string An ordered sequence of 8 bit characters.

struct An unordered set of mappings from one object to another.

Many of these base types have been alluded to in previous sections. The following sections 
describe each type in more detail.

It should be noted that indexing and calling are the only operations that are an intrinsic property 
of each base type. Other behaviours of base types are a product of  operators and functions that 
perform their various functions when supplied with operands of particular types. For this reason 
the following descriptions typically describe what data an instance of each base type holds, what 
happens when it is indexed or called, and may briefly mention the functions and operators that 
are highly relevant to the type. See following sections on operators and core functions for a 
complete picture.

In the following text, the word “efficient” typically means in constant time or memory, although 
occasional internal housekeeping may occur.

array - An ordered sequence of objects

An array is a contiguous (in memory) block of object references. The first object is referred to 
with index zero, subsequent elements of the block are referenced by successive integers. The 
index must always be an integer, else the indexing operation will fail. Reading at indicies not in 
the block results in a NULL value. Writing at negative indicies fails, while writing at indicies 
beyond the current end of the block silently extends the block, and NULL fills the span between 
the old end and the newly written element. The function nels() can be used to reveal the number 
of elements currently in the array (which is also the index of the first element beyond the current 
length of the array).

Arrays offer the most memory-efficient method of storing collections of objects.5 The functions 
push(),  pop(), rpush(), rpop() and top() are of note. They allow arrays to be used as efficient 

stacks and queues. They are all of constant order time6. Most other functions and operations on 
arrays are O(n). For example, array addition is O(n + m) where n and m are the lengths of the 
two arrays.

The rpush() and rpop() functions push and pop items from the front of the array (that is, near 
index zero). But the first item is always considered to be at index zero. Pushing and popping 
items on the front of an array effectively changes the index of all the items in the array.

See also the functions array() to create an array at run-time, and the parse-time in-line literal 
form of arrays [array ...]. The function sort() can be used to sort the elements of an array.

ICI arrays form the fundamental basis for operand, execution and scope stacks in the ICI inter-
nal execution engine, as well as the storage of compiled code. Although the latter is not visible 
to the ICI programmer.

exec - A thread execution context

An exec object holds the execution context for a thread of exection and is returned by the 
thread() function.

5. On 32 bit machines, the raw per-element overhead is typically 4 bytes; although there is often slop at 
the end of the block to allow efficient growth.

6. Arrays are internally implemented as growable circular buffers.
ogramming Language



Base types: file - An open file reference
Exec objects can be indexed by:

status Which yields a string, either "active", "finished" or "failed".

result Before the thread has finished, this field reads as NULL. Once, or if, 
the top level function returns, this field yields the value returned 
from that function. If the thread failed with an uncaught error, ac-
cessing the result field will cause the thread accessing it to inherit 
that error as if it had just occured.

file - An open file reference

A file object is a reference and interface to some lower level file-like object. Most commonly a 
real file supported by the operating system, but not necessarilly so. The actual file object holds a 
reference to the basic file object, and references to its primitive access methods and operations. 
Those primitive methods are directly represented by the intrinsic ICI functions: close(), eof(), 
flush(), getchar(), put(), and seek(). In addition, the functions getline(), getfile(), gettoken(), and 
gettokens() efficiently build on these to read higher level constructs than simple bytes from a 
file. These functions can greatly increase the efficiency of file parsing over explicit per-charac-
ter operations. The function printf() provides efficient formatted output to files.

File objects are generally created by “open” functions; such as the archetypal fopen() function 
that opens or creates a host operating system file.  Also note the sopen() function that allows an 
ICI string object to be opened as a file. The variables stdin, stdout, and stderr are generally cre-
ated in the outer-most scope at interpreter startup and refer to the associated files of the current 
process. Also, various functions, such as printf(), will, if no explicit file argument is supplied, 
use the current value of the appropriate variable. These functions do this by looking up the name 
in the current scope, so it is possible to locally override their default file usage. 

Files can not be indexed or called.

Note that an unreferenced file object will, eventually, be collected by the ICI interpreter’s gar-
bage collector, at which point it will be closed (if it is not already closed). But the indeterminate 
timming of garbage collections makes it inadvisable to rely on this mechanism to close files. In 
general, files should be explicitly closed to release lower level resources at a deterministic time. 
A file object is still a valid object after it has been closed, except no I/O operations will work on 
it any more.

File objects can be indexed for reading by some names to discover information for diagnostics. 
Specifically:

name A name that was associated with the file object when it was created. 
Generally the name of the file.

line The current line number which parseing has reached. The file must 
be one of the special files layered on top of ICI’s parser, as returned 
by currentfile() or passed to a parser function in a user-parsed literal 
factor (See “User defined literal factors” on page 47).

(There is currently a paucity of functions to support reading and writing binary files. This will 
be corrected in future revisions. The sys extension module does provide some support. TML)

float - A double precision floating point number

A float holds a double precision floating point number (in the local machine’s native format). 
Floats are intrinsically atomic, based on their value (that is, all floats with a particular value are 
The ICI Programming Language   75



Chapter 4: ICI Language Reference

76   The ICI Pr
references to the same memory location). Floats can not be indexed or called and their utility is 
entirely based on the operators and functions that accept and return them.

func - A function

A function holds a reference to executable code, and a name suitable for diagnostics. In reality 
there are two types of function objects: functions that reference native machine code, and func-
tions that reference interpreted ICI code. But they are both called “func”.

Function objects that link to interpreted ICI code also hold the names of the formal parameters 
and a prototype of the local scope structure that will be copied and used each time the function 
is invoked.

Function objects are intrinsically atomic based on the identity of all their components. The ICI 
parser also makes code atomic so in theory equal functions will be identical objects, but in prac-
tice such items as source file line information embedded in executable code frustrate this.

Function objects can, of course, be called. The semantics of this operation has been described 
above. Function objects are also the basis of methods in classes, the difference merely existing 
in their preparation by the parser, and the semantics of calling through a method.

Function objects can be indexed by some specific names to discover some of the internal ele-
ments. Specifically:

name Returns a name that has been assigned to the function. In the case of 
the “abbreviated function declaration” described above, it will be 
the identifier associated with the function. In the case of an in-line 
function literal, it will be the name _funcname_. In the case of a 
function implemented in native machine code, it will be an author 
assigned name.

autos Returns the (atomic) prototype auto scope struct of this function, or 
NULL for functions implemented in native machine code. The super 
of this struct reveals the static scope of this function (the parsed class 
for a method).

args Returns the (atomic) array of formal parameter names, or NULL for 
functions implemented in native machine code.

int - A signed 32 bit integer

An int hold a 32 bit signd integer (in the local machine’s native format). Ints are intrinsically 
atomic based on their value (that is, all ints with a particular value are references to the same 
memory location). Ints can not be indexed or called and their utility is entirely based on the 
operators and functions that accept and return them.

mem - A reference to raw machine memory

A mem object references byte- or word-structured native machine memory. The mem object 
holds the base address of a region of raw machine memory, the word-size it is to be accessed 
with (1, 2 or 4 bytes per word), and the number of words that can be accessed.

The base address identifies the first word, and this can be accessed (as an integer) at index zero. 
Successive integers indicies reference successive words, up to the limit. Reading outside the 
bounds returns NULL, writing outside the bounds causes an error. Words are read and written in 
the native machine format (endieness in particular).  One and two byte words are read as 
unsigned quantities. When writing, non-zero bits above the word size are simply discarded.
ogramming Language



Base types: method - A binding of a function and a subject object
Mem objects can be used for simple, but dense, unstructured data storage. But they are most 
commonly used in interfaces to native machine code or hardware. The functions mem() and 
alloc() can be used to create mem objects. Although mem(), which allows access to arbitrary 
native machine addresses, may be disallowed in some systems. The function alloc() allocates 
memory for the mem object to refer to which is freed when the mem object is garbage collected.

Mem objects are intrinsically atomic, based on the address, word size and number of elements.

method - A binding of a function and a subject object

A method holds a reference to a callable object, and a subject object. The subject object is typi-
cally a struct of some class (that is, its super is the class). The callable object is typically a func-
tion of the class or one of its super classes.

Method objects can be called, the semantics of which are described above.

Method objects can be indexed to discover their internal elements. Specifically:

subject Returns the subject object of the method. This is typically a struct.

callable Returns the callable object of the method. This is typically a func-
tion.

Method objects are created by the : operator, typically preparatory to the invocation of a class 
function. But in most situations the parser will generate a special type of shortcut function invo-
cation to avoid the run-time creation of an ephemeral method object. So in practice method 
objects are quiet rare.

ptr - A reference to a storage location

Pointers are references to storage locations.  Storage locations are the elements of anything 
which can be indexed.  That is, array elements, set elements, struct elements and others.  Varia-
bles (which are just struct elements) can be pointed to.

Pointers hold two objects, one is the object pointed into, the other is the key used to access the 
location in question.

The & operator is used to obtain a pointer to a location.  Thus if the following were executed:

static x;
static y = [array 1, 2, 3];
static p1 = &x;
static p2 = &y[1];

The variable p1 would be a pointer to x and the variable p2 would be a pointer to the second ele-
ment of y.  Reference to the object a pointer points to can be obtained with the * operator.  Thus 
if the following were executed:

*p1 = 123;
*p2 = 456;
printf("x = %d, y[1] = %d\n", x, y[1]);

the output would be:

x = 123, y[1] = 456

The generation of a pointer does not affect the location being pointed to.  In fact the location 
may not even exist yet.  When a pointer is referenced the same operation takes place as if the 
The ICI Programming Language   77



Chapter 4: ICI Language Reference

78   The ICI Pr
location was referenced explicitly.  Thus a search down the super chain of a struct may occur, or 
an array may be extended to include the index being written to, etc.

In addition to simple indirection (that is the * operator), pointers may be indexed. But the index 
values must be an integer, and the key stored as part of the pointer must also be an integer.  
When a pointer is indexed, the index is added to the key which is stored as part of the pointer, 
the sum forms the actual index to use when referencing the aggregate recorded by the pointer.  
For instance, continuing the example above:

p2[1] = 789;

would set the last element of the array to 789, because the pointer currently references element 
1, and the given index is 1, and 1 + 1 is 2 which is the last element.  The index arithmetic pro-
vided by pointers will work with any types, as long as the indicies are integers, thus:

static s = [struct (20) = 1, (30) = 2, (40) = 3];
static p = &s[30];

p[-10] = -1;
p[0] = -2;
p[10] = -3;

Would replace each of the elements in the struct s by their negative value.

Pointers can be called, but this is an obsolete facility and may be removed in future versions.

regexp - A compiled regular expression

A regexp object holds a regular expression and its compiled form. Regular expressions describe 
text patterns against which actual text can be matched to discover if the actual text matches the 
pattern. They can also be used to extract sub-strings of the actual text based on the pattern 
matching. For more details on the syntax and semantics of regular expressions, see the chapter 
on the subject below.

Regular expressions are created by the regexp() and regexpi() functions, and by the parser from 
regular expression literals (that is, #...#). Text can be matched against regular expressions by the 
operators  ~, !~,  ~~, and ~~~, and by the functions sub(),  gsub() and smash().

Regular expressions can be indexed by two specific names:

pattern Returns the original pattern as a string.

option Returns an integer bit mask of the options applied in making the reg-
ular expression.

Regular expressions are intrinsically atomic, based on the identity of the original pattern.

set - An unordered collection of objects

A set is an unordered collection of object references. Any single object can either be in a given 
set, or not in the set. It can not be in the set multiple times. Adding and removing objects from 
sets is an efficient constant time operation, and each distinct object in the set imposes a small 
fixed memory cost (both access speed and memory cost is slightly higher than the per element 
cost of an array). The type and complexity of an object being added or removed from a set has 

no effect on the efficiency of the operation.7 

Sets can be used in different ways. In some circumstances they are used simply as unordered 
aggregates of other objects. In other circumstances they are used more as algebraic sets to 
ogramming Language



Operators: string - An ordered sequence of 8 bit characters
record which objects have a certain property. In this regard they can be particularly useful 
because objects can be noted as having a particular property without modifying the internals of 
the object at all.

string - An ordered sequence of 8 bit characters

A string holds an ordered sequence of 8 bit characters. Almost all string operations produce 
atomic (read-only) strings (that is, all strings with a particular value are references to the same 
memory location). Strings can be indexed by an int (read only) to reveal a one-character sub-
string, or an empty string if negative or beyond the end of the string. Most of the utility of 
strings derive from the functions and operators that can be applied to them.

Strings are one of the commonest structure keys. Variables are identified by strings (there is no 
separate “name” or “variable” type in ICI).

Non-atomic (i.e. mutable) strings can be produced by the strbuf() function, and extended with 
the strcat() function. Integer character codes can be assigned to particular characters of non-
atomic strings by integer (base 0) index. Assigning to a character beyond the end of the string 
will extend the string as necessary with space filling. Note that a mutable string is a distinct 
object from an atomic versions of equal value, and so doesn’t access the same element when 
used as a struct index.

struct - An unordered set of mappings

A struct is an unordered set of mappings. That is, a struct records object references that are 
regarded as keys and for each such key, a corresponding value, which is also an object refer-

ence.8 A struct also records a super struct, which is a reference to a subsequent struct. The 
details of structure indexing are described above. See “Structure and set keys” on page 70.

Structures form the fundamental basis for variables and scoping in ICI.

Adding, removing and looking up objects in a struct is an efficient constant time operation 
(although is O(n) with respect to searches up the super chain). The type and complexity of an 
object being added or removed from a set has no effect on the efficiency of the operation.

Operators

The following table details each of the unary and binary operators with all of the types they may 
be applied to. Within the first column the standard type names are used to stand for operands of 
that type, along with any to mean any type and num to mean an int or a float. In general, where 
an int and a float are combined in an arithmetic operation, the int is first converted to a float and 
then the operation is performed.

The following table is in precedence order.

*ptr

7. Sets are implemented as hash tables of object references; object references are native machine pointers. 
Actual memory requirements is typically 4 bytes per entry, plus an additional overall overhead of from 
50% to 25%.

8. Structs are implemented as hash tables of object references, with each entry recording a value associ-
ated with the key. Actual memory requirements is typically 8 bytes per entry, plus an additional overall 
overhead of from 50% to 25%.
The ICI Programming Language   79



Chapter 4: ICI Language Reference

80   The ICI Pr
Indirection: the result references the thing the pointer points to. The 
result is an lvalue.

&any Address of: the result is a pointer to any. If any is an lvalue the point-
er references that storage location.  If any is not an lvalue but is a 
term other than a bracketed non-term, as described in the syntax 
above, a one element array containing any  will be fabricated and a 
pointer to that storage location returned. For example:

        p = &1;

sets p to be a pointer to the first element of an un-named array, which 
currently contains the number 1.

-num Negation: returns the negation of num. The result is the same type 
as the argument. The result is not an lvalue.

+any Has no effect except the result is not an lvalue.

!any Logical negation: if any is 0 (integer) or NULL, 1 is returned, else 0 
is returned.

~int Bit-wise complement: the bit-wise complement of int is returned.

++any Pre-increment: equivalent to (any += 1). any must be an lvalue 
and obey the restrictions of the binary + operator.  See + below.

--any Pre-decrement: equivalent to (any -= 1). any must be an lvalue 
and obey the restrictions of the binary - operator.  See - below.

@any Atomic form of: returns the unique, read-only form of any.  If any is 
already atomic, it is returned immediately.  Otherwise an atomic 
form of any is found or generated and returned; this is of execution 
time order equal to the number of elements in any.  See the section 
on objects above for more explanation.

$any Immediate evaluation: recognised by the parser.  The sub-expres-
sion any is immediately evaluated by invocation of the execution en-
gine.  The result of the evaluation is substituted directly for this 
expression term by the parser.

any++ Post-increment: notes the value of any, then performs the equivalent 
of (any += 1), except any is only evaluated once, and finally returns 
the original noted value.  any must be an lvalue and obey the restric-
tions of the binary + operator.  See + below.

any-- Post-increment: notes the value of any, then performs the equivalent 
of (any -= 1), except any is only evaluated once, and finally returns 
the original noted value.  any must be an lvalue and obey the restric-
tions of the binary - operator.  See - below.

any1 @ any2 Form pointer: returns a pointer object formed from its operands with 
the pointer’s aggregate being set from any1 and the pointer’s key 
from any2.

num1 * num2 Multiplication: returns the product of the two numbers, if both nums 
are ints, the result is int, else the result is float.

set1 * set2 Set intersection: returns a set that contains all elements that appear 
in both set1 and set2.
ogramming Language



Operators: struct - An unordered set of mappings
num1 / num2 Division: returns the result of dividing num1 by num2.  If both num-
bers are ints the result is int, else the result is float.  If num2 is zero 
the error division by 0 is generated, or division by 0.0 if the result 
would have been a float.

int1 % int2 Modulus: returns the remainder of dividing int1 by int2.  If int2 is 
zero the error modulus by 0 is generated.

num1 + num2 Addition: returns the sum of num1 and num2.  If both numbers are 
ints the result is int, else the result is float.

ptr + int Pointer addition: ptr must point to an element of an indexable object 
whose index is an int.  Returns a new pointer which points to an el-
ement of the same aggregate which has the index which is the sum 
of ptr's index and int.  The arguments may be in any order.

int + ptr As above.

string1 + string2 String concatenation: returns the string which is the concatenation 
of the characters of string1 then string2.  The execution time order 
is proportional to the total length of the result.

array1 + array2 Array concatenation: returns a new array which is the concatenation 
of the elements from array1 then array2.  The execution time order 
is  proportional to the total length of the result. Note the difference 
between the following:

a += [array 1];
push(a, 1);

In the first case a is replaced by a newly formed array which is the 
original array with one element added.  But in the second case the 
push function (see below) appends an element to the array a refers 
to, without making a new array. The second case is much faster, but 
modifies an existing array.

struct1 + struct2 Structure concatenation: returns a new struct which is a copy of 
struct1, with all the elements of struct2 assigned into it.  Obeys the 
semantics of copying and assignment discussed in other sections 
with regard to super structs.  The execution time order is proportion-
al to the sum of the lengths of the two arguments.

set1 + set2 Set union: returns a new set which contains all the elements from 
both sets.  The execution time order is proportional to the sum of the 
lengths of the two arguments.

num1 - num2 Subtraction: returns the result of subtracting num2 from num1.  If 
both numbers are ints the result is int, else the result is float.

set1 - set2 Set subtraction: returns a new set which contains all the elements of 
set1, less the elements of set2. The execution time order is propor-
tional to the sum of the lengths of the two arguments.

ptr1 - ptr2 Pointer subtraction: ptr1 and ptr2 must point to elements of index-
able objects whose indexs are ints.  Returns an int which is the index 
of ptr1 less the index of ptr2.

int1 >> int2 Right shift: returns the result of right shifting int1 by int2.  Equiva-
lent to division by 2**int2.  int1 is interpreted as a signed quantity.
The ICI Programming Language   81



Chapter 4: ICI Language Reference

82   The ICI Pr
int1 << int2 Left shift: returns the result of left shifting int1 by int2.  Equivalent 
to multiplication by 2**int2.

num1 < num2 Numeric test for less than: returns 1 if num1 is less than num2, else 
0.

set1 < set2 Test for proper subset: returns 1 if set1 contains only elements that 
are in set2 but is not equal to it, else 0.

string1 < string2 Lexical test for less than: returns 1 if string1 is lexically less than 
string2, else 0.

ptr1 < ptr2 Pointer test for less than:  ptr1 and ptr2 must point to elements of 
indexable objects whose indicies are ints.  Returns 1 if ptr1 points to 
an element with a lesser index than ptr2, else 0.

The >, <= and >= operators work in the same fashion as <, above. 
For sets > tests for one set being a proper superset of the other (that 
is one set can contain only those elements contained in the other set 
but cannot be equal to the other set). The <= and >= operators test 
for sub- or super-sets.

any1 == any Equality test: returns 1 if any1 is equal to any2, else 0.  Two objects 
are equal when: they are the same object; or they are both arithmetic 
(int and float) and have equivalent numeric values; or they are ag-
gregates of the same type and all the sub-elements are the same ob-
jects.

any1 != any2 Inequality test: returns 1 if any1 is not equal to any2, else 0.  See 
above.

string ~ regexp Logical test for regular expression match: returns 1 if string can be 
matched by regexp, else 0.  The arguments may be in any order.

string !~ regexp Logical test for regular expression non-match: returns 1 if string can 
not be matched by regexp, else 0.  The arguments may be in any or-
der.

string ~~ regexp Regular expression sub-string extraction: returns the sub-string of 
string which is matched by the first bracket enclosed portion of 
regexp, or NULL if there is no match or regexp does not contain a 
(...) portion. The arguments may be in any order.  For example, a 
"basename" operation can be performed with:

argv[0] ~~= #([^/]*)$#;

string ~~~ regexp Regular expression multiple sub-string extraction: returns an array 
of the sub-strings of string which are matched by the (...) enclosed 
portions of regexp, or NULL if there is no match. The arguments 
may be in any order.

int1 & int2 Bit-wise and: returns the bit-wise and of int1 and int2.

int1 ^ int2 Bit-exclusive or: returns the bit-wise exclusive or of int1 and int2.

int1 | int2 Bit-wise or: returns the bit-wise or of int1 and int2.

any1 && any2
ogramming Language



Operators: struct - An unordered set of mappings
Logical and: evaluates the expression which determines any1, if this 
evaluates to false (i.e. 0 or NULL), that false value is returned, else 
any2 is evaluated and returned

9
. Note that if any1 does not evaluate 

to a true value, the expression which determines any2 is never eval-
uated.

Thus, in a sequence of && operations, such as:

    x = this() && that() && the_other();

the first sub-expression that evaluates to a false value causes a false 
return and the remainder are not evaluated at all. If all are true, the 
last sub-expression is returned.

any1 || any2 Logical or: evaluates the expression which determines any1, if this 
evaluates to a true value (i.e. a value other than 0 or NULL), that val-
ue is returned, else any2 is evaluated and returned. Note that if any1 
does not evaluate to a false value, the expression which determines 
any2 is never evaluated.

Thus, in a sequence of || operations, such as:

    x = this() || that() || the_other();

the first element that evaluates to a true value is returned and the re-
mainder are not evaluated at all.

any1 ? any2 : any3 Choice: if any1 is neither 0 or NULL (i.e. true), the expression 
which determines  any2 is evaluated and returned, else the expres-
sion which determines any3 is evaluated and returned.  Only one of 
any2 and any3 are evaluated.  The result may be an lvalue if the re-
turned expression is.  Thus:

flag ? a : b = value

is a legal expression and will assign value to either a or b depending 
on the state of flag.

any1 = any2 Assignment: assigns any2 to any1.  any1 must be an lvalue. The be-
havior of assignment is a consequence of aggregate access as dis-
cussed in earlier sections.  In short, an lvalue (in this case any1) can 
always be resolved into an aggregate and an index into the aggre-
gate.  Assignment sets the element of the aggregate identified by the 
index to any2.  The returned result of the whole assignment is any1, 
after the assignment has been performed.

The result is an lvalue, thus:

        ++(a = b)

will assign b to a and then increment a by 1.

Note that assignment operators (this and following ones) associate 
right to left, unlike all other binary operators, thus:

9. Note that this is different from C where the result is always completely resolved to a 0 or 1. Use !! to 
force a 0/1 value from a generic true/false. Note that in ICI versions 4.0.3 and before an early return 
always reduced to 0 or 1.
The ICI Programming Language   83



Chapter 4: ICI Language Reference

84   The ICI Pr
        a = b += c -= d

Will subtract d from c, then add the result to b, then assign the final 
value to a.

+= -= *= /= %= >>= <<= &= ^= |= ~~=
Compound assignments: All these operators are defined by the re-
writing rule:

    any1 op= any2

is equivalent to:

   any1 = any1 op any2

except that any1 is not evaluated twice. Type restrictions and the be-
havior for op will follow the rules given with that binary operator 
above. The result will be an lvalue (as a consequence of = above).  
There are no further restrictions.  Thus:

        a = "Hello";
         a += " world.\n";

will result in the variable a referring to the string:

        "Hello world.\n".

any1 <=> any2 Swap: swaps the current values of any1 and any2. Both operands 
must be lvalues. The result is any1 after the swap, and is an lvalue, 
as in other assignment operators.  Also like other assignment opera-
tors, associativity is right to left, thus:

        a <=> b <=> c <=> d

rotates the values of a, b and c towards d and brings d's original val-
ue back to a.

any1 , any2 Sequential evaluation: evaluates any1, then any2. The result is any2 
and is an lvalue if any2 is. Note that in situations where comma has 
meaning at the top level of parsing an expression (such as in func-
tion call arguments), expression parsing precedence starts at one 
level below the comma, and a comma will not be recognised as an 
operator.  Surround the expression with brackets to avoid this if nec-
essary.

Automatic library loading

During execution, should the ICI execution engine fail to find a variable it is attempting to read 
within the current scope, it will attempt to load a library based on the name of that variable in 
attempt to get it defined. Such a library may be a host-specific dynamically loaded native 
machine code library, an ICI module, or both.

In attempting to load an ICI module, a file name of the form:

ici4var.ici
ogramming Language



Operators: Automatic library loading
is considered, where var is the as yet undefined variable name. This file is searched for on the 
current search path, which is indicated by the current value of the path variable in the current 
scope (an array of directory names). If found, a new extern, static and auto scope is established 
and the new extern scope struct is assigned to var in the outermost writable scope available. 
That outermost writable scope also forms the super of the new extern scope. The module is then 
parsed with the given scope, after which the variable lookup is repeated. In normal practice this 
will mean that the loaded module has an outer scope holding all the normal ICI primitives and a 
new empty extern scope. The intent of this mechanism is that the loaded module should define 
all its published functions in its extern scope. References by an invoking program to functions 
and other objects of the loaded module would always be made explicitly through the var which 
references the module. For example, a program might contain the fragment:

query = cgi.decode_query();
cgi.start_page("Query results");

where “cgi” is undefined, but the file ici4cgi.ici exists on the search path and includes function 
definitions such as:

extern
decode_query()
{

...
}

extern
start_page(title)
{

...
}

Upon first encountering the variable cgi in the code fragment the module ici4cgi.ici will be 
parsed and its extern scope assigned to the new variable cgi in the outermost scope of the pro-
gram (that is, the most global scope). The lookup of the variable cgi is then repeated, this time 
finding the structure which contains the function decode_query. The second use, and all subse-
quent use, of the variable cgi will be satisfied immediately from the already loaded module.

In attempting to load a host-specific dynamically loaded native machine code library, a file 
name of the form:

ici4var.ext

is considered, where var is the as yet undefined variable name and ext is the normal host exten-
sion for such libraries (typically .dll for Windows and .so for UNIX like systems). The 4 is the 
major ICI version number. This file is searched for on the current host specific search path. If 
found the file is loaded into the ICI interpreter’s address space using the local host’s dynamic 
library loading mechanism. An initialisation function in the loaded library may return an ICI 
object (see below). Should an object be returned, it is assigned to var in the outermost writable 
scope available. Further, should the returned variable be a structure, additional loading of an ICI 
coded module (that is, ici4var.ici as described above) is allowed and the returned struct forms 
the structure for externs in that load.
The ICI Programming Language   85



Chapter 4: ICI Language Reference

86   The ICI Pr
ogramming Language



CHAPTER 5 Object-oriented 
programming in ICI
In object-oriented ICI programs, “objects” are structs that have specific properties. This is a bit 
confusing because I have been using the term “object” to refer to any ICI primitive type. This is 
historical. To avoid further confusion I will use “class” and “instance” explicitly instead of 
“object” when talking about object-oriented techniques.

ICI supports object-oriented programming by building on the properties of structs to implement 
scoping in the same way that vanilla function calls do. The principal feature that supports 
object-oriented programming in ICI is calls to methods as opposed to calls to functions. Con-
trasting the two:

• a call to a function causes an implicit switch to the scope of the function for the duration of 
the call, whereas

• a call to a method causes an implicit switch to the scope of the instance and its class for the 
duration of the call.

A method is a primitive ICI object that is a pairing of a subject object (the instance), and a func-
tion.

Consider the following simple fragment which creates a class:

extern an_extern = 1;

static a_static = 2;

static a_class =
[class
    a_func(arg)
    {
        this.value := arg + 1;
        return value + 2;
    }
];
The ICI Programming Language   87



Chapter 5: Object-oriented programming in ICI

88   The ICI Pr

n

ins
After executing this code, a_class will refer to a new struct which is unremarkable except that 
its super has been automatically set to the static scope. Diagramatically:

We can create an instance of the class by invoking the new method on the class. For example:

an_inst = a_class:new();

The new method is a class method that exists in the global scope, so all classes effectively 
inherit it from there.

The new instance is, again, a struct that it unremarkable except that its super has been set to the 
class. In this simple example there are, as yet, no instance variables. So the instance is an empty 
struct. Diagramatically:

We are now in a position to invoke the a_func method on our new instance with, say:

x = an_inst:a_func(3);

The transfer of control into the function creates a struct for auto variables as usual, but rather 
than making the super of this struct the static scope the function was defined in, it is set to the 

1

an_extern5a_func a_class a_static

2... super super

class statics externs

1

an_exter5a_func a_class an_inst

... super super

class statics externs

super

tance

a_static

2

ogramming Language



: Sub-classes

n

instance that is the subject of this method call. Also, the local variables this and class are set 
automatically. Diagramatically, just after the first line of code in the function is executed:

After execution, x will be 6. Notice the use of the := operator and the explicit use of this to 
force the creation of value in the instance. Otherwise it would have implicitly appeared as a 
local variable. This is, of course, only required when the instance variable doesn’t already exist.

The instance is a normal struct. Thus we can reference the value instance variable with:

an_inst.value

Note that the instance has the class and outer scopes in its super chain. Thus we can also refer 
to:

an_inst.a_func
an_inst.a_static
an_inst.an_extern

Sub-classes

Sub-classes are class structs that have another class as their super. The following example illus-
trates a number of aspects of sub-classing:

static sub_class = [class:a_class

    a_class_variable = 0,

    new(name)
    {
        o = this:^new();
        o.name := name;

1

an_exter

5a_func

a_class an_inst

...

class

statics

externs

autos

instance

a_static

2... ...

arg this class

3

5value

4

The ICI Programming Language   89



Chapter 5: Object-oriented programming in ICI

90   The ICI Pr
        o.a_count := 0;
        return o;
    }

    a_func()
    {
        this:^a_func();
        ++a_count;
    }
];

After parsing we have a variable sub_class whoes super is a_class. Diagramatically: 

To make a new instance of the sub-class we would execute:

subclass_inst = sub_class:new("a name");

The new function was defined in the sub-class, overiding the global new function. In this case 
new is a class function that expects to be called on the class itself, not an instance of the class. 
There is nothing that distinguishes class functions from ones that operate on an instance, except 
their operation and documentation.

To complete its operation, the new function coded here needs to call the new of the super-class. 
To do this it uses the :^ operator which forms a method, but using the super of the current value 
of the class variable. There isn’t actually a new coded in the super-class, but it will find the glo-
bal new.

To work with sub-classes and overidden functions it is important to understand how the this and 
class variables are set in method calls.

Consider the call:

subclass_inst:a_func();

statics externs

sub_class a_class

classclass
ogramming Language



: Sub-classes
Before the first line of code is executed, the scope will look like this:

The class variable has been set by the method call mechanism to the class of the function being 
called. Functions being parsed within the scope of a class definition record their class, so it was 
not the super of the instance that set the class variable, but the class recorded by the function.

The first thing the sub-class a_func function does is call the same function in its super-class. 
Upon arrival in that function, the scope will look like:

In short, the class variable is always the class of the function, irrespective of any sub-classing 
the instance may be derived from (or any funny business done by changing the super of the 
instance).

statics

externs

sub_class

a_class

class

class

instance

subclass_inst

autos

class this

statics

externs

sub_class

a_class

class

class

instance

subclass_inst

autos

class this
The ICI Programming Language   91



Chapter 5: Object-oriented programming in ICI

92   The ICI Pr
Finally, note that class variables can simply be included in the class definition (as shown by 
a_class_variable in the example). They exist in the class and have no effect on any instance.

Global methods

As has been seen, the static scope present when a class is defined forms the super for the class. 
In effect, the outer scopes can be considered outer classes. Functions defined in those scopes 
may, if appropriately coded, be class functions for these hypothetical top-level classes. For 
example, we could define a default debug method that we expect some classes to override:

extern
dump()
{
    forall (k, v in this)
        printf("%s=%a, ", string(k), v);
    printf("\n");
}

This function would be available to all instances of all classes. The class of such a function is 
the scope it was defined in.

Taking advantage of dynamic binding

All name binding is dynamic in ICI. This leads to a number of common constructs that are wor-
thy of highlighting, because they are not seen in statically bound languages such as C++.

The commonest of these is polymorphic functions that work equally well with any object 
instance that falls within the scope of their definition, irrespective of its class. We saw a simple 
example of this above with the dump function. That function had no prerequisites on the object 
it was applied to. But in real applications it is more common to define functions that state they 
will do blah, providing the instance they are applied to has fields called whatever, that can be 
interpreted in such-and-such a way. For example:

/*
 * Return the distance across the diagonal of the
 * boundig box for any object that support a bounding
 * box recorded as xmin, xmax, ymin, ymax.
 */
extern
bbox_diagonal()
{
    dx = xmax - xmin;
    dy = ymax - ymin;
    return sqrt(dx * dx + dy * dy);
}

/*
 * Grow the bounding box of the object to ensure it
 * will account for a r radian rotation of any object
 * contained within the original bounding box. The
 * bounding box is assumed to be recorded in xmin,
 * xmax, ymin, ymax.
 */
extern
ogramming Language



: Standard global methods
bbox_grow_for_rotation(r)
{
    ...
} 

ICI does not support multiple inheritance as such. But it is common and useful to use composite 
classes and/or global methods that provide the same effect.

Standard global methods

The standard global methods available to all ICI instances or classes are summarised below. See 
the chapter on core language functions for detailed descriptions of each:

inst:copy() Returns a copy of inst as per the copy function. May be applied to an 
instance or a class.

inst:isa(class) Returns 1 if inst is or is derived from class, else 0. May be applied 
to an instance or a class.

class:new() Returns a new instance of class.

inst:respondsto(name)
Returns 1 if inst supports a function called name, else 0. May be ap-
plied to an instance or a class.
The ICI Programming Language   93



Chapter 5: Object-oriented programming in ICI

94   The ICI Pr
ogramming Language



CHAPTER 6 Core language functions 
and variables
Core function summary

The following list summarises the standard functions.  Following this is a detailed descriptions 
of each of them.

float|int = abs(float|int)

float = acos(number)

mem = alloc(int [, int])

string = argv[]

array = array(any...)

float = asin(number)

any = assign(struct, any, any)

float = atan(number)

float = atan2(number, number)

array|struct = build(dims... [, options, content...])

float|struct = calendar(struct|float)

any = call(func [, arg...], args)

float = ceil(number)

 chdir(string)

 close(file)

int = cmp(a, b)

any = copy(any)

any = any:copy()

float = cos(number)

float = cputime([foat])

file = currentfile([string])

int = debug([int])

 del(aggr, any)

array = dir([path], [, regexp] [, format])

int = eof(file)
The ICI Programming Language   95



Chapter 6: Core language functions and variables

96   The ICI Pr

)

int = eq(any, any)

 eventloop()

 exit([int|string|NULL])

float = exp(number)

array = explode(string)

 fail(string)

any = fetch(struct, any)

float = float(any)

float = floor(number)

int = flush([file])

float = fmod(number, number)

file = fopen(string [, string])

string = getchar([file])

string = getcwd()

string = getenv(string)

string = getfile([file])

string = getline([file])

string = gettoken([file|string [,string]])

array = gettokens([file|string [,string [,string]]]

string = gsub(string, regexp, string)

string = implode(array)

struct = include(string [, struct])

int = int(any [, int])

string|array = interval(string|array, int [, int])

int = inst|class:isa()

int = isatom(any)

array = keys(struct)

any = load(string)

float = log(number)

float = log10(number)

mem = mem(int, int [,int])

file = mopen(string [, string])

int = nels(any)

inst = class:new(...)

float = now()

int|float = num(string|int|float [, int])

struct = parse(file|string [, struct])

string = parsetoken(file)

any = parsevalue(file)

string = path[]

any = pop(array)

file = popen(string [, string])

float = pow(number, number)

 printf([file,] string [, any...])

 profile(filename)
ogramming Language



Core function summary: 

]]);
any = push(array, any)

 put(string [, file])

 putenv(string [, string])

int = rand([int])

 reclaim()

regexp = regexp(string)

regexp = regexpi(string)

 rejectchar(file)

 rejecttoken(file)

 remove(string)

 rename(string, string)

int = inst|class:respondsto(string)

any = rpop(array)

 rpush(array, any)

struct = scope([struct])

int = seek(file, int, int)

set = set(any...)

string|func = signal(int|string [, func|string])

string = signam(int)

float = sin(number)

 sleep(number)

array = smash(string [, regexp [, string...] [, int

file = sopen(string [, string])

array = sort(array, func [, arg])

string = sprintf(string [, any...])

float = sqrt(number)

string = strbuf([string])

string = strcat(string [, int] , string...)

string = string(any)

struct = struct(any, any...)

string = sub(string, regexp, string)

struct = super(struct [, struct])

int = system(string)

float = tan(number)

exec = thread(callable [, args...])

string = tochar(int)

int = toint(string)

any = tokenobj(file)

any = top(array [, int])

int = trace(string)

string = typeof(any)

string = version()

array = vstack([int])

 wakeup(any)

struct = which(key [, struct])
The ICI Programming Language   97



Chapter 6: Core language functions and variables

98   The ICI Pr
Core language functions

float|int = abs(float|int)

Returns the absolute value of its argument. The result is an int if the argument is an int, a float if 
it is a float.

angle = acos(x)

Returns the arc cosine of x in the range 0 to pi.

mem = alloc(nwords [, wordz])

Returns a new mem object referring to nwords (an int) of newly allocated and cleared memory.  
Each word is either 1, 2, or 4 bytes as specified by wordz  (an int, default 1). Indexing of mem 
objects performs the obvious operations, and thus pointers work too.

string = argv[]

An array of strings containing the command line arguments set at interpreter start-up. The first 
element is the name of the ICI program and subsequent elements are the arguments passed to 
that program.

On Windows platforms ICI performs wildcard expansion in the traditional MS-DOS fashion. 
Arguments containing wildcard meta-characters, ‘?’ and ‘*’, may be protected by enclosing 
them in single or double quotes. On UNIX-like systems, the operating environment is expected 
to handle this.

array = array(any...)

Returns an array formed from all the arguments. For example:

array()

will return a new empty array; and

array(1, 2, "a string")

will return a new array with three elements, 1, 2, and "the string".

This is the run-time equivalent of the array literal. Thus the following two expressions are 
equivalent:

$array(1, 2, "a string")

[array 1, 2, "a string"]

float = asin(x)

Returns the arc sine of x  in the range -pi/2 to pi/2.

value = assign(struct, key, value)

Sets the element of struct identified by key to value, ignoring any super struct.  Returns value.
ogramming Language



Core language functions: angle = atan(x)
angle = atan(x)

Returns the arc tangent of x  in the range -pi/2 to pi/2.

angle = atan2(y, x)

Returns the angle from the origin to the rectangular coordinates x, y (floats ) in the range -pi to 
pi.

array|struct = build(dims... [, options, content...])

Build allows construction of a regular data structure such as a multi-dimensional array or an 
array of structures. dims... is a sequence of dimension specifications. For example:

build(20, 10);

returns a  array of NULLs (that is, an array of 20 arrays, each of size 10).

Each dimension specification is either:

an int causing an array of that many elements to be made and have every 
element set through recursive application on subsequent dimen-
sions, or

an array causing a struct with the elements of the array as keys to be made 
and each value set through recursive application on subsequent di-
mensions.

So, for example:

build(10, [array "x", "y"], 2)

Returns an array of ten structures, each with fields x and y. Each field is set to an array of length 
2.

If options and content... are supplied, they may be used to supply initialising data to the leaf 
fields of the data structure rather than the default NULL. Options is a string, which may be:

"c" Cyclical. The content is used and assigned cyclically to leaf items. 

"r" Restart. The content is used and assigned cyclicly, but the content 
list is also restarted from the first item on the commencement of 
each bottom level aggregate.

"l" Last repeats. The content is used and assigned in sequence to leaf 
items, but once it is exhausted, the last content item is used repeat-
edly for subsequent leaf items.

"a" Arrays. Each of the content items must be an array. Content is taken 
firstly from the first element of each array in turn, then from the sec-
ond element of each in turn etc. If any array is too short, NULL is 
used as the value.

"i" Integer increment. The content is incrementing integer values. The 
first content value, if given is the start value, default 0. The second 
content value, if given, is the step, default 1.

So, for example, supposing names_array is an array of names of some sort:

build(names_array, [array "count", "sum"], "c", 0, 0.0)

20 10×
The ICI Programming Language   99



Chapter 6: Core language functions and variables

100   The ICI P
will return a struct which, when indexed by a name in names_array reveals a struct with fields 
count and sum initialised to 0 and 0.0 respectively. 

Also:

build(50, "i", 1, 2)

will return an array filled with the odd integers from 1 to 99.

Finally, if names is an array of names of some sort and values is a corresponding array of values:

build(nels(names), [array "name", "value"], "a", names, values)

will transpose them into an array of structs, each with a name and value field.

float|struct = calendar(struct|float)

Converts between calendar time and arithmetic time. An arithmetic time is expressed as a 
signed float time in seconds since 0:00, 1st Jan 2000 UTC. The calendar time is expressed as a 
structure with fields revealing the local (including current daylight saving adjustment) calendar 
date and time. Fields in the calendar structure are:

second The float number of seconds after the minute.

minute The int number of minutes after the hour.

hour The int number of hours since midnight.

day The day of the month (1..31).

month The int month number, Jan is 0.

year The int year.

wday The day since Sunday (0..6)

yday Days since 1st Jan.

When converting from a local calendar time to an arithmetic time, the fields second, minute, 
hour, day, month, year are used. They need not be restricted to their nomal ranges.

return = call(func [, any...], array|NULL)

Calls the function func with the arguments any... plus arguments taken from the array.  If array 
is NULL it is ignored, else it must be an array. Returns the return value of the function.

This is often used to pass on an unknown argument list.  For example:

static
db()
{

auto vargs;

if (debug)
return call(printf, stderr, vargs);

}

rogramming Language



Core language functions: float = ceil(x)
float = ceil(x)

Returns   (the smallest integral value greater than or equal to x) as a float, where x is a 
number (int or float).

chdir(path)

Change the current working directory to the specified path.

close(file)

Close the given file, releasing low level system resources. After this operation the file object is 
still a valid object, but I/O operations on it will fail. (File object that are lost and collected by the 
garbage collector will be closed. But due to the indeterminate timming of this, it is preferable to 
close them explicitly.)

On some files and systems this may block, but will allow thread switching while blocked.

int = cmp(a, b)

Returns -1, 0 or 1 depending if a < b, a == b, or a > b. The operands may be any type for which 
the < and > operators are defined. This is the default comparison function for sort().

any = copy(any)

Returns a copy of an object. That is, an object that is distinct (not eq) but of equal value (==), 
unless the object is intrinsically atomic or unique (in which case the original object is returned).

any = any:copy()

The method form of copy(). Otherwise as above.

x = cos(angle)

Returns the cosine of angle (a float interpreted in radians).

float = cputime([float])

Returns the accumulated CPU time of the current process in seconds. The precision and accu-
racy is system dependent.

If float is supplied it specifies a new origin, relative to the value being returned, from which sub-
sequent calls are measured. Mostly commonly the value 0.0 is used here.

file = currentfile(["raw"])

Returns a file associated with the innermost parsing context, or NULL if there is no module 
being parsed. By default currentfile() returns a new file object that gives “cooked” access that 
layers on top of the parser’s access to the file. This maintains line number tracking and normal-
ises differing newline conventions to single newline characters even for binary files. Such a file 
is sutiable to calls to parsetoken(). If the string "raw" is given as an argument, the underlying 
file that is being parsed is returned directly, by-passing such operations.

x

The ICI Programming Language   101



Chapter 6: Core language functions and variables

102   The ICI P
This function can be used to include data in a program source file which is out-of-band with 
respect to the normal parse stream.  But to do this it is necessary to know up to what character in 
the file in question the parser has consumed.

In general: after having parsed any simple statement the parser will have consumed up to and 
including the terminating semicolon, and no more.  Also, after having parsed a compound state-
ment the parser will have consumed up to and including the terminating close brace and no 
more.  For example:

static help = gettokens(currentfile(), "", "!")[0]

;This is the text of the help message.
It follows exactly after the ; because
that is exactly up to where the parser
will have consumed. We are using the
gettokens() function (as described below)
to read the text.
!

static otherVariable = "etc...";

In the examples shown above, the default cooked mode is used so that line numbers are tracked 
and stay in sync for subsequence diagnostics. If the raw mode was used the parser would never 
see the data read out-of-band and would not realise how many lines have been skipped, thus 
giving inaccurate reports of line numbers on errors later in the file.

This function can also be used to parse the rest of a file within an error catcher.  For example:

try
parse(currentfile(), scope())

onerror
printf("That didn't work, but never mind.\n");

static this = that;
etc();

The functions  parse and scope are described below.

int = debug([int])

Returns the current debug status, and, if an int is supplied as an argument, set it to that value.

When debugging is enabled, certain events such as each new source line, each function call and 
return, and errors, are passed to any active debugger. Debuggers are typically dynamically 
loaded extension modules that register themselves with the interpreter through an internal API.

del(aggr, key)

Deletes an element of aggr, which must be a struct, a set or an array, as identified by key.  Any 
super structs are ignored.  For structs and sets this is an efficient operation. For arrays it is O(n) 
where n is the length from the index key, to the nearest end of the array (that is, either the begin-
ning of the end). If key is not a current element of aggr there is no effect and no error. Returns 
NULL.

For example:
rogramming Language



Core language functions: array = dir([path,] [regexp,] [format])
static s = [struct a = 1, b = 2, c = 3];
static v, k;
forall (v, k in s)

printf("%s=%d\n", k, v);
del(s, "b");
printf("\n");
forall (v, k in s)

printf("%s=%d\n", k, v);

When run would produce (possibly in some other order):

a=1
c=3
b=2

a=1
c=3

array = dir([path,] [regexp,] [format])

Read directory named in path (a string, defaulting to ".", the current working directory) and 
return the entries that match the regexp as an array of strings (or all names if no regexp is 
passed). The format string identifies what sort of entries should be returned. If the format string 
is passed then a path MUST be passed (to avoid any ambiguity) but path may be NULL mean-
ing the current working directory (same as "."). The format string uses the following characters,

f Return file names.

d Return directory names.

a Return all names (which includes things other than files and direc-
tories, e.g., hidden or special files).

The default format specifier is "f".

Note that when using dir() to traverse directory hierarchies that the “.” and “..” names are 
returned when listing the names of sub-directories, these will need to be avoided when travers-
ing.

int = eq(obj1, obj2)

Returns 1 (one) if obj1 and obj2 are the same object, else 0 (zero). Note that this is more strict 
than the == operator, which tests whether two objects have equal value.

int = eof([file])

Returns non-zero if end of file has been read on file. If file is not given the current value of stdin 
in the current scope is used.

eventloop()

Enters an internal event loop and never returns. The exact nature of the event loop is system 
specific. Some dynamically loaded modules require an event loop for their operation. Allows 
thread switching while blocked.
The ICI Programming Language   103



Chapter 6: Core language functions and variables

104   The ICI P
exit([string|int|NULL])

Causes the interpreter to finish execution and exit. If no parameter, the empty string or NULL is 
passed the exit status is zero. If an integer is passed that is the exit status. If a non-empty string 
is passed then that string is printed to the interpreter’s standard error output and an exit status of 
one used.

float = exp(x)

Returns the exponential function of x, that is .

array = explode(string)

Returns an array containing each of the integer character codes of the characters in string.

fail(string)

Causes an error to be raised with the message string associated with it.  See the section on error 
handling in the try statement above.  For example:

if (qf > 255)
fail(sprintf("Q factor %d is too large", qf));

value = fetch(struct, key)

Returns the value from struct (which actually may be any type of object) associated with key, 
ignoring any supers. Returns NULL if key is not an element of struct.

value = float(x)

Returns a floating point interpretation of x, or 0.0 if no reasonable interpretation exists. x should 
be an int, a float, or a string, else 0.0 will be returned.

float = floor(x)

Returns   (the largest integral value less than or equal to x) as a float, where x is a number 
(int or float).

flush([file])

Flush causes data that has been written to the file (or stdout if absent), but not yet delivered to 
the low level host environment, to be deliverd immediately.

On some files and systems this may block, but will allow thread switching while blocked.

float = fmod(x, y)

Returns the float remainder of  where x and y are numbers (int or float). That is,  for 
some integer i such that the result has the same sign as x and magnitude less than y. 

e
x

x

x y⁄ x i y×–
rogramming Language



Core language functions: file = fopen(name [, mode])
file = fopen(name [, mode])

Opens the named file for reading or writing according to mode and returns a file object that may 
be used to perform I/O on the file. mode is the same as in C and is passed directly to the C 
library fopen function. If mode is not specified "r" is assumed.

On Windows, directory separators may be either / or \ characters.

On some files and systems this may block, but will allow thread switching while blocked.

Note that this is one of many open functions. Different open functions open different types of 
files, like a standard I/O file in this case, and a string in the case of sopen. However, once the file 
is open, the same I/O functions and close function are used for all types of files.

string = getchar([file])

Reads a single character from file and returns it as a string. Returns NULL upon end of file. If 
file is not given, the current value of stdin in the current scope is used.

On some files and systems this may block, but will allow thread switching while blocked.

string = getcwd()

Returns the name of the current working directory.

string = getenv(string)

Returns the value of an environment variable. (Under Windows only, a case insensitive match is 
done to work around some bugs in Windows.)

string = getfile([file])

Reads all remaining data from file and returns it as a string. If file is not given, the current value 
of stdin in the current scope is used. If file is a string, it is taken as a file name and opened and 
closed using the current values of fopen and close in the current scope.

On some files and systems this may block, but will allow thread switching while blocked.

string = getline([file])

Reads a line of text from file and returns it as a string. Any end-of-line marker is removed. 
Returns NULL upon end of file. If file is not given, the current value of stdin in the current scope 
is used.

On some files and systems this may block, but will allow thread switching while blocked.

string = gettoken([file [, seps]])

Read a token (that is, a string) from file (which may be a file or a string).

seps must be a string.  It is interpreted as a set of characters which do not from part of the token.  
Any leading sequence of these characters is first skipped.  Then a sequence of characters not in 
seps is gathered until end of file or a character from seps is found.  This terminating character is 
not consumed.  The gathered string is returned, or NULL if end of file was encountered before 
any token was gathered.
The ICI Programming Language   105



Chapter 6: Core language functions and variables

106   The ICI P
If file is not given the current value of stdin in the current scope is used. If file is a string, char-
acters are read from the string.

If seps is not given the string " \t\n" is assumed.

Currently, even if blocked while reading a file gettoken is indivisible with repect to other 
threads. This may be corrected in future versions.

array = gettokens([file [, seps [, terms, [delims]]]])

Read tokens (that is, strings) from file.  The tokens are character sequences separated by seps 
and terminated by terms.  Returns an array of strings, NULL on end of file.

If seps is a string, it is interpreted as a set of characters, any sequence of which will separate one 
token from the next.  In this case leading and trailing separators in the input stream are dis-
carded.

If seps is an integer it is interpreted as a character code.  Tokens are taken to be sequences of 
characters separated by exactly one of that character.

Terms must be a string.  It is interpreted as a set of characters, any one of which will terminate 
the gathering of tokens.  The character which terminated the gathering will be consumed.

delims must be a string. It is interpreted as a set of self-delimiting single character tokens that 
will be seperated out as single character strings in the resulting array.

If file is not given the current value of stdin in the current scope will be used.

If seps is not given the string " \t" is assumed.

If terms is not given the string "\n" is assumed.

If delims is not given the string "" is assumed.

For example:

forall (token in gettokens(currentfile()))
printf("<%s>", token)

;   This    is my line    of data.
printf("\n");

when run will print:

<This><is><my><line><of><data.>

Whereas: 

forall (token in gettokens(currentfile(), ':', "*", "$"))
printf("<%s>", token)

;:abc::def$:ghi:*
printf("\n");

when run will print:

<><abc><><def><$><ghi><>

Currently, even if blocked while reading a file gettokens is indivisible with respect to other 
threads. This may be corrected in future versions.
rogramming Language



Core language functions: string = gsub(string, string|regexp, string)
string = gsub(string, string|regexp, string)

gsub performs text substitution using regular expressions. It takes the first parameter, matches it 
against the second parameter and then replaces the matched portion of the string with the third 
parameter. If the second parameter is a string it is converted to a regular expression as if the 
regexp() function had been called. gsub does the replacement multiple times to replace all 
occurrances of the pattern. It returns the new string formed by the replacement. If there is no 
match this is original string. The replacement string may contain the special sequence “\&” 
which is replaced by the string that matched the regular expression. Parenthesized portions of 
the regular expression may be matched by using \n where n is a decimal digit.

For example:

x = gsub("abc xbz xyz", #(.)b(.)#, "\\2b\\1");

will result is x having the value:

"cba zbx xyz"

Notice that double backslashes were needed in the replacement string to get the single backslash 
required.

string = implode(array)

Returns a string formed from the concatenation of elements of array.  Integers in the array will 
be interpreted as character codes; strings in the array will be included in the concatenation 
directly.  Other types are ignored.

struct = include(string [, scope])

Parses the code contained in the file named by the string into the scope. If scope is not passed 
the current scope is used. include always returns the scope into which the code was parsed. The 
file is opened by calling the current definitions of the fopen and close in the current scope.

include first attempts to open the file exactly as named. If that failes, it looks for the file using 
the directories named in the path variable in the current scope (see path above).

value = int(any [, base])

Returns an integer interpretation of any, or 0 if no reasonable interpretation exists. any should be 

an int, a float, or a string, else 0 will be returned. If any is a string and base is zero or absent, any 

will be converted to an int depending on its appearance; applying octal and hex interpretations 

according to the normal ICI source parsing conventions. (That is, if it starts with a 0x it will be 

interpreted as a hex number, else if it starts with a 0 it will be interpreted as an octal number, 

else it will be interpreted as a decimal number). If base is present and non-zero, it must be an int 

in the range 2..36, and it will be used as the base for intepretation of the string.

subpart = interval(str_or_array, start [, length])

Returns a sub-interval of str_or_array, which may be either a string or an array.

If start (an integer) is positive the sub-interval starts at that offset (offset 0 is the first element).  
If start is negative the sub-interval starts that many elements from the end of the string (offset -
1 is the last element, -2 the second last etc).
The ICI Programming Language   107



Chapter 6: Core language functions and variables

108   The ICI P
If length is absent, all the elements from the start are included in the interval.  Otherwise, if 
length is positive that many elements are included (or till the end, whichever is smaller). Other-
wise (i.e. length is negative) that much less than the number of elements in the str_or_array is 
used.

For example, the last character in a string can be accessed with:

last = interval(str, -1);

And the first three elements of an array with:

first3 = interval(ary, 0, 3);

And all except the last three elements of an array with:

first3 = interval(ary, 0, -3);

int = inst|class:isa(any)

Returns 1 if inst or class or any of their super classes is equal to any, else 0. That is, if inst or 
class is a, or is a sub-class of, any.

int = isatom(any)

Return 1 (one) if any is an atomic (read-only) object, else 0 (zero).  Note that integers, floats and 
strings are always atomic.

array = keys(struct)

Returns an array of all the keys from struct.  The order is not predictable, but is repeatable if no 
elements are added or deleted from the struct between calls and is the same order as taken by a 
forall loop.

any = load(string)

Attempt to load a library named by string. This is the explicit form of the automatic library 
loading described in “Automatic library loading” on page 84. The library is loaded in the same 
way and the resulting object returned. (Actually, this is the real core mechanism. The automatic 
mechanis calls the function load() in the current scope to load the module. Thus overiding 
load() allows control to be gained over the automatic mechanism.)

float = log(x)

Returns the natural logarithm of x (a float or an int).

float = log10(x)

Returns the log base 10 of x (a float or an int).

mem = mem(start, nwords [, wordz])

Returns a memory object which refers to a particular area of memory in the ICI interpreter's 
address space.  Note that this is a highly dangerous operation.  Many implementations will not 
include this function or restrict its use.  It is designed for diagnostics, embedded systems and 
controllers.  See the alloc function above.
rogramming Language



Core language functions: file = mopen(mem [, mode])
file = mopen(mem [, mode])

Returns a file, which when read will fetch successive bytes from the given memory object. The 
memory object must have an access size of one (see alloc and mem above). The file is read-only 
and the mode, if passed, must be one of "r" or "rb".

int = nels(any)

Returns the number of elements in any.  The exact meaning depends on the type of any.  If any 
is an:

array the length of the array is returned; if it is a

struct the number of key/value pairs is returned; if it is a

set the number of elements is returned; if it is a

string the number of characters is returned; and if it is a

mem the number of words (either 1, 2 or 4 byte quantities) is returned;

and if it is anything else, one is returned.

inst = class:new()

Creates a new instance of the given class. In practice new is often also defined in sub-classes. 
This is the global new. The new inst will be a fresh struct with class as its super.

float = now()

Returns the current time expressed as a signed float time in seconds since 0:00, 1st Jan 2000 
UTC.

number = num(x [, base])

If x is an int or float, it is returned directly.  If x is a string and base is zero or absent, x will be 
converted to an int or float depending on its appearance; applying octal and hex interpretations 
according to the normal ICI source parsing conventions.  (That is, if it starts with a 0x it will be 
interpreted as a hex number, else if it starts with a 0 it will be interpreted as an octal number, 
else it will be interpreted as a decimal number.) If base is present and non-zero, it must be an int 
in the range 2..36, and it will be used as the base for intepretation of the string.

If x can not be interpreted as a number the error %s is not a number is generated.

scope = parse(source [, scope])

Parses source in a new variable scope, or, if scope (a struct) is supplied, in that scope.  Source 
may either be a file or a string, and in either case it is the source of text for the parse.  If the parse 
is successful, the auto scope structure of the sub-module is returned.  If an explicit scope was 
supplied this will be that structure.

If scope is not supplied a new struct is created for the auto variables.  This structure in turn is 
given a new structure as its super struct for the static variables.  Finally, this structure's super is 
set to the current static variables.  Thus the static variables of the current module form the 
externs of the sub-module.

If scope is supplied it is used directly as the scope for the sub-module.  Thus the base structure 
will be the struct for autos, its super will be the struct for statics etc.
The ICI Programming Language   109



Chapter 6: Core language functions and variables

110   The ICI P
For example:

static x = 123;
parse("static x = 456;", scope());
printf("x = %d\n", x);

When run will print:

x = 456

Whereas:

static x = 123;
parse("static x = 456;");
printf("x = %d\n", x);

When run will print:

x = 123

Note that while the following will work:

parse(fopen("my-module.ici"));

It is preferable in a large program to use:

parse(file = fopen("my-module.ici"));
close(file);

In the first case the file will eventually be closed by garbage collection, but exactly when this 
will happen is unpredictable. The underlying system may only allow a limited number of simul-
taneous open files.  Thus if the program continues to open files in this fashion a system limit 
may be reached before the unused files are garbage collected. See also include().

string = parsetoken(file)

parsetoken uses the interpreter’s internal lexical analyser to read the next language token (as 
described in “The lexical analyser” on page 39) from the given file. The file must be one of the 
special files layered on top of ICI’s parser, as returned by currentfile() or passed to a parser 
function in a user-parsed literal factor (See “User defined literal factors” on page 47). parseto-
ken skips white-space; which includes comments and lines starting with a #.

parsetoken returns a string, or NULL on end-of-file. The string is the literal text of the token for 
the following simple self-delimiting tokens:

*      /      %      +      -      >>
<<     <      >      <=     >=     ==
!=     ~      !~     ~~     ~~~    &
^      |      &&     ||     :      ?
=      :=     +=     -=     *=     /=
%=     >>=    <<=    &=     ^=     |=
~~=    <=>    (      )      {      }
[      ]      .      ->     !      ++
--     :      $      :^     @      ;
rogramming Language



Core language functions: any = parsevalue(file)
For identifiers, regular expressions, strings, ints and floats, the following strings are returned:

name   regexp   string   int   float

however the associated value must be obtained by calling tokenobj() to find the actual identifier 
(a string), regular expression, string, int or float.

On return, the next character available to be read from the input stream will be the first character 
that is not part of the returned token. See also rejecttoken().

any = parsevalue(file)

parsevalue parses and evaluates an expression from the given file. The file must be one of the 
special files layered on top of ICI’s parser, as returned by currentfile() or passed to a parser 
function in a user-parsed literal factor (See “User defined literal factors” on page 47). parse-
value skips white-space; which includes comments and lines starting with a #.

On return, the next token (as readable by parsetoken()) will be the first token that is not part of 
the expression. However, the next character (as readable by getchar()) may be somewhere in 
advance.

string = path[]

path is an array or directory names (strings) that is set by the ICI interpreter at startup, and may 
be modified from time to time by the executing ICI program. The current value of the the path 
variable in the current scope is used by the automatic module loading mechanism and the 
include() function as a search path for files. Typically these mechanisms will end up referencing 
this path variable which is defined in the outermost scope.

The initial value of the path array is set in a slightly system dependent manner:

UNIX-like systems The first elements are taken from the ICIPATH environment vari-
able. Each directory name must be separated by a : (colon) in the 
usual manner. Then, where they exist, “/usr/local/lib/ici4”, “/opt/lib/
ici4”, and “/sw/lib/ici4” are included.

Thereafter the PATH environment variable is considered and for 
each element that ends in “/bin”, the “/bin” is replaced by “/lib/ici4” 
and if that directory is accessable, it is included. (The usual installa-
tion for ICI on UNIX like systems places the ici executable in /usr/
local/bin, and externsion modules in /usr/local/lib/ici4).

Windows The first elements are taken from the ICIPATH environment vari-
able. Each directory name must be separated by a ; (semicolon) in 
the usual Windows manner.

Thereafter the following directories are included: the directory of 
the current executing module, the “ici” subdirectory of that directory 
(if any), “.” (i.e. the current directory), the Windows system direc-
tory, the “ici” subdirectory of the Windows system directory (if 
any), the Windows directory, the “ici” subdirectory of the Windows 
directory (if any).Thereafter, elements from the PATH environment 
variable. (This sequence similar to the normal Windows DLL search 
order.)

In all cases, if a directory has already been added in an earlier position, or if the directory can 
not be accessed, it is not included.
The ICI Programming Language   111



Chapter 6: Core language functions and variables

112   The ICI P
any = pop(array)

Returns the last element of array and reduces the length of array by one.  If the array was empty 
to start with, NULL is returned.

file = popen(string, [mode])

Executes a new process, specified as a shell command line as for the system function, and 
returns a file that either reads or writes to the standard input or output of the process according 
to mode. If mode is "r", reading from the file reads from the standard output of the process. If 

mode is "w" writing to the file writes to the standard input of the process. If mode is not spec-

ified it defaults to "r".

On some commands and systems this may block, but will allow thread switching while blocked.

(popen is not currently available on Windows. This may be corrected in a future version.)

float = pow(x, y)

Returns x^y where both x and y are floats.

printf([file,] fmt, args...)

Formats a string based on fmt and args as per sprintf (below) and outputs the result to the file or 
to the current value of the stdout variable in the current scope if the first parameter is not a file.  
The current stdout must be a file.  See sprintf.

On some files and systems this may block, but will allow thread switching while blocked.

profile(filename)

Enables profiling within the scope of the current function (must be called within a function). 
This profiler measures actual elapsed time so it's only very useful for quite coarse profiling 
tasks. The filename specifies a file to write the profiling records to once it is complete. The pro-
filing completes when the function profile() was called from returns. The file contains a re-pars-
able ICI data structue of the form:

auto profile = [struct
    total = <time in ms for this call>,
    call_count = <number of call to this func>,
    calls = [struct <nested profile structs...>],
];

For example, the following program:

static
count10000()
{
    j = 0;
    for (i = 0; i < 10000; ++i)
        j += i;
}

static
count20000()
rogramming Language



Core language functions: any = push(array, any)
{
    count10000();
    count10000();
}

static
prof()
{
    profile("prof.txt");
    count10000();
    count20000();
}

prof();

Would produce a file “prof.txt” file looking something like:

auto profile = [struct
 total = 153,
 call_count = 0,
 calls = [struct
  ("count20000()") = [struct
   total = 96,
   call_count = 1,
   calls = [struct
    ("count10000()") = [struct
     total = 96,
     call_count = 2,
     calls = [struct
     ],
    ],
   ],
  ],
  ("count10000()") = [struct
   total = 57,
   call_count = 1,
   calls = [struct
   ],
  ],
 ],
];

any = push(array, any)

Appends any to array, increasing its length in the process.  Returns any.

put(string [, file])

Outputs string to file. If file is not passed the current value of stdout in the current scope is used.

putenv(string)

Sets an environment variable. string must be of the forms name=value. 
The ICI Programming Language   113



Chapter 6: Core language functions and variables

114   The ICI P
int = rand([seed])

Returns a pseudo random integer in the range 0..0x7FFF.  If seed (an int) is supplied the random 
number generator is first seeded with that number.  The sequence is predictable based on a given 
seed.

reclaim()

Force a garbage collection to occur.

re = regexp(string [, int])

Returns a compiled regular expression derived from string  This is the method of generating 
regular expressions at run-time, as opposed to the direct lexical form. For example, the follow-
ing three expressions are similar:

str ~ #*\.c#
str ~ regexp("*\\.c")
str ~ $regexp("*\\.c")

except that the middle form computes the regular expression each time it is executed.  Note that 
when a regular expression includes a # character the regexp function can be used, as the direct 
lexical form has no method of escaping a #. (Although you can concatenate it with a string.)

The optional second parameter is a bit-set that controls various aspects of the compiled regular 
expression’s behaviour.  This value is passed directly to the PCRE package’s regular expression 
compilation function.  Presently no symbolic names are defined for the possible values and 
interested parties are directed to the PCRE documention included with the ICI source code.

Note that regular expressions are intrinsically atomic.  Also note that non-equal strings may 
sometimes compile to the same regular expression. 

re = regexpi(string [, int])

Returns a compiled regular expression derived from string  that is case-insensitive. I.e., the 
regexp will match a string regardless of the case of alphabetic characters.  Literal regular 
expressions to perform case-insensitive matching may be constructed using the special PCRE 
notation for such purposes, see the chapter on regular expressions for details.

rejectchar(file, str)

Where file is one of the special files layered on top of the interpreter’s internal parser (as 
returned by currentfile() or passed to a parser function in a user-parsed literal factor as described 
in “User defined literal factors” on page 47), and str is the single character string read by an 
immediately proceeding call to getchar() on the file, rejectchar pushes the character back on the 
stream so it is available to be read by a subsequent call to getchar() or by the interpreter’s inter-
nal parser.

rejecttoken(file)

Causes the token read by a preceeding call to parsetoken() to be pushed back on the input 
stream and thus be available for re-reading by a subsequent call to parsetoken() or by the inter-
preters own parser. The file must be one of the special files layered on top of the interpreter’s 
internal parser, and the last operation on the file must have been a call to parsetoken(). Note that 
rogramming Language



Core language functions: remove(string)
this operation does not effect the file read position with respect to direct character I/O by func-
tions such as getchar().

int = inst|class:respondsto(name)

Returns 1 if inst or class supports a function called name, else 0.

remove(string)

Deletes the file whose name is given in string.

rename(oldname, newname)

Change the name of a file. The first parameter is the name of an existing file and the second is 
the new name that it is to be given.

any = rpop(array)

Returns the first element of array and removes that element from array, thus shortening it by 
one. If the array was empty to start with, NULL is returned. After this the item that was at index 
1 will be at index 0. This is an efficient constant time operation (that is, no actual data copying is 
done).

any = rpush(array, any)

Inserts any as the first element of the array, increasing the length of array in the process. After 
this the item that was at index 0 will be at index 1. The passed any is returned unchanged. This 
is an efficient constant time operation (that is, no actual data copying is done).

current = scope([replacement])

Returns the current scope structure.  This is a struct whose base element holds the auto varia-
bles, the super of that hold the statics, the super of that holds the externs etc.  Note that this is a 
real reference to the current scope structure.  Changing, adding and deleting elements of these 
structures will affect the values and presence of variables in the current scope.

If a replacement is given, that struct  replaces the current scope structure, with the obvious 
implications.  This should clearly be used with caution.  Replacing the current scope with a 
structure which has no reference to the standard functions also has the obvious effect.

int = seek(file, int, int)

Set the input/output position for a file and returns the new I/O position. The arguments are the 
same as for the C library’s fseek function. The second argument is the offset to seek to and the 
third is 0, 1 or 2 dependng if the seek should be relative to the beginning, current position, or 
end of the file. If the file object does not support setting the I/O position, or the seek operation 
fails.

set = set(any...)

Returns a set formed from all the arguments. For example:

set()
The ICI Programming Language   115



Chapter 6: Core language functions and variables

116   The ICI P
will return a new empty set; and

set(1, 2, "a string")

will return a new set with three elements, 1, 2, and "the string".

This is the run-time equivalent of the set literal. Thus the following two expressions are equiva-
lent:

$set(1, 2, "a string")

[set 1, 2, "a string"]

func = signal(string|int [, string|func])

Allows control of signal handling to the process running the ICI interpreter. The first argument 
is the name or number of a signal. Signal numbers are defined by the system whilst the function 
signam() may be used to obtain signal names. If no second argument is given, the function 
returns the current handler for the signal. Handlers are either functions or one of the strings 
“default” or “ignore”. If a second argument is given the signal handler’s state is set accordingly, 
either being reset to its default state, ignored or calling the given function when the signal 
occurs. The previous signal handler is returned in this case.

string = signam(int)

Returns the name of a signal given its number. If the signal number is not valid an error is 
raised.

x = sin(angle)

Returns the sine of angle (a float interpreted in radians).

sleep(num)

Suspends execution of the current thread for num seconds (a float or int). The resolution of num 
is system dependent.

array = smash(string [, regexp [, replace...] [, 
include_remainder])

Returns an array containing expanded replacement strings that are the result of repeatedly 
applying the regular expression regexp to successive portions of string. This process stops as 
soon as the regular expression fails to match or the string is exhausted.

Each time the regular expression is matched against the string, expanded copies of all the 
replace strings are pushed onto the newly created array. The expansion is done by performing 
the following substitutions:

\0 Is substituted with any leading unmatched portion between the end 
of the last match (or the start of the string if this is the first match) 
and the first character that was matched by this match.

\& Is substituted with the  portion of the string that was matched by this 
application of the regular expression.

\1 \2 \3 ...
rogramming Language



Core language functions: file = sopen(string [, mode])
Is substituted with the portions of the string that were matched by 
the successive bracketed sub-portions of the regular expression.

\\ Is substituted with a single \ character.

If the final argument, include_remainder, is supplied and is a non-zero integer, any remaining 
unmatched portion of the string is also added as a final element of the array. Else any unmatched 
remainder is discarded.

If regexp is not supplied, the regular expression #\n# is used. If no replace arguments are sup-
plied, the single string "\0" is used. Thus by default smash will break the given string into its 
newline delimited portions (although it will discard any final undelimited line unless 
include_remainder is specified).

For example:

lines = smash(getfile(f), 1);

will result in an array of all the lines of the file, with newlines characters discarded. While:

smash("ab cd ef", #(.) #, "x\\0", 1);

will result in an array of the form:

 [array "xa", "xc", "ef"]

Notice that it is generally necessary to use two backslash characters in literal strings to obtain 
the single backslash required here.

file = sopen(string [, mode])

Returns a file, which when read will fetch successive characters from the given string. The file 
is read-only and the mode, if passed, must be one of "r" or "rb", which are equivalent.

array = sort(array [, func [, arg]])

Sort the content of the array in-place using the heap sort algorithm with func as the comparison 
function. The comparison function is called with two elements of the array as parameters, a and 
b, and the optional arg. If a is equal to b the function should return zero. If a is less than b, -1, 
and if a is greater than b, 1.

For example,

static compare(a, b, arg)
{
    return a < b ? -1 : a > b;
}

static a = array(1, 3, 2);

sort(a, compare);

If arg is not provided, NULL is passed. If func is not provided, the current value of cmp in the 
current scope is used. See cmp(). Returns the given array.
The ICI Programming Language   117



Chapter 6: Core language functions and variables

118   The ICI P
string = sprintf(fmt, args...)

Return a formatted string based on fmt (a string) and args....  Most of the usual % format escapes 
of ANSI C printf are supported.  In particular; the integer format letters diouxXc are supported, 
but if a float is provided it will be converted to an int.  The floating point format letters feEgG 
are supported, but if the argument is an int it will be converted to a float.  The string format let-
ter, s is supported and requires a string.  The % format to get a single % works. In addition to 
these standard formats, a format letter of a (any) is supported. This takes any object and con-
verts it to a short human readable form of less than 30 characters length, and thereafter behaves 
as an s specification. This representation of an object is suitable for diagnostics only.

The flags, precision, and field width options are supported.  The indirect field width and preci-
sion options with * also work and the corresponding argument must be an int.

For example:

sprintf("%08X <%4s> <%-4s>", 123, "ab", "cd")

will produce the string:

0000007B <  ab> <cd  >

and

sprintf("%0*X", 4, 123)

will produce the string:

007B

sprintf does not currently handle nul characters in the fmt string. This may be corrected in future 
releases.

x = sqrt(float)

Returns the square root of float.

string = strbuf([string])

Returns a new non-atomic string that is either zero length, or, if a string argument is given, is 
initilised with characters copied from that string. This is the only function that produces non-
atomic strings. All other operations that produce strings make atomic (immutable, read-only) 
strings. Note that a non-atomic string will not reference the same element of a struct as an 
atomic string of equal value. See also strcat().

string = strcat(string [, int] , string...)

Copies string(s) onto the end of (or to some integer offset in) a given non-atomic string, extend-
ing the non-atomic string as necessary. The first argument must be a non-atomic string (see 
strbuf() above). If the optional int argument is given, that offset from the start of the non-atomic 
string will be the starting point for the placement of the concatenated string data, else the end of 
the string is used. All the remaining string arguments are used as a source of characters to be 
copied into the non-atomic string. The (updated) non-atomic string is returned.
rogramming Language



Core language functions: string = string(any)
string = string(any)

Returns a short textual representation of any. If any is an int or float it is converted as if by a %d 
or %g format.  If it is a string it is returned directly.  Any other type will returns its type name 
surrounded by angle brackets, as in <struct>.

struct = struct([super,] key, value...)

Returns a new structure.  This is the run-time equivalent of the struct literal.  If there are an odd 
number of arguments the first is used as the super of the new struct; it must be a struct.  The 
remaining pairs of arguments are treated as key and value pairs to initialise the structure with; 
they may be of any type.  For example:

struct()

returns a new empty struct;

struct(anotherStruct)

returns a new empty struct which has anotherStruct as its super;

struct("a", 1, "b", 2)

returns a new struct which has two entries a and b with the values 1 and 2; and

struct(anotherStruct, "a", 1, "b", 2)

returns a new struct which has two entries a and b with the values 1 and 2 and a super of anoth-
erStruct.

Note that the super of the new struct is set after the assignments of the new elements have been 
made. Thus the initial elements given as arguments will not affect values in any super struct.

The following two expressions are equivalent:

$struct(anotherStruct, "a", 1, "b", 2)

[struct:anotherStruct, a = 1, b = 2]

string = sub(string, string|regexp, string)

Sub performs text substitution using regular expressions. It takes the first parameter, matches it 
against the second parameter and then replaces the matched portion of the string with the third 
parameter. If the second parameter is a string it is converted to a regular expression as if the 
regexp function had been called. Sub does the replacement once (unlike gsub). It returns the 
new string formed by the replacement. If there is no match this is the original string. The 
replacement string may contain the special sequence \& which is replaced by the string that 
matched the regular expression. Parenthesized portions of the regular expression may be 
matched by using \n where n is a decimal digit. (Remember to use an extra backslash in a literal 
string to get a single backslash. For example "\\&".

current = super(struct [, replacement])

Returns the current super struct of struct, and, if replacement is supplied, sets it to a new value.  
If replacement is NULL any current super struct reference is cleared (that is, after this struct 
will have no super).
The ICI Programming Language   119



Chapter 6: Core language functions and variables

120   The ICI P
int = system(string)

Executes a new process, specified as a shell command line using the local system’s command 
interpreter, and returns an integer result code once the process completes (usually zero indicates 
normal successful completion).

This will block while the process runs, but will allow thread switching while blocked.

x = tan(angle)

Returns the tangent of angle (a float interpreted in radians).

exec = thread(callable, args...)

Creates a new ICI thread and calls callable (typically a function or method) with args in the new 
ICI execution context in that thead. Returns an execution context object (“exec”). When the 
thread terminates (by returning from the called function) this object is woken up with wakeup().

string = tochar(int)

Returns a one character string made from the character code specified by int.

int = toint(string)

Returns the character code of the first character of string.

any = tokenobj(file)

tokenobj returns the object associated with an immediately proceeding call to parsetoken() on 
the given file where parsetoken() returned one of the values: name, int, float, regexp, or string  
(in other cases it will return NULL). It can be called any number of times until some other I/O 
operation is done on the file.

any = top(array [, int])

Returns the last element of array (that is, the top of stack). Or, if int is supplied, objects from 
deeper in the stack found by adding int to the index of the last element. Thus:

top(a, 0)

and

top(a)

are equivalent, while

top(a, -1)

returns the second last element of the array. Returns NULL if the access is beyond the limits of 
the array.

int = trace(string)

Enables diagnostic tracing of internal interpreter activity or program flow. The string consists of 
space separated option words. There is a global enable/disable flag for tracing, and if enabled, a 
rogramming Language



Core language functions: string = typeof(any)
number of sub-flags indicating what should be traced. Trace output is printed to the interpreter’s 
standard error output. The options are interpreted as follows:

lexer Flags tracing of every character read by the lexical analyser.

expr ### To be completed (and checked in source).

calls ###

funcs ###

all ###

mem ###

src ###

gc ###

none ###

off ###

on ###

string = typeof(any)

Returns the type name (a string) of any.  See the section on types above for the possible type 
names.

string = version()

Returns a version string of the form.

@(#)ICI 4.0.0 config-file build-date config-str (opts...)

For example:

@(#)ICI 4.0.0, conf-w32.h, Feb 22 2002, Microsoft Win32 
platforms (math trace system pipes sockets dir dload 
startupfile debugging )

array = vstack([int])

With no arguments, returns a copy of the call stack of the current program at the time of the call. 
This is an array of the successive outer scope structures. The last element of the array is the cur-
rent innermost scope structure, the second last is the innermost scope structure of the caller, etc.

With an integer argument, returns the scope structure from that many callers back. Zero is the 
current scope, one is the caller etc. This is generally more efficient, as it avoids the array copy of 
the first form.

This can be used both for stack tracebacks, and to discover the value of a particular variable in 
the callers context (in the way that, say, getline() uses the value of stdin in the callers context).

wakeup(any)

Wakes up all ICI threads that are waiting for any (and thus allow them to re-evaluate their wait 
expression).
The ICI Programming Language   121



Chapter 6: Core language functions and variables

122   The ICI P
struct = which(key [, struct])

Finds the first struct (or other object) in a super chain that has the given key as an element. If the 
argument struct is given (which is normally a struct, but may be any object that supports a 
super), that object is used as the base of the search, else the current scope is used. Returns 
NULL if  key was not an element of any object in the super chain.
rogramming Language



CHAPTER 7 Regular expressions
ICI uses Philip Hazel’s PCRE (Perl-compatible regular expressions) package.  The following is 
extracted from the file pcre.3.txt included with the PCRE distribution.  This document is 
intended to be used with the PCRE C functions and makes reference to a number of constants 
that may be used as option specifiers to the C functions (all such constants are prefixed with the 
string “PCRE_”).  These constants are not available in the ICI interface at time of writing 
although the regexp() function does allow a numeric option specific to be passed.

The syntax and semantics of the regular expressions supported by PCRE are described below. 
Regular expressions are also described in the Perl documentation and in a number of other 
books, some of which have copious examples. Jeffrey Friedl’s “Mastering Regular Expres-
sions”, published by O’Reilly (ISBN 1-56592-257-3), covers them in great detail.  The descrip-
tion here is intended as reference documentation.

Regular expression syntax

A regular expression is a pattern that is matched against a subject string from left to right. Most 
characters stand for themselves in a pattern, and match the corresponding characters in the sub-
ject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular expressions 
comes from the ability to include alternatives and repetitions in the pattern.  These are encoded 
in the pattern by the use of meta-characters, which do not stand for themselves but instead are 
interpreted in some special way.

There are two different sets of meta-characters: those  that are  recognized anywhere in the pat-
tern except within square brackets, and those that are recognized in square  brackets. Outside 
square brackets, the meta-characters are as follows:

\ general escape character with several uses

^ assert start of  subject  (or  line,  in  multiline mode)

$ assert end of subject (or line, in multiline mode)
The ICI Programming Language   123



Chapter 7: Regular expressions

124   The ICI P
. match any character except newline (by default)

[ start character class definition

| start of alternative branch

( start subpattern

) end subpattern

? extends the meaning of (

also 0 or 1 quantifier

also quantifier minimizer

* 0 or more quantifier

+1 or more quantifier

{ start min/max quantifier

Part of a pattern that is in square brackets is called a “character class”.  In a character class the 
only meta-characters are:

  \ general escape character

  ^ negate the class, but only if the first character

  - indicates character range

  ] terminates the character class

The following sections describe  the  use  of  each  of  the meta-characters.

Backslash

The backslash character has several uses. Firstly, if it  is followed  by  a  non-alphameric charac-
ter, it takes away any special  meaning  that  character  may  have.  This  use  of backslash  as  an  
escape  character applies both inside and outside character classes.

For example, if you want to match a “*” character, you write “\*” in the pattern. This applies 
whether or not the following character would otherwise be interpreted as a meta-character, so it 
is always safe to precede a non-alphameric with “\” to specify that it stands for itself.  In partic-
ular, if you want to match a backslash, you write “\\”.

If a pattern is compiled with the PCRE_EXTENDED option, whitespace in the pattern (other 
than in a character class) and characters between a “#” outside a character class and the next 
newline character are ignored. An escaping backslash can be used to include a whitespace or 
“#” character as part of the pattern.

A second use of backslash provides a way of encoding non-printing characters in patterns in a 
visible manner. There is no restriction on the appearance of non-printing characters, apart from 
the binary zero that terminates a pattern, but when a pattern is being prepared by text editing, it 
is usually easier to use one of the following escape sequences than the binary character it repre-
sents:

\a alarm, that is, the BEL character (hex 07)

\cx “control-x”, where x is any character

\e escape (hex 1B)
rogramming Language



Backslash: 
\f formfeed (hex 0C)

\n newline (hex 0A)

\r carriage return (hex 0D)

\t tab (hex 09)

\xhh character with hex code hh

\ddd character with octal code ddd, or backreference

The precise effect of “\cx” is as follows: if “x” is a lower case  letter,  it  is converted to upper 
case. Then bit 6 of the character (hex 40) is inverted.  Thus “\cz” becomes  hex 1A, but “\c{“ 
becomes hex 3B, while “\c;” becomes hex 7B.

After “\x”, up to two hexadecimal digits are  read  (letters can be in upper or lower case).

After “\0” up to two further octal digits are read. In  both cases,  if  there are fewer than two dig-
its, just those that are present are used. Thus the sequence “\0\x\07”  specifies two binary zeros 
followed by a BEL character.  Make sure you supply two digits after the initial zero  if  the  
character that follows is itself an octal digit.

The handling of a backslash followed by a digit other than 0 is  complicated.   Outside  a charac-
ter class, PCRE reads it and any following digits as a decimal number. If the  number is  less  
than  10, or if there have been at least that many previous capturing left parentheses in the  
expression,  the entire  sequence is taken as a back reference. A description of how this works is 
given later, following  the  discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have not been that 
many capturing subpatterns, PCRE re-reads up to three octal digits following the backslash, and 
generates a single byte from the least significant 8 bits of the value. Any subsequent digits stand 
for themselves.  For example:

\040 is another way of writing a space

\40 is the same, provided there are fewer than 40 previous capturing subpatterns

\7 is always a back reference

\11 might be a back reference, or another way of writing a tab

\011 is always a tab

\0113 is a tab followed by the character “3”

\113 is the character with octal code 113 (since there can be no more than 99 back ref-
erences)

\377 is a byte consisting entirely of 1 bits

\81 is either a back reference, or a binary zero followed by the two characters “8” and 
“1”

Note that octal values of 100 or greater must not be introduced by a leading zero, because no 
more than three octal digits are ever read.

All the sequences that define a single  byte  value  can  be used both inside and outside character 
classes. In addition, inside a character class, the sequence “\b”  is  interpreted as  the  backspace  
character  (hex 08). Outside a character class it has a different meaning (see below).

The third use of backslash is for specifying generic character types:

\d any decimal digit
The ICI Programming Language   125



Chapter 7: Regular expressions

126   The ICI P
\D any character that is not a decimal digit

\s any whitespace character

\S any character that is not a whitespace character

\w any “word” character

\W any “non-word” character

Each pair of escape sequences partitions the complete set of characters  into  two  disjoint  sets.  
Any  given character matches one, and only one, of each pair.

A “word” character is any letter or digit or the underscore character, that is, any character which 
can be part of a Perl “word”. The definition of letters and digits is controlled by PCRE’s charac-
ter tables, and may vary if locale-specific matching is taking place (see “Locale support” 
above). For example, in the “fr” (French) locale, some character codes greater than 128 are used 
for accented letters, and these are matched by \w.

These character type sequences can appear  both  inside  and outside  character classes. They 
each match one character of the appropriate type. If the current matching  point  is  at the end of 
the subject string, all of them fail, since there is no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a condition 
that has to be met at a particular point in a match, without consuming any characters from the 
subject string. The use of subpatterns for more complicated assertions is described below.  The 
backslashed assertions are

\b word boundary

\B not a word boundary

\A start of subject (independent of multiline mode)

\Z end of subject or newline at  end  (independent  of multiline mode)

\z end of subject (independent of multiline mode)

These assertions may not appear in  character  classes  (but note that “\b” has a different mean-
ing, namely the backspace character, inside a character class).

A word boundary is a position in the  subject  string  where the current character and the previ-
ous character do not both match \w or \W (i.e. one matches \w and  the  other  matches \W),  or 
the start or end of the string if the first or last character matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (described below) 
in that they only ever match at the very start and end of the subject string, whatever options are 
set.  They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options. If the startoff-
set argument of pcre_exec() is non-zero, \A can never match. The difference between \Z and \z 
is that \Z matches before a newline that is the last character of the string as well as at the end of 
the string, whereas \z matches only at the end.

Circumflex and dollar

Outside a character class, in the default matching mode, the circumflex character is an assertion 
which is true only if the current matching point is at the start of the subject string.  If the startoff-
set argument of pcre_exec() is non-zero, circumflex can never match. Inside a character class, 
circumflex has an entirely different meaning (see below).
rogramming Language



Full stop (period,dot): 
Circumflex need not be the first character of the pattern if a number of alternatives are involved, 
but it should be the first thing in each alternative in which it appears if the pattern is ever to 
match that branch. If all possible alternatives start with a circumflex, that is, if the pattern is 
constrained to match only at the start of the subject, it is said to be an “anchored” pattern. (There 
are also other constructs that can cause a pattern to be anchored.)

A dollar character is an assertion which is true only if the current  matching point is at the end of 
the subject string, or immediately before a newline character that is  the  last character in the 
string (by default). Dollar need not be the last character of the pattern if a  number  of  alterna-
tives are  involved,  but it should be the last item in any branch in which it appears.  Dollar has 
no  special  meaning  in  a character class.

The meaning of dollar can be changed so that it matches only at   the   very   end   of   the   
string,  by  setting  the PCRE_DOLLAR_ENDONLY option at compile or matching time. This 
does not affect the \Z assertion.

The meanings of the circumflex and dollar characters are changed if the PCRE_MULTILINE 
option is set. When this is the case, they match immediately after and immediately before an 
internal “\n” character, respectively, in addition to matching at the start and end of the subject 
string.  For example, the pattern /^abc$/ matches the subject string “def\nabc” in multiline 
mode, but not otherwise.  Consequently, patterns that are anchored in single line mode because 
all branches start with “^” are not anchored in multiline mode, and a match for circumflex is 
possible when the startoffset argument of pcre_exec() is non-zero.  The 
PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE is set.

Note that the sequences \A, \Z, and \z can be used to  match the  start  and end of the subject in 
both modes, and if all branches of a pattern start with \A is it  always  anchored, whether 
PCRE_MULTILINE is set or not.

Full stop (period,dot)

Outside a character class, a dot in the pattern matches any one character in the subject, including 
a non-printing character, but not (by default) newline.  If the PCRE_DOTALL option is set, then 
dots match newlines as well. The handling of dot is entirely independent of the handling of cir-
cumflex and dollar, the only relationship being that they both involve newline characters.  Dot 
has no special meaning in a character class.

Square brackets

An opening square bracket introduces a character class, terminated by a closing square bracket.  
A closing square bracket on its own is not special.  If a closing square bracket is required as a 
member of the class, it should be the first data character in the class (after an initial circumflex, 
if present) or escaped with a backslash.

A character class matches a single character in the subject; the character must be in the set of 
characters defined by the class, unless the first character in the class is a circumflex, in which 
case the subject character must not be in the set defined by the class. If a circumflex is actually 
required as a member of the class, ensure it is not the first character, or escape it with a back-
slash.

For example, the character class [aeiou] matches any lower case vowel, while [^aeiou] matches 
any character that is not a lower case vowel. Note that a circumflex is just a convenient notation 
The ICI Programming Language   127



Chapter 7: Regular expressions

128   The ICI P
for specifying the characters which are in the class by enumerating those that are not. It is not an 
assertion: it still consumes a character from the subject string, and fails if the current pointer is 
at the end of the string.

When caseless matching is set, any letters in a class represent both their upper case and lower 
case versions, so for example, a caseless [aeiou] matches “A” as well as “a”, and a caseless 
[^aeiou] does not match “A”, whereas a caseful version would.

The newline character is never treated in any special way in character  classes,  whatever the set-
ting of the PCRE_DOTALL or PCRE_MULTILINE options is. A  class  such  as  [^a]  will 
always match a newline.

The minus (hyphen) character can be used to specify a range of characters in a character class.  
For example, [d-m] matches any letter between d and m, inclusive.  If a minus character is 
required in a class, it must be escaped with a backslash or appear in a position where it cannot 
be interpreted as indicating a range, typically as the first or last character in the class.

It is not possible to have the literal character “]” as the end character of a range.  A pattern such 
as [W-]46] is interpreted as a class of two characters (“W” and “-”) followed by a literal string 
“46]”, so it would match “W46]” or “-46]”. However, if the “]” is escaped with a backslash it is 
interpreted as the end of range, so [W-\]46] is interpreted as a single class containing a range 
followed by two separate characters. The octal or hexadecimal representation of “]” can also be 
used to end a range.

Ranges operate in ASCII collating sequence. They can also be used  for  characters  specified  
numerically,  for  example [\000-\037]. If a range that includes letters is  used  when caseless  
matching  is set, it matches the letters in either case. For example, [W-c] is equivalent  to  
[][\^_`wxyzabc], matched  caselessly,  and  if  character tables for the “fr” locale are in use, 
[\xc8-\xcb] matches accented E characters in both cases.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class, and add the 
characters that they match to the class. For example, [\dABCDEF] matches any hexadecimal 
digit.  A circumflex can conveniently be used with the upper case character types to specify a 
more restricted set of characters than the matching lower case type.  For example, the class 
[^\W_] matches any letter or digit, but not underscore.

All non-alphameric characters other than \,  -,  ^  (at  the start)  and  the  terminating ] are non-
special in character classes, but it does no harm if they are escaped.

Vertical bar

Vertical bar characters are  used  to  separate  alternative patterns. For example, the pattern

gilbert|sullivan

matches either “gilbert” or “sullivan”. Any number of alternatives may appear, and an empty 
alternative is permitted (matching the empty string).  The matching process tries each alterna-
tive in turn, from left to right, and the first one that succeeds is used. If the alternatives are 
within a subpattern (defined below), “succeeds” means matching the rest of the main pattern as 
well as the alternative in the subpattern.
rogramming Language



Internal option settings: 
Internal option settings

The settings of PCRE_CASELESS, PCRE_MULTILINE,  PCRE_DOTALL, and  
PCRE_EXTENDED can be changed from within the pattern by a sequence of Perl option letters 
enclosed between “(?”  and “)”. The option letters are

i for PCRE_CASELESS

m for PCRE_MULTILINE

s for PCRE_DOTALL

x for PCRE_EXTENDED

For example, (?im) sets caseless, multiline matching. It  is also possible to unset these options 
by preceding the letter with a hyphen, and a combined setting and unsetting such  as (?im-sx),  
which sets PCRE_CASELESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and 
PCRE_EXTENDED, is also  permitted. If  a  letter  appears both before and after the hyphen, 
the option is unset.

The scope of these option changes depends on  where  in  the pattern  the  setting  occurs. For 
settings that are outside any subpattern (defined below), the effect is the same as if the  options 
were set or unset at the start of matching. The following patterns all behave in exactly the same 
way:

(?i)abc   a(?i)bc   ab(?i)c   abc(?i)

which in turn is the same as compiling the pattern abc with PCRE_CASELESS set.  In other 
words, such “top level” settings apply to the whole pattern (unless there are other changes inside 
subpatterns). If there is more than one setting of the same option at top level, the rightmost set-
ting is used.

If an option change occurs inside a subpattern,  the  effect is  different.  This is a change of 
behaviour in Perl 5.005. An option change inside a subpattern affects only that  part of the sub-
pattern that follows it, so

(a(?i)b)c

matches  abc  and  aBc  and  no  other   strings   (assuming PCRE_CASELESS  is  not used).  By 
this means, options can be made to have different settings in different  parts  of  the pattern.  
Any  changes  made  in one alternative do carry on into subsequent branches within  the  same  
subpattern.  For example,

(a(?i)b|c)

matches “ab”, “aB”, “c”, and “C”, even though when  matching “C” the first branch is aban-
doned before the option setting. This is because the effects of  option  settings  happen  at com-
pile  time. There would be some very weird behaviour otherwise.

The PCRE-specific options PCRE_UNGREEDY and  PCRE_EXTRA  can be changed in the 
same way as the Perl-compatible options by using the characters U and X  respectively.  The  
(?X)  flag setting  is  special in that it must always occur earlier in the pattern than any of the 
additional features it turns on, even when it is at top level. It is best put at the start.
The ICI Programming Language   129



Chapter 7: Regular expressions

130   The ICI P
Subpatterns

Subpatterns are delimited by parentheses (round brackets), which can be nested.  Marking part 
of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For example, the pattern

cat(aract|erpillar|)

matches one of the words “cat”, “cataract”, or “caterpillar”.  Without the parentheses, it 
would match “cataract”, “erpillar” or the empty string.

2. It sets up the subpattern as a capturing subpattern (as defined above).  When the whole pat-
tern matches, that portion of the subject string that matched the subpattern is passed back to 
the caller via the ovector argument of pcre_exec(). Opening parentheses are counted from 
left to right (starting from 1) to obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matched against the pattern

the ((red|white) (king|queen))

the captured substrings are “red king”, “red”,  and  “king”, and are numbered 1, 2, and 3.

The fact that plain parentheses fulfil two functions is not always helpful.  There are often times 
when a grouping subpattern is required without a capturing requirement.  If an opening paren-
thesis is followed by “?:”, the subpattern does not do any capturing, and is not counted when 
computing the number of any subsequent capturing subpatterns. For example, if the string “the 
white queen” is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are “white queen” and “queen”, and are numbered 1 and 2. The maxi-
mum number of captured substrings is 99, and the maximum number of all subpatterns, both 
capturing and non-capturing, is 200.

As a  convenient  shorthand,  if  any  option  settings  are required  at  the  start  of a non-captur-
ing subpattern, the option letters may appear between the “?” and the “:”.  Thus the two patterns

(?i:saturday|sunday)

(?:(?i)saturday|sunday)

match exactly the same set of strings.  Because  alternative branches  are  tried from left to right, 
and options are not reset until the end of the subpattern is reached, an  option setting  in  one  
branch does affect subsequent branches, so the above patterns match “SUNDAY” as well as 
“Saturday”.

Repetition

Repetition is specified by quantifiers, which can follow any of the following items:

• a single character, possibly escaped

• the . metacharacter
rogramming Language



Repetition: 
• a character class

• a back reference (see next section)

• a parenthesized subpattern (unless it is  an  assertion - see below)

The general repetition quantifier specifies  a  minimum  and maximum  number  of  permitted  
matches,  by  giving the two numbers in curly brackets (braces), separated  by  a  comma. The  
numbers  must be less than 65536, and the first must be less than or equal to the second. For 
example:

z{2,4}

matches “zz”, “zzz”, or “zzzz”. A closing brace on  its  own is not a special character. If the sec-
ond number is omitted, but the comma is present, there is no upper  limit;  if  the second number 
and the comma are both omitted, the quantifier specifies an exact number of required matches. 
Thus

[aeiou]{3,}

matches at least 3 successive vowels,  but  may  match  many more, while

\d{8}

matches exactly 8 digits.  An opening curly bracket that appears in a position where a quantifier 
is not allowed, or one that does not match the syntax of a quantifier, is taken as a literal charac-
ter. For example, {,6} is not a quantifier, but a literal string of four characters.

The quantifier {0} is permitted, causing the  expression  to behave  as  if the previous item and 
the quantifier were not present.

For convenience (and  historical  compatibility)  the  three most common quantifiers have sin-
gle-character abbreviations:

* is equivalent to {0,}

+ is equivalent to {1,}

? is equivalent to {0,1}

It is possible to construct infinite loops  by  following  a subpattern  that  can  match no charac-
ters with a quantifier that has no upper limit, for example:

(a?)*

Earlier versions of Perl and PCRE used to give an  error  at compile  time  for such patterns. 
However, because there are cases where this  can  be  useful,  such  patterns  are  now accepted,  
but  if  any repetition of the subpattern does in fact match no characters, the loop is forcibly bro-
ken.

By default, the quantifiers are “greedy”, that is, they match as much as possible (up to the max-
imum number of permitted times), without causing the rest of the pattern to fail. The classic 
example of where this gives problems is in trying to match comments in C programs. These 
appear between the sequences /* and */ and within the sequence, individual * and / characters 
may appear. An attempt to match C comments by applying the pattern

/\*.*\*/

to the string

/* first command */  not comment  /* second comment */
The ICI Programming Language   131



Chapter 7: Regular expressions

132   The ICI P
fails, because it matches  the  entire  string  due  to  the greediness of the .*  item.

However, if a quantifier is followed  by  a  question  mark, then it ceases to be greedy, and 
instead matches the minimum number of times possible, so the pattern

/\*.*?\*/

does the right thing with the C comments. The meaning of the various quantifiers is not other-
wise changed, just the preferred number of matches.  Do not confuse this use of question mark 
with its use as a quantifier in its own right.  Because it has two uses, it can sometimes appear 
doubled, as in

\d??\d

which matches one digit by preference, but can match two  if that is the only way the rest of the 
pattern matches.

If the PCRE_UNGREEDY option is set (an option which  is  not available  in  Perl)  then the 
quantifiers are not greedy by default, but individual ones can be made greedy by following them  
with  a  question mark. In other words, it inverts the default behaviour.

When a parenthesized subpattern is quantified with a minimum repeat count that is greater than 
1 or with a limited maximum, more store is required for the compiled pattern, in proportion to 
the size of the minimum or maximum.

If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equivalent to Perl’s /s) is set, 
thus allowing the .  to match newlines, then the pattern is implicitly anchored, because whatever 
follows will be tried against every character position in the subject string, so there is no point in 
retrying the overall match at any position after the first.  PCRE treats such a pattern as though it 
were preceded by \A.  In cases where it is known that the subject string contains no newlines, it 
is worth setting PCRE_DOTALL when the pattern begins with .* in order to obtain this optimi-
zation, or alternatively using ^ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value  captured is  the  substring  that  matched  the  
final iteration. For example, after

(tweedle[dume]{3}\s*)+

has matched “tweedledum tweedledee” the value of the captured substring is “tweedledee”.  
However, if there are nested capturing subpatterns, the corresponding captured values may have 
been set in previous iterations. For example, after

/(a|(b))+/

matches “aba” the value of the second captured substring  is “b”.

Back references

Outside a character class, a backslash followed by  a  digit greater  than  0  (and  possibly  fur-
ther  digits) is a back reference to a capturing subpattern  earlier  (i.e.  to  its left)  in  the  pattern,  
provided there have been that many previous capturing left parentheses.

However, if the decimal number following the backslash is less than 10, it is always taken as a 
back reference, and causes an error only if there are not that many capturing left parentheses in 
the entire pattern. In other words, the parentheses that are referenced need not be to the left of 
rogramming Language



Assertions: 
the reference for numbers less than 10. See the section entitled “Backslash” above for further 
details of the handling of digits following a backslash.

A back reference matches whatever actually matched the capturing subpattern in the current 
subject string, rather than anything matching the subpattern itself. So the pattern

(sens|respons)e and \1ibility

matches “sense and sensibility” and “response and responsibility”, but not “sense and responsi-
bility”. If caseful matching is in force at the time of the back reference, then the case of letters is 
relevant. For example,

((?i)rah)\s+\1

matches “rah rah” and “RAH RAH”, but  not  “RAH  rah”,  even though  the  original  capturing 
subpattern is matched caselessly.

There may be more than one back reference to the same subpattern.  If a subpattern has not actu-
ally been used in a particular match, then any back references to it always fail. For example, the 
pattern

(a|(bc))\2

always fails if it starts to match  “a”  rather  than  “bc”. Because  there  may  be up to 99 back 
references, all digits following the backslash are taken as  part  of  a  potential back reference 
number. If the pattern continues with a digit character, then some delimiter must be used to ter-
minate the back reference. If the PCRE_EXTENDED option is set, this can be whitespace.  Oth-
erwise an empty comment can be used.

A back reference that occurs inside the parentheses to which it  refers  fails when the subpattern 
is first used, so, for example, (a\1) never matches.  However, such references  can be useful 
inside repeated subpatterns. For example, the pattern

(a|b\1)+

matches any number of “a”s and also “aba”, “ababaa” etc.  At each iteration of the subpattern, 
the back reference matches the character string corresponding to the previous iteration.  In order 
for this to work, the pattern must be such that the first iteration does not need to match the back 
reference.  This can be done using alternation, as in the example above, or by a quantifier with a 
minimum of zero.

Assertions

An assertion is a test on the characters following or preceding the current matching point that 
does not actually consume any characters. The simple assertions coded as \b, \B, \A, \Z, \z, ^ 
and $ are described above. More complicated assertions are coded as subpatterns.  There are 
two kinds: those that look ahead of the current position in the subject string, and those that look 
behind it.

An assertion subpattern is matched in the normal way, except that  it  does not cause the current 
matching position to be changed. Lookahead assertions start with  (?=  for  positive assertions 
and (?! for negative assertions. For example,

\w+(?=;)
The ICI Programming Language   133



Chapter 7: Regular expressions

134   The ICI P
matches a word followed by a semicolon, but does not include the semicolon in the match, and

foo(?!bar)

matches any occurrence of “foo”  that  is  not  followed  by “bar”. Note that the apparently sim-
ilar pattern

(?!foo)bar

does not find an occurrence of “bar”  that  is  preceded  by something other than “foo”; it finds 
any occurrence of “bar” whatsoever, because the assertion  (?!foo)  is  always  true when  the  
next  three  characters  are  “bar”. A lookbehind assertion is needed to achieve this effect.

Look-behind assertions start with (?<= for positive assertions and (?<! for negative assertions. 
For example,

(?<!foo)bar

does find an occurrence of “bar” that  is  not  preceded  by “foo”. The contents of a lookbehind 
assertion are restricted such that all the strings  it  matches  must  have  a  fixed length.  How-
ever, if there are several alternatives, they do not all have to have the same fixed length. Thus

(?<=bullock|donkey)

is permitted, but

(?<!dogs?|cats?)

causes an error at compile time. Branches that match different length strings are permitted only 
at the top level of a lookbehind assertion. This is an extension compared with Perl 5.005, which 
requires all branches to match the same length of string. An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two different lengths, but it is 
acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

The implementation of lookbehind assertions is, for each alternative, to temporarily move the 
current position back by the fixed width and then try to match.  If there are insufficient charac-
ters before the current position, the match is deemed to fail.  Lookbehinds in conjunction with 
once-only subpatterns can be particularly useful for matching at the ends of strings; an example 
is given at the end of the section on once-only subpatterns.

Several assertions (of any sort) may  occur  in  succession. For example,

(?<=\d{3})(?<!999)foo

matches “foo” preceded by three digits that are  not  “999”. Notice  that each of the assertions is 
applied independently at the same point in the subject string. First  there  is  a check  that  the  
previous  three characters are all digits, then there is a check that the same three characters are 
not “999”.   This  pattern  does not match “foo” preceded by six characters, the first of which are 
digits and the last three of  which  are  not  “999”.  For  example,  it doesn’t match “123abcfoo”. 
A pattern to do that is

(?<=\d{3}...)(?<!999)foo
rogramming Language



Once-only subpatterns: 
This time the first assertion looks  at  the  preceding  six characters,  checking  that  the first 
three are digits, and then the second assertion checks that  the  preceding  three characters are 
not “999”.

Assertions can be nested in any combination. For example,

(?<=(?<!foo)bar)baz

matches an occurrence of “baz” that  is  preceded  by  “bar” which in turn is not preceded by 
“foo”, while

(?<=\d{3}(?!999)...)foo

is another pattern which matches  “foo”  preceded  by  three digits and any three characters that 
are not “999”.

Assertion subpatterns are not capturing subpatterns, and may not  be  repeated,  because  it 
makes no sense to assert the same thing several times. If any kind of assertion  contains captur-
ing  subpatterns  within it, these are counted for the purposes of numbering the capturing sub-
patterns in the whole pattern.   However,  substring capturing is carried out only for positive 
assertions, because it does not make sense  for negative assertions.

Assertions count towards the maximum  of  200  parenthesized subpatterns.

Once-only subpatterns

With both maximizing and minimizing repetition, failure of what follows normally causes the 
repeated item to be re-evaluated to see if a different number of repeats allows the rest of the pat-
tern to match. Sometimes it is useful to prevent this, either to change the nature of the match, or 
to cause it fail earlier than it otherwise might, when the author of the pattern knows there is no 
point in carrying on.

Consider, for example, the pattern \d+foo  when  applied  to the subject line

123456bar

After matching all 6 digits and then failing to match “foo”, the normal action of the matcher is 
to try again with only 5 digits matching the \d+ item, and then with 4,  and  so  on, before ulti-
mately failing. Once-only subpatterns provide the means for specifying that once a portion of 
the pattern  has matched,  it  is  not to be re-evaluated in this way, so the matcher would give up 
immediately on failing to match  “foo” the  first  time.  The  notation  is another kind of special 
parenthesis, starting with (?> as in this example:

(?>\d+)bar

This kind of parenthesis “locks up” the part of the pattern it contains once it has matched, and a 
failure further into the pattern is prevented from backtracking into it.  Backtracking past it to 
previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of characters that 
an identical standalone pattern would match, if anchored at the current point in the subject 
string.

Once-only subpatterns are not capturing subpatterns.  Simple cases such as the above example 
can be thought of as a maximizing repeat that must swallow everything it can.  So, while both 
The ICI Programming Language   135



Chapter 7: Regular expressions

136   The ICI P
\d+ and \d+? are prepared to adjust the number of digits they match in order to make the rest of 
the pattern match, (?>\d+) can only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it can be nested.

Once-only subpatterns can be used in conjunction with look-behind assertions to specify effi-
cient matching at the end of the subject string. Consider a simple pattern such as

abcd$

when applied to a long  string  which  does  not  match  it. Because matching proceeds from left 
to right, PCRE will look for each “a” in the subject and then  see  if  what  follows matches the 
rest of the pattern. If the pattern is specified as

^.*abcd$

then the initial .* matches the entire string at first, but when this fails, it backtracks to match all 
but the last character, then all but the last two characters, and so on.  Once again the search for 
“a” covers the entire string, from right to left, so we are no better off. However, if the pattern is 
written as

^(?>.*)(?<=abcd)

then there can be no backtracking for the .*  item;  it  can match  only  the  entire  string.  The 
subsequent lookbehind assertion does a single test on the last four characters. If it  fails,  the  
match  fails immediately. For long strings, this approach makes a significant difference to the 
processing time.

Conditional subpatterns

It is possible to cause the matching process to obey a subpattern conditionally or to choose 
between two alternative subpatterns, depending on the result of an assertion, or whether a previ-
ous capturing subpattern matched or not. The two possible forms of conditional subpattern are

(?(condition)yes-pattern)

(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if present) is used. 
If there are more than two alternatives in the subpattern, a compile-time error occurs.

There are two kinds of condition. If the text between the parentheses consists of a sequence of 
digits, then the condition is satisfied if the capturing subpattern of that number has previously 
matched. Consider the following pattern, which contains non-significant white space to make it 
more readable (assume the PCRE_EXTENDED option) and to divide it into three parts for ease 
of discussion:

( \( )?    [^()]+    (?(1) \) )

The first part matches an optional opening parenthesis,  and if  that character is present, sets it as 
the first captured substring. The second part matches one  or  more  characters that  are  not  
parentheses. The third part is a conditional subpattern that tests whether the first set  of  paren-
theses matched  or  not.  If  they did, that is, if subject started with an opening parenthesis, the 
condition is true,  and  so the  yes-pattern  is  executed  and a closing parenthesis is required. 
rogramming Language



Comments: 
Otherwise, since no-pattern is  not  present,  the subpattern  matches  nothing.  In  other words, 
this pattern matches a sequence of non-parentheses,  optionally  enclosed in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a positive or 
negative lookahead or lookbehind assertion. Consider this pattern, again containing non-signifi-
cant white space, and with the two alternatives on the second line:

(?(?=[^a-z]*[a-z])

\d{2}[a-z]{3}-\d{2}  |  \d{2}-\d{2}-\d{2} )

The condition is a positive lookahead assertion that matches an optional sequence of non-letters 
followed by a letter. In other words, it tests for  the  presence  of  at  least  one letter  in the sub-
ject. If a letter is found, the subject is matched against  the  first  alternative;  otherwise  it  is 
matched  against the second. This pattern matches strings in one of the two forms dd-aaa-dd or 
dd-dd-dd,  where  aaa  are letters and dd are digits.

Comments

The sequence (?# marks the start of a comment which continues up to the next closing parenthe-
sis. Nested parentheses are not permitted. The characters that make up a comment play no part 
in the pattern matching at all.

If the PCRE_EXTENDED option is set, an unescaped # character outside a character class 
introduces a comment that continues up to the next newline character in the pattern.

Performance

Certain items that may appear in patterns are more efficient than  others.  It is more efficient to 
use a character class like [aeiou] than a set of alternatives such as (a|e|i|o|u). In  general,  the  
simplest  construction  that provides the required behaviour is usually the  most  efficient.  Jef-
frey Friedl’s  book contains a lot of discussion about optimizing regular expressions for efficient 
performance.

When a pattern begins with .* and the PCRE_DOTALL option  is set,  the  pattern  is implicitly 
anchored by PCRE, since it can match only at the start of a subject string. However, if 
PCRE_DOTALL  is not set, PCRE cannot make this optimization, because the . metacharacter 
does not then match  a  newline, and if the subject string contains newlines, the pattern may 
match from the character immediately following one  of  them instead of from the very start. For 
example, the pattern

(.*) second

matches the subject “first\nand second” (where \n stands for a newline character) with the first 
captured substring being “and”. In order to do this, PCRE  has  to  retry  the  match starting after 
every newline in the subject.

If you are using such a pattern with subject strings that do not  contain  newlines,  the best per-
formance is obtained by setting PCRE_DOTALL, or starting the  pattern  with  ^.*  to indicate  
explicit anchoring. That saves PCRE from having to scan along the subject looking for a 
newline to restart at.
The ICI Programming Language   137



Chapter 7: Regular expressions

138   The ICI P
Beware of patterns that contain nested  indefinite  repeats. These  can  take a long time to run 
when applied to a string that does not match. Consider the pattern fragment

\(a+)*

This can match “aaaa” in 33 different ways, and this number increases very rapidly as the string 
gets longer. (The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than 
0, the + repeats can match different numbers of times.) When the remainder of the pattern is 
such that the entire match is going to fail, PCRE has in principle to try every possible variation, 
and this can take an extremely long time.

An optimization catches some of the more simple  cases  such as

(a+)*b

where a literal character follows. Before embarking  on  the standard matching procedure, 
PCRE checks that there is a “b” later in the subject string, and if there is not,  it  fails the  match  
immediately. However, when there is no following literal this optimization cannot be used. You  
can  see  the difference by comparing the behaviour of

(a+)*\d

with the pattern above. The former gives  a  failure  almost instantly  when  applied  to a whole 
line of “a” characters, whereas the latter takes an appreciable  time  with  strings longer than 
about 20 characters.

Author

Philip Hazel <ph10@cam.ac.uk>
University Computing Service,
New Museums Site,
Cambridge CB2 3QG, England.
Phone: +44 1223 334714
Last updated: 29 July 1999
Copyright (c) 1997-1999 University of Cambridge.
rogramming Language



CHAPTER 8 Interfacing with C and 
C++
There are several levels at which the ICI interpreter can interface with C and C++ code. This 
chapter gives a collection of universal rules, then addresses common tasks. Each task can be 
considered in isolation to alleviate the reader from details beyond their current needs. Finally, 
both a summary and detailed description of ICI’s C API is given.

The reader is expected to be a C/C++ programmer. 

Universal rules and conventions

Include files and libraries

On most systems ICI is built as a dynamically loading library. It can be linked with statically if 
required. However for this description I will assume the normal case of dynamic loading.

To compile and run with ICI you will need, as a minimum:

ici.h The ICI include file. Include this as necessary. This file is built spe-
cifically for each platform from ICI’s internal include files.

icistr-setup.h A utility include file to assist in defining ICI strings. See Referring 
to ICI strings from C below.

ici4.{a,lib} The library file containg the linkage to the dynamically loading li-
brary (or the static library if not using dynamic loading). (Suffixes 
vary with OS.) Link against this when building your program.

ici4.{so,dll} The dynamic loading library. (Suffixes vary with OS.) Should be 
somewhere where it will be found at run time.

ici4core.ici, ici4core{1,2,3}.ici
Core language features written in ICI. These need to be somewhere 
ICI will find them at run time.

If you are writing modules that run from ICI, you will also want an ICI top level command:

ici, ici.exe, or wici.exe
The ICI Programming Language   139



Chapter 8: Interfacing with C and C++

140   The ICI P
ICI command level executable. These just do argument parsing and 
invocation of the interpreter on supplied file arguments.

In broad terms ICI is either used as an adjunct to another application, or as the main program 
with specific custom modules providing special functionality. Most of what is described in this 
section is common to both.

The nature of ICI objects

ICI objects are structures that have a common 32 bit header (since version 4; in previous ver-
sions it was a 64 bit header). Pointers to objects are declared as either object_t *, which is the 
type of the header, or a pointer to the particular structure (for example, string_t *), depending on 
the circumstances of each piece of code, and depending whether the real type is known at that 
point. The macro objof() is often used to demote to a generic object pointer -- it is just a cast to 
object_t *. Most types define a similar macro to promote to their specific type, as well as a 
macro such as isstring() or isstruct() to test if a particular pointer points to an object of the given 
type. However, there is no particular requirement to use these macros. They are just casts and 
simple tests.

Garbage collection, ici_incref() and ici_decref()

ICI objects are garbage collected. Garbage collection can occur on any attempt to allocate mem-
ory using ICI’s allocation routines. This is fairly often. Garbage collection has the effect of free-
ing any objects that the garbage collector thinks are not being usefully referenced. Failing to 
obey the rules associated with garbage collection can be disastrous and hard to debug. But the 
rules are fairly simple.

The ICI object header includes a small reference count field. This is a count of additional refer-
ences to the object that would otherwise be invisible to the garbage collector. For example, if 
your C code keeps a global static pointer to an object, the garbage collector would not be aware 
of that reference, and might free the object leaving you with an invalid pointer. So you must 
account for the reference by incrementing the reference count. However, references to the object 
from other ICI objects are visible to the garbage collector, so you do not need to account for 
these.

The macros ici_incref() and ici_decref() are used to increment and decrement reference counts. 
Note that the range of reference counts is quite small. Their frequency of use is expected to be in 
relationship to the number of actual instances of C variables that simultaneously refer to the 
same object.

In practice, many calls to ici_incref() and ici_decref() can be avoided because objects are known 
to be referenced by other things. For example, when coding a function called from ICI, the 
objects that are passed as arguments are known to be referenced from the ICI operand stack, 
which is referenced by the current execution context, which has a reference count as long as it is 
running.

The error return convention

When coding functions that are called by the ICI interpreter, a simple mechanism is used for all 
error returns. Each function will have some return value to indicate an error (commonly 0 is suc-
cess, 1 is an error, or for functions that return a pointer, NULL will probably be the error indica-
tor). In any case, the return value will only imply a boolean indicating that an error has 
occurred. The nature of the error must have been set before return by setting the global character 
pointer ici_error to a short human readable string revealing what happened.
rogramming Language



Universal rules and conventions: The error return convention
Note, however, that only the originator of an error condition should set ici_error. If you call 
another function that uses the error return convention, and it returns a failure, you must simply 
clean up your immediate situation (such as any required ici_decref() calls) and return your fail-
ure indication in turn. For example, the ici_alloc() function obeys the convention. Thus we 
might see the fragment:

if ((p = ici_alloc(sizeof(mytype)) == NULL)
return 1;

Now, in setting and returning an error, your code will be losing control and must be concerned 
about the memory that you set the ici_error variable to point to. Simple static strings are, of 
course, of no concern. For example:

if (that_failed)
{
    ici_error = "failed to do that";
    return 1;
}

If you need to format a string (say with sprintf) you can avoid the necessity of a permanently 
allocated buffer by using a generic growable buffer provided by ICI. The buffer is pointed to by 
ici_buf and always has room for at least 120 characters. Thus me might see:

if (v > 256)
{
    sprintf(ici_buf, "%d set but 256 is limit", v);
    ici_error = ici_buf;
}

If the size of the generated message is not so limited, the buffer can be checked (or forced) to 
have a larger size with ici_chkbuf(). For example:

if (file == NULL)
{
    if (ici_chkbuf(40 + strlen(fname))
        return 1;
    sprintf(ici_buf, "could not open %s", fname);
    ici_error = ici_buf;
    return 1;
}

Notice ici_chkbuf() could fail, and if so, we return immediately (the error will inevitably be “ran 
out of memory”). The 40 above is some number clearly larger than the length of the format 
string.

One final point, which is not specifically to do with error returns, but commonly associated with 
them, is how to get a short human readable description of an ICI object suitable for diagnostics. 
The function ici_objname() can be used to get a small (guaranteed to fit within a 30 character 
buffer) diagnostic description of an object. For example:

{
    char        n1[30];
    char        n2[30];

    sprintf(ici_buf, "attempt to read %s keyed by %s",
        ici_objname(n1, o),
The ICI Programming Language   141



Chapter 8: Interfacing with C and C++

142   The ICI P
        ici_objname(n2, k));
    ici_error = ici_buf;
    return 1;
}

ICI’s allocation functions

In general ICI uses the native malloc() and free() functions for its memory allocation. However, 
because ICI deals in many small objects, and because it needs to track memory usage to control 
when to run its mark/sweep garbage collector, ICI has a few allocation functions that you may 
wish to be aware of.

There are three pairs of matched alloc/free functions. Memory allocated with one must be freed 
by the matching one. Common to all three is the property that they (try) to track the amount of 
memory allocated so that they can trigger garbage collections, and they may run the garbage 
collector before they return.

Two of them (ici_talloc / ici_tfree and ici_nalloc / ici_nfree) are designed to handle small 
objects efficiently (small meaning up to 64 bytes). They allocate small objects densely (no 
boundary words) out of larger raw allocations from malloc() and maintain fast free lists so that 
most allocations and frees can avoid function calls completely. However, in order to avoid 
boundary words they both require that the caller tells the free routines how much memory was 
asked for on the initial alloc. This is fairly easy 95% of the time, but where it can’t be managed, 
you must use the simpler ici_alloc / ici_free pair. These are completely malloc() equivalent, 
except they handle the garbage collection and have the usual ICI error return convention.

The tracking of memory usage is only relevant to memory the garbage collector has some con-
trol over, meaning memory associated with ICI objects (that would get freed if the object was 
collected). So, technically, these routines should be used for memory associated with objects, 
and not other allocations. But in practice the division is not strict. 

Common tasks

Writing a simple function that can be called from ICI

This is sometimes done as part of a dynamically loaded extension module, and at other times 
done in a program that uses ICI as a sub-module. By simple function we mean a function that 
takes and returns values that are directly equivalent to simple C data types.

Transfer from the ICI execution engine to an “intrinsic” function (as they are called) is designed 
to have extremely low overhead. Thus, on arrival at a function, the arguments are still ICI 
objects on the ICI operand stack. If you are dealing with simple argument and return types, you 
can then use the ici_typecheck() function to marshal your arguments into C variables, and a set 
of similar functions to return simple values.

Intrinsic functions have a return type of int, use C calling convention, follow the usual error 
convention (1 is failure) and in simple cases declare no arguments. For example, a function that 
expects to be called with an int and a float from ICI, print them, and return the int plus one, 
would read:

static int
f_myfunc()
{

rogramming Language



Common tasks: Writing a simple function that can be called from ICI
    long i;
    double f;

    if (ici_typecheck("if", &i, &f))
        return 1;
    printf("Got %ld, %lf.\n", i, f);
    return int_ret(i + 1);
}

Note that ICI ints are C longs, and ICI floats are C doubles.

The ici_typecheck() function allows marshalling of:

• ICI ints to C longs, floats to doubles, and strings to char pointers;

• generic “numeric” (int or float) values to a C double;

• many other ICI types (structs, arrays, generic objects, etc) to generic object pointers (see 
other tasks on how to deal with them after that);

• ICI pointers to any of the above.

It also supports skipping argument and variable argument lists, but these features are typically 
used in functions that use a mixture of ici_typecheck() calls and explicit argument processing. 
See ici_typecheck() in cfunc.c.

To return simple data types, the functions ici_int_ret(), ici_float_ret(),  ici_str_ret(), and 
ici_null_ret() can be used. These convert the value to the approriate ICI data object, and replace 
the arguments on the operand stack with that object, then return 0.

Take care never to simply “return 0;” from an intrinsic function. Although returning 1 on error 
is correct, and the non-error return value is zero, before returning the arguments must be 
replaced with the return value on the ICI operand stack. The functions above, and various oth-
ers, do this. They should always be used on successful return from any intrinsic function.

It is possible to write a function that is passed pointers to values from ICI, and have those values 
updated by the intrinsic function, by using a combination of the ici_typecheck() function and the 
ici_retcheck() function. For example:

static int
f_myotherfunc()
{
    long i;
    double f;

    if (ici_typecheck("fI", &f, &i))
        return 1;
    printf("Got %ld, %lf.\n", i, f);
    if (ici_retcheck("-i", i + 1))
        return 1;
    return float_ret(f * 3.0);
}

This function takes a float, and a pointer to an int. It returns three times the passed float value, 
and increments the pointed-to int. Notice the capitalisation in the ici_typecheck() call to indicate 
a pointer to an int is required. Also note the hyphen in the ici_retcheck() call to indicate it should 
ignore the first argument.
The ICI Programming Language   143



Chapter 8: Interfacing with C and C++

144   The ICI P
Calling an ICI function or method from C

To call an ICI function from C you can use any of the functions:

ici_call() To call by name.

ici_method() To invoke a named method of an instance. 

ici_func() To call a callable object (e.g.,  function or method).

ici_callv() To call by name with a va_list variable argument list.

ici_funcv() To call a callable object with a va_list variable argument list, or to 
invoke a named method of an instance with a va_list variable argu-
ment list.

ici_funcv() is the root universal method, but ici_call() and ici_method() are the most common 
practical methods. Each accept actual parameters described by a short character string that 
instructs how to translate each C argument into an ICI type. The string may also specify that the 
return value is required. See the ici_call() specification for details.

For example, to call the ICI nels() function on some object, we could say:

long    result;

if (ici_call(ICIS(nels), "i=o", &result, obj))
    /* Failure. ici_error is message.*/;
/* OK, result is number of elements. */

The "i=" part of the string is optional and only used if the return value is needed. For example, 
to call the ICI include function, and ignore the return value:

if (ici_call(ICIS(include), "s", filename))
    /* Failure. */;
/* OK */

Making new ICI primitive types

In most circumstances you can use a ici_handle_t to act as a new ICI primitive type. See 
ici_handle_new for details. However, if you want to support indexing or calling of the type 
where your C code handles these operations, you will want to define a new type.

To do this you must:

• Define the C struct which is your type. You must use either ici_obj_t or ici_objwsup_t as the 
first element of this struct (by convention, called o_head). After that, it’s all yours.

• Define (typically statically) an ici_type_t and initiliase it with pointers to the functions that 
characterise your type. The functions that you must supply in the ici_type_t initialisation are 
detailed under ici_type_t.

• Register, before first use, register your type with ICI and obtain a small integer type code in 
return (see ici_register_type).

• You will probably also define a C function to make a new object of this type. Often you will 
also define a function that is called from ICI to make one too.

One thing you must consider is the atomic form of the object. Remeber that any object can be 
reduced to a unique read-only atomic form with respect to its current value. The basic question 
is: what aspect of this object is significant in an equality test (i.e. ==) against another object of 
the same type? You can chose one of these answers:
rogramming Language



Common tasks: Making new ICI primitive types
Nothing. If I allocate two of these objects, they can never compare as equal.
We say the objects are “intrinsically unique”. You would use the 
standard functions ici_cmp_unique, ici_copy_simple, and 
ici_hash_unique for the cmp, copy, and hash implementations of 
this type.

These field(s) are significant, and they can change over the life of the object.
You should implement your own cmp, copy and hash functions. 
You must be careful to have your hash function only use aspects of 
the object the cmp function considers significant. Also, when any of 
these aspects might be modified, you must check the O_ATOM flag 
in the object header and reject the attempt if it is set.

These field(s) are significant, but they can’t change over the life of the object.
You may chose to make the object intrinsically atomic. In this case 
your object creation must only return the atomic form. You can use 
ici_copy_simple for your copy function, but you must still write cmp 
and hash functions.

Two functions you always have to supply are the mark and free functions. (Well, unless your 
objects are always statically allocated and not registerd with the garbage collector. In that case 
you wouldn’t need the free function. But this is rare.)

There are two basic forms a “new” function for an object might take. Our first example is a 
good template for an object that is not intrinsically atomic. We assume the type has been regis-
tered and the type code is in my_ici_tcode.

my_ici_type *
my_ici_type_new(...stuff...)
{
    my_ici_type         *m;

    if ((m = ici_talloc(my_ici_type)) == NULL)
        return NULL;
    ICI_OBJ_SET_TFNZ(m, my_ici_tcode, 0, 1, 0);
    m->... = ...stuff...
    ici_rego(m);
    return m;
}

Our second example is a good template for an intrinsically atomic object. The can be done by 
simple adding the line:

    m = (my_ici_type *)ici_atom(objof(m), 1);

just before the return above. This is fine if you don’t expect to be often called on to allocate 
objects that exist as atoms. But if you want to avoid an extra object allocation and collection in 
the case were an object of equal value already exsits, you can use the following template that 
first probes the atom pool using a prototype form of the object.

my_ici_type *
my_ici_type_new(...stuff...)
{
    my_ici_type     *m;
    my_ici_type     proto;
The ICI Programming Language   145



Chapter 8: Interfacing with C and C++

146   The ICI P
    ICI_OBJ_SET_TFNZ(&proto, my_ici_tcode, 0, 1, 0);
    proto... = ...stuff...
    m = (my_ici_type *)ici_atom_probe(objof(&proto));
    if (m != NULL)
    {
        ici_incref(m);
        return m;
    }
    if ((m = ici_talloc(my_ici_type)) == NULL)
        return NULL;
    *m = proto;
    ici_rego(m);
    m = (my_ici_type *)ici_atom(objof(m), 1);
    return m;
}

Mark functions often look like this:

unsigned long
my_type_mark(ici_obj_t *o)
{
    o->o_flags |= O_MARK;
    return sizeof(my_ici_type);
}

But if the type has references to other ICI objects, it might look like this:

unsigned long
my_type_mark(ici_obj_t *o)
{
    o->o_flags |= O_MARK;
    return sizeof(my_ici_type)
        + ici_mark(((my_ici_type *)o)->an_obj)
        + ici_mark(((my_ici_type *)o)->another);
}

Using ICI handle types to interface to C/C++ objects

ICI handle types are generic objects that provide most of machinery one needs to expose a C or 
C++ object to ICI. They are provided to avoid the coding overheads of defining a new primitve 
ICI types to reflect each data type to be exposed. Each ICI handle object is associated with a 
pointer, being the pointer to your primitive object, and a name, being the type name the object 
will appear to have at the ICI script level.

In addition a handle may optionally have an interterface function to implement property access 
and method invocation. Also, a handle may optionally support a super pointer so it can be a first 
class ICI instance or class that can be sub-classed.

In this discussion we will consider the case of exposing a number of C++ objects to ICI.

To simplify implementation code and improve efficiency, the ICI handle object supports a map-
ping from the member names that will be used in the script, to a set of integer IDs that can be 
used more covieniently in each method. An application can use a single mapping, or several, at 
its discretion, but in this example we will assume one global mapping table.

To make this table you must:
rogramming Language



Common tasks: Using ICI handle types to interface to C/C++ objects
1. Define the integer IDs. For example:

enum {P_Property1, P_Property2, M_Method1, M_Method2, ...};

Notice the clear distinction in name between properties and methods. This is advisable, 
because they must be handled differently in their implementation.

2. Define an array of member names and their corresponding IDs. For example:

static ici_name_id_t member_names[] =
{
    {"Property1",  P_Property1},
    {"Property2",  P_Property2},
    {"Method1",    M_Method1 | H_METHOD},
    {"Method2",    M_Method2 | H_METHOD},
    {NULL},
};

In this table, the IDs of methods must be flagged witht he flag H_METHOD (it is in the top 
bit in the 32 bit word).

3. Make the mapping table. This mapping table will be used whenever you make a handle 
object, so it is generally a global made on startup. For example:

ici_obj_t   *member_map;
    ...
    member_map = ici_make_handle_member_map(member_names);
    if (member_map == NULL)
        ...

Now, for each object to be exposed, we must write an interface function (see h_member_intf in 
the ici_handle_t documentation). Like all callbacks from ICI, function must have C linkage . As 
we are connecting to C++ objects, this function will just transfer to a method of the object. For 
example:

extern "C" int
Obj1FromICI(void *inst, int id, ici_obj_t *setv, ici_obj_t **retv)
{
    return ((Obj1 *)inst)->FromICI(id, setv, retv);
}

The implementation of each of these functions in each class would look something like this:

int Obj1::FromICI(int id, ici_obj_t *setv, ici_obj_t **retv)
{
    switch (id)
    {
    case P_Property1:
        if (setv == NULL)
            *retv = ...
        break; // Property1 is read-only, no setv case.

    case P_Property2:
        if (setv == NULL)
            *retv = ...
        else
        {
            Property2 = ...
The ICI Programming Language   147



Chapter 8: Interfacing with C and C++

148   The ICI P
            *retv = setv;
        }
        break;

    case M_Method1:
        if (ici_typecheck("i", &l))
            return 1;
        ...
        *retv = ici_null; // No special return value.
        break;
    }
    return 0;
}

We now have the machinery for C++ code to support ICI access to properties and methods of 
C++ objects, once it has a reference to those objects. We will now consider how to create the 
handle objects that can be passed to ICI code. In general, the function ici_handle_new is used to 
find or create such an object, then assign the relevant member map and interface function to it.

If you don’t mind the memory overhead of a pointer in each object, one of the safest and easiest 
ways to manage the correspondance between the C objects and the ICI version is to add a 
pointer to the ICI handle object that represents each C object to the type (say m_ICIObj) and a 
method to retrieve it (say ICIObj()). In the constructor, set m_ICIObj to NULL. The the imple-
menation of ICIObj() would look like:

ici_obj_t *Obj1::ICIObj()
{
    if (m_ICIObj == NULL)
    {
        ici_handle_t *h = ici_handle_new(this, ICIS(OBJ1), NULL);
        if (h == NULL)
            return NULL;
        objof(h)->o_flags &= ~H_CLOSED;
        h->h_member_map = member_map;
        h->h_member_intf = Obj1FromICI;
        m_ICIObj = objof(h);
    }
    return m_ICIObj;
}

In the destructor, we would include the code:

if (m_ICIObj != NULL)
{
    m_ICIObj->o_flags |= H_CLOSED;
    ici_decref(m_ICIObj);
}

The manipulation of the H_CLOSED flag is included to prevent ICI code that hangs on to refer-
ences to C++ objects that have been deleted from causing trouble. While the H_CLOSED flag is 
set, the h_ptr field is assumed to be dead.

Keeping a counted reference to the ICI object in the C object like this saves us from most con-
sideration of reference counts when using the result of ICIObj().

If it is not practical to use exactly this method (perhaps because you can’t or don’t want to add 
data to the class), ici_handle_new can still be used in the same manner to get a suitable object 
reference. Note that if there is already a handle that refers to the object in existance, 
rogramming Language



Common tasks: Writing and compiling a dynamically loading extension module
ici_handle_new will just return that. But you have no way of knowing if this was the case, so 
you must always assume it is new and set the mapping and interface functions.

Writing and compiling a dynamically loading extension module

The loaded library must contain a function of the following name and declaration:

object_t *
ici_var_library_init()
{

...
}

where var is the as yet undefined variable name. This is the initialisation function which is 
called when the library is loaded. This function should return an ICI object, or NULL on error, 
in which case the ICI error variable must be set. The returned object will be assigned to var as 
described above.

The following sample module, mbox.c, illistrates a typical form for a simple dynamically loaded 
ICI module (it is a Windows example, but should be clear anyway):

#include <windows.h>
#include <ici.h>

/*
 * mbox_msg => mbox.msg(string) from ICI
 *
 * Pops up a modal message box with the given string in it
 * and waits for the user to hit OK. Returns NULL.
 */
int
mbox_msg()
{
    char    *msg;

    if (typecheck("s", &msg))
        return 1;
    MessageBox(NULL, msg, (LPCTSTR)"ICI", MB_OK | MB_SETFOREGROUND);
    return ici_null_ret();
}

/*
 * Object stubs for our intrinsic functions.
 */
ici_cfunc_t mbox_cfuncs[] =
{
    {CF_OBJ,  "msg",  mbox_msg},
    {CF_OBJ}
};

/*
 * ici_mbox_library_init
 *
 * Initialisation routine called on load of this module into the ICI
 * interpreter’s address space. Creates and returns a struct which will
 * be assigned to "mbox". This struct contains references to our
 * intrinsic functions.
 */
ici_obj_t *
ici_mbox_library_init()
{

The ICI Programming Language   149



Chapter 8: Interfacing with C and C++

150   The ICI P
    ici_objwsup_t        *s;

    if (ici_interface_check(ICI_VER, ICI_BACK_COMPAT_VAR, "mbox"))
    return NULL;    
    if ((s = ici_module_new(mbox_cfuncs)) == NULL)
        return NULL;
    return objof(s);
}

The following simple Makefile illustrates forms suitable for compiling this module into a DLL 
under Windows. Note in particular the use of /export in the link line to make the function 
ici_mbox_library_init externally visible.

CFLAGS= 
OBJS = mbox.obj
LIBS = ici4.lib user32.lib

icimbox.dll: $(OBJS)
link /dll /out:$@ $(OBJS) /export:ici_mbox_library_init $(LIBS)

Note that there is no direct supprt for the /export option in the MS Developer Studio link set-
tings panel, but it can be entered directly in the Project Options text box.

The following Makefile achieves an equivalent result under Solaris:

CC = gcc -pipe -g
CFLAGS= -fpic -I..

OBJS = mbox.o

icimbox.so : $(OBJS)
ld -o $@ -dc -dp $(OBJS)

Referring to ICI strings from C code

References to short strings that are known at compile time is common in ICI modules for field 
names and such-like. But ICI strings need to be looked up in the ICI atom pool to find the 
unique pointer for each particular one (and created if it does not already exist). To assist external 
modules in obtaining the pointer to names they need (especially when there are lots), some mac-
ros are defined in ici.h. The following procedure can be used:

1. Make an include file called icistr.h with your strings, and what you want to call them, for-
matted as in this example:

/*
 * Any strings listed in this file may be referred to
 * with ICIS(name) for a (string_t *), and ICISO(name)
 * for an (object_t *).
 *
 * This file is included with varying definitions
 * of ICI_STR() to declare, define, and initialise
 * the strings.
 */
ICI_STR(fred, "fred")
ICI_STR(jane, "jane")
ICI_STR(amp, "&")

2. Next, in one (only) of your source files, after an include of ici.h, include the special include 
file icistr-setup.h. That is:
rogramming Language



Common tasks: Accessing ICI array objects from C
#include <icistr-setup.h>

This include file both defines variables to hold pointer to the strings (based on the names 
you gave in icistr.h) and defines a function called init_ici_str() which initialises those point-
ers. It does this by including your icistr.h file twice, but under the influence of special 
defines for ICI_STR().

3. Next, call init_ici_str() at startup (after ici_init()) or library load. It returns 1 on error, usual 
conventions. For example:

object_t *
ici_XXX_library_init(void)
{
    if (init_ici_str())
        return NULL;
    ...

4. Include your icistr.h file in any source files that accesses the named ICI strings. Access them 
with either ICIS(fred) or ICISO(fred) which return string_t * and object_t*  pointers respec-
tively. For example:

  
#include "ici.h"
#include "icistr.h"
...
    object_t     *o;
    struct_t     *s
...
    o = ici_fetch(s, ICIS(fred));

Accessing ICI array objects from C

ICI array objects are, in general, circular buffers of object pointers in a single growable memory 
allocation. Because the wrap point of the circular buffer may occur at any point, it is necessary 
to use various functions and macros to access elements rather than simple indexing and/or 
pointer arithmetic. The functions and macros that work in general are: 

ici_array_nels() To find the number of elements.

ici_array_get() To get an element at a given integer index.

ici_array_push() To push an object onto the end of the array.

ici_array_rpush() To push an object onto the start of the array.

ici_array_pop() To pop an object from the end of the array.

ici_array_rpop() To pop and object form the start of the array.

ici_array_gather() To copy a possibly wrapped run of object pointers to contigous 
memory.

It is also possible to progress a pointer along all the elements of an array in sequence with:

ici_array_t  *a;
ici_obj_t    **e;
...
The ICI Programming Language   151



Chapter 8: Interfacing with C and C++

152   The ICI P
for (e = ici_astart(a); e != ici_alimit(a); e = ici_anext(a, e))
    ... /* *e is the object */

However, arrays are implemented in a manner to allow them to be used as stacks even more effi-
ciently than through the functions listed above. They are used that way in the execution engine. 
Basicly, until an rpop or rpush operation is done on an array, it can be assumed that the wrap 
point of the circular buffer is just before the first element, and therefore all elements are contig-
uously addressable relative to the bottom of the array. In the particular situation that some C 
code has just made an array, and it has not yet been released to any ICI program or other code 
that is not well understood, certain simplifying assumtions can be made, and certain more effi-
cient methods can be used. In comments, an array is said to be ‘still a stack’ or ‘might be a 
queue’.

The C structure that is an ICI array object contains the pointers a_base and a_limit that define 
the limits of the allocated memory (a_limit points to the element just beyond the end of the allo-
cation), and the pointers a_bot and a_top that define the limits of the array’s current content 
(a_top points to the elememt just beyond the current content). When an array is still a stack, 
a_bot is always equal to a_base and all the elements are contiguously addressable from there.

Further, it is possible to ensure (force) the array allocation to have any desired amount of room 
for efficient growth with the macro:

ici_stk_push_chk(a, n) Check (force) that the array a has room for n new elements at a_top.

It is also possible to request an allocation size when calling ici_array_new() to make a new 
array. So, for example, to create an array of ten integers:

if ((a = ici_array_new(10)) == NULL)
fail...

for (i = 0; i < 10; ++i)
*a->a_top++ = ici_zero;

Similarly, looping over the elements of an array that is still a stack is simpler than the for-loop 
shown above.

Note that one must never take the atomic form of a stack, and assume the result is still a stack. 
Also remember that the actual memory of the array is a growable buffer. Anything that could 
ccause the stack to grow (any push or call to ici_stk_push_chk) may change the allocated buffer 
to a new location. So don’t hang on to copies of the array buffer pointers in private variables.

Using ICI independently from multiple threads

To be written.

Summary of ICI’s C API

The following table summarises function and public data that form ICI’s C API. The use of 
some of these functions has been illustrated above. The full specification of each is given below. 
This summary is only intended to document the limits of the public interface, allow you to 
select the relevant functions, and direct you to the source with the full description.

The final column gives a hint about upgrading from ICI 3. If just a name is mentioned, that is 
the old name of this function (many names have acquired an ici_ prefix). Other notes indicate 
what constructs should be checked for possible upgrade to the given function. If it is blank, 
rogramming Language



Summary of ICI’s C API: Using ICI independently from multiple threads

I3
there is no change. There is an ICI program, ici3check.ici, in the ICI source directory that will 
grep your source for usage of changed constructs and print a note on upgrade action.

Name Synopsis Upgrade from IC

ici.h The ICI C API include file. This is gener-
ated specifically for each platform.

ici_alloc Allocate memory, in particular memory 
subject to collection (possibly indirectly). 
Must be freed with ici_free. See also 
ici_talloc and ici_nalloc which are both 
preferable. See alloc.c.

ici_argcount Generate an error message indicating that 
this intrinsic function was given the 
wrong number of argument. See cfunc.c.

ici_argerror Generate an errror message indicating 
that this argument of this intrinsic func-
tion is wrong. See cfunc.c.

ici_array_gather Copy a (possibly disjoint) run of ele-
ments of an array into contiguous mem-
ory.

Use of a_top.

ici_array_get Fetch an elemet of an array indexed by a 
C int. See array.c.

Use of a_top.

ici_array_nels Return the number of elements in an 
array. See array.c.

Use of a_top.

ici_array_new Allocate a new ICI array. See array.c. new_array

ici_array_pop Pop and return last element of an ICI 
array. See array.c.

Use of a_top.

ici_array_push Push an object onto an array. See array.c. Use of a_top.

ici_array_rpop Rpop an obect from an ICI array. See 
array.c.

ici_array_rpush Rpush an oject onto an ICI array. See 
array.c.

ici_array_t The ICI array object type. See array.h. array_t

ici_assign Assign to an ICI object (vectors through 
type). See object.h.

assign

ici_assign_cfuncs Assign of bunch of intrinsic function pro-
totypes into the ICI namespace. See 
cfunco.c.

ici_assign_fail Generic function that can be used for 
types that don’t support assignment. See 
object.c.

assign_simple

ici_atexit Register a function to be called at 
ici_uninit. See uninit.c.

ici_atom Return the atomic form of an object. See 
object.c.

atom

ici_buf A general purpose growable character 
buffer, typically used for error messages. 
See ici_chkbuf. See buf.c.
The ICI Programming Language   153



Chapter 8: Interfacing with C and C++

154   The ICI P

e.

e.

I3
ici_call Call an ICI function from C by name. See 
call.c.

Prototype chang

ici_callv Same as ici_call but takes a va_list. See 
call.c.

Prototype chang

ici_cfunc_t The ICI intrinsic function object types. 
See cfunc.h and cfunco.c (not cfunc.c).

cfunc_t

ici_chkbuf Verify or grow ici_buf to be big enough. 
See buf.c.

ici_cmp_unique Generic function that can be used for 
types that can’t be merged through the 
atom pool. See object.c.

cmp_unique

ici_copy_simple Generic copy function that can be used 
for types that are intrinsically atomic. See 
object.c.

copy_simple

ici_debug A pointer to the current debug functions. 
See idb2.c.

ici_debug_enabled If compiled with debug, an int giving the 
current status of debug callbacks. Else 
defined to 0 by the preprocessor. See 
fwd.h.

ici_debug_t A struct of function pointers for debug 
functions (like break and watch). See 
exec.h.

debug_t

ici_decref Decrement the reference count of an ICI 
object. See object.h.

decref

ici_def_cfunc Define C functions in the current scope. 
See cfunco.c.

def_cfuncs

ici_dont_record_line_nums A global int which can be set to prevent 
line number records (which will margin-
ally speed execution, but errors won’t 
reveal source location). See fwd.h.

ici_enter Acquire the global ICI mutex, which is 
required for access to ICI data and func-
tions. See thread.c.

ici_error A global char pointer to any current error 
message.

ici_exec A pointer to the current ICI execution 
context (NB: Don’t look at or touch x_os, 
x_xs or x_vs fields). See exec.h.

ici_fetch Fetch an element from an object. Vectors 
by object type. See object.h.

fetch

ici_fetch_fail A generic function that can be used by 
objects that don’t support fetching.

fetch_simple

ici_fetch_int Fetch an int from an object into a C long. 
See mkvar.c.

ici_fetch_num Fetch an int or float from an object into a 
C double. See mkvar.c.

Name Synopsis Upgrade from IC
rogramming Language



Summary of ICI’s C API: Using ICI independently from multiple threads

e.

e.

n-

I3
ici_file_close Close the low-level file associated with 
an ICI file object. See file.c.

file_close

ici_file_new Create a new ICI file object. See file.c. new_file

ici_file_t The ICI file object type. See file.h. file_t

ici_float_new Get an ICI float from a C double. See 
float.c.

new_float

ici_float_ret Return a C double from an intrinsic func-
tion as an ICI float. See cfunc.c.

float_ret

ici_float_t The ICI float object type. See float.h. float_t

ici_free Free memory allocated with ici_alloc. 
See also ici_tfree and ici_nfree. See 
alloc.c.

ici_func Call an ICI function, given you have a 
func_t *. See ici_call to call by name. See 
call.c.

Prototype chang

ici_func_t The ICI function object type. See func.h. func_t

ici_funcv Same as ici_func except it takes a va_list. Prototype chang

ici_get_last_errno Set ici_error (see) based on the last failed 
system function (i.e. errno). See syserr.c.

syserr (and sema
tics change)

ici_get_last_win32_error Windows only. Set ici_error based on the 
value of GetLastError(). See win32err.c.

ici_handle_new Make a new handle_t object.

ici_handle_t The type of handle objects. See handle.c.

ici_hash_unique A generic function that can be used in a 
type_t struct for objects that can’t be 
merged through the atom pool. See 
object.c.

ici_incref Increment reference to an ICI object. incref

ici_init Initialise the ICI interpreter. See init.c.

ici_int_new Get an ICI int from a C long. See int.c. new_int

ici_int_ret Return a C long from an intrinsic func-
tion.See cfunc.c.

int_ret

ici_int_t int_t

ici_leave Unlock the global ICI mutex to allow 
thread switching. See thread.c.

ici_main A wrapper round ici_init() that does argc, 
argv argument processing. See icimain.c.

ici_mark Mark an object as part of the garbage col-
lection mark phase. See object.h.

mark

ici_mem_new Allocate a new mem_t object. See mem.c. new_mem

ici_mem_t mem_t

ici_method Call an ICI method given an instance and 
a method name. See call.c.

ici_method_new Allocate a new metnod_t object. See 
method.c.

ici_new_method

ici_method_t method_t

Name Synopsis Upgrade from IC
The ICI Programming Language   155



Chapter 8: Interfacing with C and C++

156   The ICI P

nt

I3
ici_nalloc Allocate memory, in particular memory 
subject to collection (possibly indirectly). 
Must be freed with ici_nfree. See also 
ici_talloc and ici_alloc. See alloc.c.

ici_need_stdin Return ICI file object that is the current 
value of stdin.

need_stdin

ici_need_stdout Return ICI file object that is the current 
value of stdout.

need_stdout

ici_nfree Free memory allocated with ici_nalloc. 
See also ici_tfree and ici_free. See 
alloc.c.

ici_null A pointer to the ICI NULL object. objof(&o_null)

ici_null_ret Return an ICI NULL from an intrinsic 
function.See cfunc.c.

null_ret

ici_null_t null_t

ici_obj_t The generic ICI object type. All ICI 
objects have this as their first element.

object_t

ici_objname Get a short human readable representa-
tion of any object for diagnostics reports. 
See cfunc.c.

objname

ici_objwsup_t objwsup_t

ici_one A global pointer to the ICI int 1. o_one

ici_os An ICI array which is the operand stack 
of the current execution context.

ici_parse_file Parse a file as a new top-level module. parse_file

ici_ptr_new Allocate a new ICI ptr object. See ptr.c. new_ptr

ici_ptr_t ptr_t

ici_reclaim Run the ICI garbage collector. See 
object.c.

ici_regexp_new Make a new ICI regexp object. new_regexp

ici_regexp_t regexp_t

ici_register_type Register a new type_t structure with the 
interpreter to obtain the small int type 
code that must be placed in the header of 
ICI objects.

o_type assignme

ici_rego Register a new object with the garbage 
collector. See object.h (a macro).

rego

ici_ret_no_decref Return an ICI object from an intrinsic C 
function, without an ici_decref. See 
cfunc.c.

ici_ret_with_decref Return an ICI object from an intrinsic C 
function, but ici_decref it in the process. 
See cfunc.c.

ici_retcheck Check and update values returned 
through pointers.

ici_set_new Allocate a new ICI set object. See set.c. new_set

ici_set_t set_t

Name Synopsis Upgrade from IC
rogramming Language



Summary of ICI’s C API: Using ICI independently from multiple threads

I3
ici_set_unassign Remove an element from a set. See set.c. unassign_set

ici_set_val Set a C int, long, double, FILE * or ICI 
object into the inner-most scope of any 
object that supports a super. See mkvar.c.

ici_skt_t skt_t

ici_stdio_ftype A struct holding pointers to stdio func-
tions to facilitate making stdio based ICI 
files.

stdio_ftype

ici_stk_push_chk Ensures there is a certain amount of con-
tiguous room at the end of an array for 
direct push operations through a_top. See 
array.h.

ICI_STR Multi-purpose macro used by the icistr-
setup.h mechanism. See str.h.

ici_str_alloc Do half of the allocation of a string. Data 
must be added and ici_atom called before 
completion. See string.c.

new_string

ici_str_get_nul_term Get the ICI form of a string of nul termi-
nated chars without an extra reference 
count. See string.c.

get_cname

ici_str_new Get the ICI form of a string of chars, by 
explicit length. See string.c.

new_name

ici_str_new_nul_term Get the ICI form of a string of nul termi-
nated chars. See string.c.

new_cname

ici_str_ret Return a nul terminated C string from an 
intrinsic function as an ICI string. See 
cfunc.c.

str_ret

ici_str_t string_t

ici_struct_new Allocate a new ICI struct object. See 
struct.c.

new_struct

ici_struct_t struct_t

ici_struct_unassign Remove an element from an ICI struct. 
See struct.c.

unassign_struct

ici_talloc Allocate memory, in particular memory 
subject to collection (possibly indirectly) 
sufficient for a given type. Must be freed 
with ici_tfree. See also ici_nalloc and 
ici_alloc. See alloc.c.

ici_alloc

ici_tfree Free memory allocated with ici_tfree. See 
alloc.c.

ici_type_t The type that holds information about ICI 
primitive object types. You must declare, 
initialise, and register one of these to 
make a new ICI primitive type. See 
ici_register_type. See object.h.

type_t

ici_typecheck Check and marshall ICI arguments to an 
intrinsic function into C variables. See 
cfunc.c.

Name Synopsis Upgrade from IC
The ICI Programming Language   157



Chapter 8: Interfacing with C and C++

158   The ICI P

I3
Detailed description of ICI’s C API 

ARG 

 #define ARG(n) ...  

In a call from ICI to a function coded in C, this macro returns the object passed as the ’i’th 
actual parameter (the first parameter is ARG(0)). The type of the result is an (ici_obj_t *). There 
is no actual or implied incref associated with this. Parameters are known to be on the ICI oper-
and stack, and so can be assumed to be referenced and not garbage collected.

(This macro has no ICI_ prefix for historical reasons.)

ARGS 

 #define ARGS() ...  

In a call from ICI to a function coded in C, this macro returns a pointer to the first argument to 
this function, with subsequent arguments being available by *decrementing* the pointer.

(This macro has no ICI_ prefix for historical reasons.)

CF_ARG1 

 #define CF_ARG1() ...  

In a call from ICI to a function coded in C, this macro returns the cf_arg1 field of the current C 
function. The macro CF_ARG2() can also be used to obtain the cf_arg2 field. See the 
ici_cfunc_t type.

They are both (void *) (Prior to ICI 4.0, CF_ARG1() was a function pointer.)

ici_uninit Shutdown and free resources associated 
with the ICI interpreter. See uninit.c.

ici_vs The scope (“variable”) stack of the cur-
rent ICI execution context.

ici_wakeup Wake up any ICI threads waiting on a 
given ICI object. See thread.c.

ici_wrap_t Struct to support ici_atexit. See uninit.c. wrap_t

ici_xs The execution stack of the current ICI 
execution engine. See exec.c.

ici_XXX_library_init The entry point you must define for 
dynamically loaded modules.

ici_zero The ICI int 0. o_zero

icistr.h The include file you must make to get 
initialised ICI strings. See str.h.

icistr-setup.h The include file you must include to ini-
tialised ICI strings. See str.h.

objof Macro to cast an object to an (object_t *)

Name Synopsis Upgrade from IC
rogramming Language



Detailed description of ICI’s C API: ICI_BACK_COMPAT_VER
ICI_BACK_COMPAT_VER 

 #define ICI_BACK_COMPAT_VER ...  

The oldet version number for which the binary interface for seperately compiled modules is 
backwards compatible. This is updated whenever the exernal interface changes in a way that 
could break already compiled modules. We aim to never to do that again. See 
ici_interface_check().

ICI_DIR_SEP 

 #define ICI_DIR_SEP ...  

The character which seperates segments in a path on this architecture.

ICI_DLL_EXT 

 #define ICI_DLL_EXT ...  

The string which is the extension of a dynamicly loaded library on this architecture.

ICI_NO_OLD_NAMES 

 #define ICI_NO_OLD_NAMES ...  

This define may be made before an include of ici.h to suppress a group of old (backward com-
patible) names. These names have been upgraded to have ici_ prefixes since version 4.0.4. 
These names don’t effect the binary interface of the API; they are all type or macro names. But 
you might want to suppress them if you get a clash with some other include file (for example, 
file_t has been known to clash with defines in <file.h> on some systems).

If you just was to get rid of one or two defines, you can #undef them after the include of ici.h.

The names this define supresses are:

 array_t     float_t     object_t    catch_t
 slot_t      set_t       struct_t    exec_t
 file_t      func_t      cfunc_t     method_t
 int_t       mark_t      null_t      objwsup_t
 op_t        pc_t        ptr_t       regexp_t
 src_t       string_t    type_t      wrap_t
 ftype_t     forall_t    parse_t     mem_t
 debug_t 

ICI_OBJ_SET_TFNZ 

 #define ICI_OBJ_SET_TFNZ(o, tcode, flags, nrefs, 
leafz) ...  

Set the basic fields of the object header of o. o can be any struct declared with an object header 
(this macro casts it). This macro is prefered to doing it by hand in case there is any future 
change in the structure. See comments on each field of ici_obj_t. This is normally the first thing 
done after allocating a new bit of memory to hold an ICI object.
The ICI Programming Language   159



Chapter 8: Interfacing with C and C++

160   The ICI P
ICI_PATH_SEP 

 #define ICI_PATH_SEP ...  

The character which seperates directories in a path list on this architecture.

ICI_VER 

 #define ICI_VER ...  

The ICI version number composed into an 8.8.16 unsigned long for simple comparisons. The 
components of this are also available as ICI_VER_MAJOR, ICI_VER_MINOR, and 
ICI_VER_RELEASE.

NARGS 

 #define NARGS() ...  

In a call from ICI to a function coded in C, this macro returns the count of actual arguments to 
this C function.

(This macro has no ICI_ prefix for historical reasons.)

hassuper 

 #define hassuper(o) ...  

Test if this object supports a super type. (It may or may not have a super at any particular time).

ici_alimit 

 #define ici_alimit(a) ...  

A macro to assist in doing for loops over the elements of an array. Use as:

 ici_array_t  *a;
 ici_obj_t    **e;
 for (e = ici_astart(a); e != ici_alimit(a); e = ici_anext(a, 
e))
     ... 

ici_alloc 

void * ici_alloc(size_t z)   

Allocate a block of size z. This just maps to a raw malloc() but does garbage collection as neces-
sary and attempts to track memory usage to control when the garbage collector runs. Blocks 
allocated with this must be freed with ici_free().

It is preferable to use ici_talloc(), or failing that, ici_nalloc(), instead of this function. But both 
require that you can match the allocation by calling ici_tfree() or ici_nalloc() with the original 
type/size you passed in the allocation call. Those functions use dense fast free lists for small 
objects, and track memory usage better.

See also: ICIs allocation functions, ici_free(), ici_talloc(), ici_nalloc().
rogramming Language



Detailed description of ICI’s C API: ici_anext
ici_anext 

 #define ici_anext(a, e) ...  

A macro to assist in doing for loops over the elements of an array. Use as:

 ici_array_t  *a;
 ici_obj_t    **e;
 for (e = ici_astart(a); e != ici_alimit(a); e = ici_anext(a, 
e))
     ... 

ici_argcount 

int ici_argcount(int n)   

Generate a generic error message to indicate that the wrong number of arguments have been 
supplied to an intrinsic function, and that it really (or most commonly) takes n. This function 
sets the error descriptor (ici_error) to a message like:

 %d arguments given to %s, but it takes %d 

and then returns 1.

This function may only be called from the implementation of an intrinsic function. It takes the 
number of actual argument and the function name from the current operand stack, which there-
fore should not have been distured (which is normal for intrincic functions). It takes the number 
of arguments the function should have been supplied with (or typically is) from n. This function 
is typically used from C coded functions that are not using ici_typecheck() to process argu-
ments. For example, a function that just takes a single object as an argument might start:

 static int
 myfunc()
 {
     ici_obj_t  *o; 

     if (NARGS() != 1)
         return ici_argcount(1);
     o = ARG(0);
     . . . 

ici_argerror 

int ici_argerror(int i)   

Generate a generic error message to indicate that argument i of the current intrinsic function is 
bad. Despite being generic, this message is generally pretty informative and useful. It has the 
form:

 argument %d of %s incorrectly supplied as %s 

The argument number is base 0. I.e. ici_argerror(0) indicates the 1st argument is bad.

The function returns 1, for use in a direct return from an intrinsic function.

This function may only be called from the implementation of an intrinsic function. It takes the 
function name from the current operand stack, which therefore should not have been distured 
The ICI Programming Language   161



Chapter 8: Interfacing with C and C++

162   The ICI P
(which is normal for intrincic functions). This function is typically used from C coded functions 
that are not using ici_typecheck() to process arguments. For example, a function that just takes a 
single mem object as an argument might start:

 static int
 myfunc()
 {
     ici_obj_t  *o; 

     if (NARGS() != 1)
         return ici_argcount(1);
     if (!ismem(ARG(0)))
         return ici_argerror(0);
     . . . 

ici_array_find_slot 

extern ici_obj_t ** ici_array_find_slot(ici_array_t *a, 
ptrdiff_t i)   

Return a pointer to the slot in the array a that does, or should contain the index i. This will grow 
and ici_null fill the array as necessary (and fail if the array is atomic). Only positive i. Returns 
NULL on error, usual conventions. This will not fail if i is less than ici_array_nels(a).

ici_array_gather 

void ici_array_gather(ici_obj_t **b, ici_array_t *a, 
ptrdiff_t start, ptrdiff_t n)   

Copy n object pointers from the given array, starting at index start, to b. The span must cover 
existing elements of the array (that is, don’t try to read from negative or excessive indexes).

This function is used to copy objects out of an array into a contiguous destination area. You 
can’t easily just memcpy, because the span of elements you want may wrap around the end. For 
example, the implementaion of interval() uses this to copy the span of elements it wants into a 
new array.

ici_array_get 

ici_obj_t * ici_array_get(ici_array_t *a, ptrdiff_t i)   

Return the element or the array a from index i, or ici_null if out of range. No incref is done on 
the object.

ici_array_nels 

ptrdiff_t ici_array_nels(ici_array_t *a)   

Return the number of elements in the array a.

ici_array_new 

ici_array_t * ici_array_new(ptrdiff_t n)   
rogramming Language



Detailed description of ICI’s C API: ici_array_pop
Return a new array. It will have room for at least n elements to be pushed contigously (that is, 
there is no need to use ici_stk_push_chk() for objects pushed immediately, up to that limit). If n 
is 0 an internal default will be used. The returned array has ref count 1. Returns NULL on fail-
ure, usual conventions.

ici_array_pop 

ici_obj_t * ici_array_pop(ici_array_t *a)   

Pop and return the top of the given array, or ici_null if it is empty. Returns NULL on error (for 
example, attempting to pop and atomic array). Usual error conventions.

ici_array_push 

int ici_array_push(ici_array_t *a, ici_obj_t *o)   

Push the object o onto the end of the array a. This is the general case that works for any array 
whether it is a stack or a queue. On return, o_top[-1] is the object pushed. Returns 1 on error, 
else 0, usual error conventions.

ici_array_rpop 

ici_obj_t * ici_array_rpop(ici_array_t *a)   

Pop and return the front of the given array, or ici_null if it is empty. Returns NULL on error (for 
example, attempting to pop and atomic array). Usual error conventions.

ici_array_rpush 

int ici_array_rpush(ici_array_t *a, ici_obj_t *o)   

Push the object o onto the front of the array a. Return 1 on failure, else 0, usual error conven-
tions.

ici_assign 

 #define ici_assign(o,k,v) ...  

Assign the value v to key k of the object o. This macro just calls the particular object’s 
t_assign() function.

Note that the argument o is subject to multiple expansions.

Returns non-zero on error, usual conventions.

ici_assign_base 

 #define ici_assign_base(o,k,v) ...  

Assign the value v to key k of the object o, but only assign into the base object, even if there is a 
super chain. This may only be called on objects that support supers.

Note that the argument o is subject to multiple expansions.

Returns non-zero on error, usual conventions.
The ICI Programming Language   163



Chapter 8: Interfacing with C and C++

164   The ICI P
ici_assign_cfuncs 

int ici_assign_cfuncs(ici_objwsup_t *s, ici_cfunc_t *cf)   

Assign into the structure s all the intrinsic functions listed in the array of ici_cfunc_t structures 
pointed to by cf. The array must be terminated by an entry with a cf_name of NULL. Typically, 
entries in the array are formated as:

 {CF_OBJ,    "func",     f_func}, 

Where CF_OBJ is a convenience macro to take care of the normal object header, "func" is the 
name your function will be assigned to in the given struct, and f_func is a C function obeying 
the rules of ICI intrinsic functions.

Returns non-zero on error, in which case error is set, else zero.

ici_assign_fail 

int ici_assign_fail(ici_obj_t *o, ici_obj_t *k, ici_obj_t 
*v)   

This is a convenience function which can be used directly as the t_assign entry in a type’s 
ici_type_t struction if the type doesn’t support asignment. It sets ici_error to a message of the 
form:

 attempt to set %s keyed by %s to %s 

and returns 1. Also, it can b called from within a custom assign function in cases where the par-
ticular assignment is illegal.

ici_assign_super 

 #define ici_assign_super(o,k,v,b) ...  

Assign the value v at the key k of the object o, but only if the key k is already an element of o or 
one of its supers. The object o *must* be one that supports supers (such as a struct or a handle).

This function is used internally in assignments up the super chain (thus the name). In this con-
text the argument b indicates the base struct of the assign and is used to maintain the internal 
lookup look-aside mechanism. If not used in this manner, b should be supplied as NULL.

Return -1 on error, 0 if it was not found, and 1 if the assignment was completed.

ici_astart 

 #define ici_astart(a) ...  

A macro to assist in doing for loops over the elements of an array. Use as:

 ici_array_t  *a;
 ici_obj_t    **e;
 for (e = ici_astart(a); e != ici_alimit(a); e = ici_anext(a, 
e))
     ... 
rogramming Language



Detailed description of ICI’s C API: ici_atexit
ici_atexit 

void ici_atexit(void (*func)(void), ici_wrap_t *w)   

Register the function func to be called at ICI interpreter shutdown (i.e. ici_uninit() call).

The caller must supply a ici_wrap_t struct, which is usually statically allocated. This structure 
will be linked onto an internal list and be unavailable till after ici_uninit() is called.

ici_atom 

ici_obj_t * ici_atom(ici_obj_t *o, int lone)   

Return the atomic form of the given object o. This will be an object equal to the one given, but 
read-only and possibly shared by others. (If the object it already the atomic form, it is just 
returned.)

This is achieved by looking for an object of equal value in the atom pool. The atom pool is a 
hash table of all atoms. The object’s t_hash and t_cmp functions will be used it this lookup proc-
ess (from this object’s ici_type_t struct).

If an existing atomic form of the object is found in the atom pool, it is returned.

If the lone flag is 1, the object is free’d if it isn’t used. ("lone" because the caller has the lone ref-
erence to it and will replace that with what atom returns anyway.) If the lone flag is zero, and the 
object would be used (rather than returning an equal object already in the atom pool), a copy 
will made and that copy stored in the atom pool and returned. Also note that if lone is 1 and the 
object is not used, the nrefs of the passed object will be transfered to the object being returned.

Never fails, at worst it just returns its argument (for historical reasons).

ici_atom_probe 

ici_obj_t * ici_atom_probe(ici_obj_t *o)   

Probe the atom pool for an atomic form of o. If found, return that atomic form, else NULL. This 
can be use by *_new() routines of intrinsically atomic objects. These routines generally set up a 
dummy version of the object being made which is passed to this probe. If it finds a match, that is 
returned, thus avoiding the allocation of an object that may be thrown away anyway.

ici_call 

int ici_call(ici_str_t *func_name, char *types, ...)   

Call an ICI function by name from C with simple argument types and return value. The name 
(func_name) is looked up in the current scope.

See ici_func() for an explanation of types. Apart from taking a name, rather than an ICI function 
object, this function behaves in the same manner as ici_func().

There is some historical support for @ operators, but it is deprecated and may be removed in 
future versions.

ici_callv 

int ici_callv(ici_str_t *func_name, char *types, va_list va)   
The ICI Programming Language   165



Chapter 8: Interfacing with C and C++

166   The ICI P
Varient of ici_call() (see) taking a variable argument list.

There is some historical support for @ operators, but it is deprecated and may be removed in 
future versions.

ici_cfunc_t 

 struct ici_cfunc
 {
     ici_obj_t   o_head;
     char        *cf_name;
     int         (*cf_cfunc)();
     void        *cf_arg1;
     void        *cf_arg2;
 }  

The C struct which is the ICI intrinsic function type. That is, a function that is coded in C. 
(There are actually two types, this one, and a second for functions that are coded in ICI, that are 
both called func.) 

ici_cfunc_t objects are often declared staticly (in an array) when setting up a group of C func-
tions to be called from ICI. When doing this, the macro CF_OBJ can be used as the initialiser of 
the o_head field (the standard ICI object heade).

The type has a well-known built-in type code of TC_CFUNC.

o_head The standard ICI object header.

cf_name A name for the function. Calls to functions such as 
ici_assign_cfuncs will use this as the name to use when assigning it 
into an ICI struct. Apart from that, it is only used in error messages.

cf_func() The implementation of the function. The formals are not mentioned 
here deliberately as implementaions will vary in their use of them.

cf_arg1, cf_arg2 Optional additional data items. Sometimes it is useful to write a sin-
gle C function that masquerades as severl ICI functions - driven by 
distinguishing data from these two fields. See CF_ARG1().

ici_chkbuf 

 #define ici_chkbuf(n) ...  

Ensure that ici_buf points to enough memory to hold index n (plus room for a nul char at the 
end). Returns 0 on success, else 1 and sets ici_error.

See also: The error return convention.

ici_class_new 

ici_objwsup_t * ici_class_new(ici_cfunc_t *cf, ici_objwsup_t 
*super)   

Create a new class struct and assign the given cfuncs into it (as in ici_assign_cfuncs()). If super 
is NULL, the super of the new struct is set to the outer-most writeable struct in the current 
scope. Thus this is a new top-level class (not derived from anything). If super is non-NULL, it is 
rogramming Language



Detailed description of ICI’s C API: ici_cmp_unique
presumably the parent class and is used directly as the super. Returns NULL on error, usual con-
ventions. The returned struct has an incref the caller owns.

ici_cmp_unique 

int ici_cmp_unique(ici_obj_t *o1, ici_obj_t *o2)   

This is a convenience function which can be used directly as the t_cmp entry in a type’s 
ici_type_t struction if object of this type are intrinsically unique. That is, the object is one-to-one 
with the memory allocated to hold it. An object type would be instrinsically unique if you didn’t 
want to support comparison that considered the contents, and/or didn’t want to support copying. 
If you use this function you should almost certainly also be using ici_hash_unique and 
ici_copy_simple.

It returns 0 if the objects are the same object, else 1.

ici_copy_simple 

ici_obj_t * ici_copy_simple(ici_obj_t *o)   

This is a convenience function which can be used directly as the t_copy entry in a type’s 
ici_type_t struction if object of this type are intrinsically unique (i.e. are one-to-one with the 
memory they occupy, and can’t be merged) or intrinsically atomic (i.e. are one-to-one with their 
value, are are always merged). An object type would be instrinsically unique if you didn’t want 
to support comparison that considered the contents, and/or didn’t want to support copying. An 
intrinsically atomic object type would also use this function because, by definition, if you tried 
to copy the object, you’d just end up with the same one anyway.

It increfs o, and returns it.

ici_debug_t 

 struct ici_debug
 {
     void    (*idbg_error)(char *, ici_src_t *);
     void    (*idbg_fncall)(ici_obj_t *, ici_obj_t **, int);
     void    (*idbg_fnresult)(ici_obj_t *);
     void    (*idbg_src)(ici_src_t *);
     void    (*idbg_watch)(ici_obj_t *, ici_obj_t *, ici_obj_t 
*);
 }  

ICI debug interface. The interpreter has a global debug interface enable flag, 
ici_debug_enabled, and a global pointer, ici_debug, to one of these structs. If the flag is set, the 
interpreter calls these functions. See ici_debug and ici_debug_enabled.

idbg_error() Called with the current value of ici_error (redundant, for historical 
reasons) and a source line marker object (see ici_src_t) on an un-
caught error. Actually, this is not so useful, because it is currently 
called after the stack has been unwound. So a user would not be able 
to see their stack traceback and local context. This behaviour may 
change in future.

idbg_fncall()
The ICI Programming Language   167



Chapter 8: Interfacing with C and C++

168   The ICI P
Called with the object being called, the pointer to the first actual ar-
gument (see ARGS() and the number of actual arguments just before 
control is transfered to a callable object (function, method or any-
thing else).

idbg_fnresult() Called with the object being returned from any call.

idbg_src() Called each time execution passes into the region of a new source 
line marker. These typically occur before any of the code generated 
by a particular line of source.

idbg_watch() In theory, called when assignments are made. However optimisa-
tions in the interpreter have made this difficult to support without 
performance penalties even when debugging is not enabled. So it is 
currently disabled. The function remains here pending discovery of 
a method of achieving it efficiently.

ici_decref 

 #define ici_decref(o) ...  

Decrement the object ’o’s reference count. References from ordinary machine data objects (ie. 
variables and stuff, not other objects) are invisible to the garbage collector. These refs must be 
accounted for if there is a possibility of garbage collection. Note that most routines that make 
objects (new_*(), copy() etc...) return objects with 1 ref. The caller is expected to ici_decref() it 
when they attach it into wherever it is going.

ici_def_cfuncs 

int ici_def_cfuncs(ici_cfunc_t *cf)   

Define the given intrinsic functions in the current static scope. See ici_assign_cfuncs() for 
details.

Returns non-zero on error, in which case error is set, else zero.

ici_dont_record_line_nums 

 int     ici_dont_record_line_nums;  

Set this to non-zero to stop the recording of file and line number information as code is parsed. 
There is nothing in the interpreter core that sets this. Setting this can both save memory and 
increase execution speed (slightly). But diagnostics won’t report line numbers and source line 
debugging operations won’t work.

ici_enter 

void ici_enter(ici_exec_t *x)   

Enter code that uses ICI data. ICI data referes to *any* ICI objects or static variables. You must 
do this after having left ICI’s mutex domain, by calling ici_leave(), before you again access any 
ICI data. This call will re-acquire the global ICI mutex that gates access to common ICI data. 
You must pass in the ICI execution context pointer that you remembered from the previous 
matching call to ici_leave().
rogramming Language



Detailed description of ICI’s C API: ici_error
If the thread was in an ICI level critical section when the ici_leave() call was made, then this 
will have no effect (mirroring the no effect that happened when the ici_leave() was done).

Note that even ICI implementations without thread support provide this function. In these impl-
emnetations it has no effect.

ici_error 

 char            *ici_error;  

The global error message pointer. The ICI error return convention dictacts that the originator of 
an error sets this to point to a short human readable string, in addition to returning the functions 
error condition. See The error return convention for more details.

ici_eval 

ici_obj_t * ici_eval(ici_str_t *name)   

Evaluate name as if it was a variable in a script in the currently prevailing scope, and return its 
value. If the name is undefined, this will attempt to load extension modules in an attemot to get 
it defined.

This is slightly different from fetching the name from the top element of the scope stack (i.e. 
ici_vs.a_top[-1]) because it will attempt to auto-load, and fail if the name is not defined.

The returned object has had it’s reference count incremented.

Returns NULL on error, usual conventions.

ici_fetch 

 #define ici_fetch(o,k) ...  

Fetch the value of the key k from the object o. This macro just calls the particular object’s 
t_fetch() function.

Note that the returned object does not have any extra reference count; however, in some circum-
stances it may not have any garbage collector visible references to it. That is, it may be vunera-
ble to a garbage collection if it is not either incref()ed or hooked into a referenced object 
immediately. Callers are responsible for taking care.

Note that the argument o is subject to multiple expansions.

Returns NULL on failure, usual conventions.

ici_fetch_base 

 #define ici_fetch_base(o,k) ...  

Fetch the value of the key k from the object o, but only consider the base object, even if there is 
a super chain. See the notes on ici_fetch(), which also apply here. The object o *must* be one 
that supports super types (such as a struct or a handle).

ici_fetch_fail 

ici_obj_t * ici_fetch_fail(ici_obj_t *o, ici_obj_t *k)   
The ICI Programming Language   169



Chapter 8: Interfacing with C and C++

170   The ICI P
This is a convenience function which can be used directly as the t_fetch entry in a type’s 
ici_type_t struction if the type doesn’t support fetching. It sets ici_error to a message of the 
form:

 attempt to read %s keyed by % 

and returns 1. Also, it can b called from within a custom assign function in cases where the par-
ticular fetch is illegal.

ici_fetch_super 

 #define ici_fetch_super(o,k,v,b) ...  

Fetch the value of the key k from o and store it through v, but only if the item k is already an ele-
ment of o or one of its supers. See the notes on ici_fetch(), which also apply here. The object o 
*must* be one that supports supers (such as a struct or a handle).

This function is used internally in fetches up the super chain (thus the name). In this context the 
argument b indicates the base struct of the fetch and is used to maintain the internal lookup 
look-aside mechanism. If not used in this manner, b should be supplied as NULL.

Return -1 on error, 0 if it was not found, and 1 if it was found. If found, the value is stored in *v.

ici_file_close 

int ici_file_close(ici_file_t *f)   

Close the given ICI file f by calling the lower-level close function given in the ici_ftype_t asso-
ciated with the file. A guard flag is maintained in the file object to prevent multiple calls to the 
lower level function (this is really so we can optionally close the file explicitly, and let the gar-
bage collector do it to). Returns non-zero on error, usual conventions.

ici_file_new 

ici_file_t * ici_file_new(void *fp, ici_ftype_t *ftype, 
ici_str_t *name, ici_obj_t *ref)   

Return a file object with the given ftype and a file type specific pointer fp which is often some-
things like a STREAM * or a file descriptor. The name is mostly for error messages and stuff. 
The returned object has a ref count of 1. Returns NULL on error.

The ftype is a pointer to a struct of stdio-like function pointers that will be used to do I/O opera-
tions on the file (see ici_ftype_t). The given structure is assumed to exist as long as necessary. (It 
is normally a static srtucture, so this is not a problem.) The core-supplied struct ici_stdio_ftype 
can be used if fp is a STREAM *.

The ref argument is an object reference that the file object will keep in case the fp argument is an 
implicit reference into some object (for example, this is used for reading an ICI string as a file). 
It may be NULL if not required.

ici_float_new 

ici_float_t * ici_float_new(double v)   
rogramming Language



Detailed description of ICI’s C API: ici_float_ret
Return an ICI float object corresponding to the given value v. Note that floats are intrinsically 
atomic. The returned object will have had its reference count inceremented. Returns NULL on 
error, usual conventions.

ici_float_ret 

int ici_float_ret(double ret)   

Use return ici_float_ret(ret); to return a float (i.e. a C double) from an intrinsic fuction. The 
double will be converted to an ICI float.

  

ici_float_t 

 struct ici_float
 {
     ici_obj_t   o_head;
     double      f_value;
 }  

The C struct that is the ICI float object.

ici_free 

void ici_free(void *p)   

Free a block allocated with ici_alloc().

See also: ICIs allocation functions, ici_alloc(), ici_tfree(), ici_nfree().

ici_ftype_t 

 struct ici_ftype
 {
     int         (*ft_getch)();
     int         (*ft_ungetch)();
     int         (*ft_putch)();
     int         (*ft_flush)();
     int         (*ft_close)();
     long        (*ft_seek)();
     int         (*ft_eof)();
     int         (*ft_write)();
 }  

A set of function pointers for simple file abstraction. ICI file objects are implemented on top of 
this simple file abstraction in order to allow several different types of file-like entities. Each dif-
ferent type of file uses one of these structures with specific functions. Each function is assumed 
to be compatible with the stdio function of the same name. In the case were the file is a stdio 
stream, these *are* the stdio functions.

See also: ici_stdio_ftype.
The ICI Programming Language   171



Chapter 8: Interfacing with C and C++

172   The ICI P
ici_func 

int ici_func(ici_obj_t *callable, char *types, ...)   

Call a callable ICI object callable from C with simple argument marshalling and an optional 
return value. The callable object is typically a function (but not a function name, see ici_call for 
that case).

types is a string that indicates what C values are being supplied as arguments. It can be of the 
form ".=..." or "..." where the dots represent type key letters as described below. In the first case 
the 1st extra argument is used as a pointer to store the return value through. In the second case, 
the return value of the ICI function is not provided.

Type key letters are:

i The corresponding argument should be a C long (a pointer to a long in the case of 
a return value). It will be converted to an ICI int and passed to the function.

f The corresponding argument should be a C double. (a pointer to a double in the 
case of a return value). It will be converted to an ICI float and passed to the func-
tion.

s The corresponding argument should be a nul terminated string (a pointer to a char 
* in the case of a return value). It will be converted to an ICI string and passed to 
the function.

When a string is returned it is a pointer to the character data of an internal ICI string 
object. It will only remain valid until the next call to any ICI function.

o The corresponding argument should be a pointer to an ICI object (a pointer to an 
object in the case of a return value). It will be passed directly to the ICI function.

When an object is returned it has been ici_incref()ed (that is, it is held against gar-
bage collection).

Returns 0 on success, else 1, in which case ici_error has been set.

See also: ici_callv(), ici_method(), ici_call(), ici_funcv().

ici_funcv 

int ici_funcv(ici_obj_t *subject, ici_obj_t *callable, char 
*types, va_list va)   

This function is a variation on ici_func(). See that function for details on the meaning of the 
types argument.

va is a va_list (variable argument list) passed from an outer var-args function.

If subject is NULL, then callable is taken to be a callable object (could be a function, a method, 
or something else) and is called directly. If subject is non-NULL, it is taken to be an instance 
object and callable should be the name of one of its methods (i.e. an ici_str_t *).

ici_get_last_errno 

int ici_get_last_errno(char *dothis, char *tothis)   

Convert the current errno (that is, the standard C global error code) into an ICI error message 
based on the standard C strerror function. Returns 1 so it can be use directly in a return from an 
rogramming Language



Detailed description of ICI’s C API: ici_get_last_win32_error
ICI instrinsic function or similar. If dothis and/or tothis are non-NULL, they are included in the 
error message. dothis should be a short name like "open". tothis is typically a file name. The 
messages it sets are, depending on which of dothis and tothis are NULL, the message will be 
one of:

 strerror
 failed to dothis: strerror
 failed to dothis tothis: strerror
 tothis: strerror 

ici_get_last_win32_error 

int ici_get_last_win32_error(void)   

Windows only. Convert the current Win32 error (that is, the value of GetLastError()) into an ICI 
error message and sets ici_error to point to it. Returns 1 so it can be use directly in a return from 
an ICI instrinsic function.

ici_handle_method_check 

int ici_handle_method_check(ici_obj_t *inst, ici_str_t 
*name, ici_handle_t **h, void **p)   

Verify that a method on a handle has been invoked correctly. In particular, that inst is not NULL 
and is a handle with the given name. If OK and h is non-NULL, the handle is stored through it. 
If p is non-NULL, the associted pointer (h_ptr) is stored through it. Return 1 on error and sets 
ici_error, else 0.

For example, a typical method where the instance should be a handle of type XML_Parse might 
look like this:

 static int

 ici_xml_SetBase(ici_obj_t *inst)

 {

     char                *s;

     XML_Parser          p; 

     if (ici_handle_method_check(inst, ICIS(XML_Parser), NULL, &p))

         return 1;

     if (ici_typecheck("s", &s))

         return 1;

     if (!XML_SetBase(p, s))

         return ici_xml_error(p);

     return ici_null_ret();

 } 

ici_handle_new 

ici_handle_t * ici_handle_new(void *ptr, ici_str_t *name, 
ici_objwsup_t *super)   
The ICI Programming Language   173



Chapter 8: Interfacing with C and C++

174   The ICI P
Return a handle object corresponding to the given C data ptr, with the ICI type name (which 
may be NULL), and with the given super (which may be NULL).

The returned handle will have had its reference count inceremented.

ICI handle objects are generic wrapper/interface objects around some C data structure. They act, 
on the ICI side, as objects with the type name. When you are passed a handle back from ICI 
code, you can check this name to prevent the ICI program from giving you some other data 
type’s handle. (You can’t make handles at the script level, so you are safe from all except other 
native code mimicing your type name.)

Handles are intrinsicly atomic with respect to the ptr and name. So this function actually just 
finds the existing handle of the given data object if that handle already exists.

Handle’s will, of course, be garbage collected as usual. If your C data is dependent on the han-
dle, you should store a pointer to a free function for your data in the h_pre_free field of the han-
dle. It will be called just before the gardbage collector frees the memory of the handle.

If, on the other hand, your C data structure is the master structure and it might be freed by some 
other aspect of your code, you must consider that its handle object may still be referenced from 
ICI code. You don’t want to have it passed back to you and inadvertently try to access your freed 
data. To prevent this you can set the H_CLOSED flag in the handle’s object header when you 
free the C data (see ici_handle_probe()). Note that in callbacks where you are passed the handle 
object directly, you are reponsible to checking H_CLOSED. Also, once you use this mecha-
nism, you must *clear* the H_CLOSED field after a real new handle allocation (because you 
might be reusing the old memory, and this function might be returning to you a zombie handle).

Handles can support assignment to fields "just like a struct" by the automatic creation of a pri-
vate struct to store such values in upon first assignment. This mechanism is, by default, only 
enabled if you supply a non-NULL super. But you can enable it even with a NULL super by set-
ting O_SUPER in the handle’s object header at any time. (Actually, it is an historical accident 
that super was ever an argument to this function.)

Handles can support an interface function that allows C code to implement fetch and assign 
operations, as well as method invocation on fields of the handle. See the h_member_intf in the 
ici_handle_t type description (and the Common tasks section of this chapter.)

Handles can also be used as instances of an ICI class. Typically the class will have the methods 
that operate on the handle. In this case you will pass the class in super. Instance variables will be 
supported by the automatic creation of the private struct to hold them (which allows the class to 
be extended in ICI with additional instance data that is not part of your C code). However, note 
that these instance variables are not "magic". Your C code does not notice them getting fetched 
or assigned to.

ici_handle_probe 

ici_handle_t * ici_handle_probe(void *ptr, ici_str_t *name)   

If it exists, return a pointer to the handle corresponding to the C data structure ptr with the ICI 
type name. If it doesn’t exist, return NULL. The handle (if returned) will have been increfed.

This function can be used to probe to see if there is an ICI handle associated with your C data 
structure in existence, but avoids allocating it if does not exist already (as ici_handle_new() 
would do). This can be useful if you want to free your C data structure, and need to mark any 
ICI reference to the data by setting H_CLOSED in the handle’s object header.
rogramming Language



Detailed description of ICI’s C API: ici_handle_t
ici_handle_t 

 struct ici_handle
 {
     ici_objwsup_t   o_head;
     void            *h_ptr;
     ici_str_t       *h_name;
     void            (*h_pre_free)(ici_handle_t *h);
     ici_obj_t       *h_member_map;
     int             (*h_member_intf)(void *ptr, int id, 
ici_obj_t *setv, ici_obj_t **retv);
     int             (*h_general_intf)(ici_handle_t *h, 
ici_obj_t *k, ici_obj_t *setv, ici_obj_t **retv);
 }  

The C struct which is the ICI handle object. A handle is a generic object that can be used to refer 
to some C data object. Handles support an (optional) super pointer. Handles are named with an 
ICI string to give type checking, reporting, and diagnostic support. The handle object provides 
most of the generic machinery of ICI objects. An optional pre-free function pointer can be sup-
plied to handle cleanup on final collection of the handle.

See also ici_handle_new().

o_head The object header for objects that (can) support super pointers.

h_ptr The pointer to the primitive data object that his handle is associated 
with.

h_name The type name this handle will appear to have from ICI script code, 
and for type checking in interfacing with C.

h_pre_free An optional function that will be called just before this handle object 
is freed by the garbage collector. NULL if not needed.

h_member_map An optional map (NULL if not needed) as made by 
ici_make_handle_member_map() and used internally when the 
h_member_intf function is used.

h_member_intf An optional function (NULL if not needed) to implement property 
access and method invocation on the object. ptr is the h_ptr field of 
the handle. The implementation must know which id values apply to 
methods, and which to properties. When the id refers to a method, 
the usual environment for intrinsic function invocations can be as-
sumed (e.g. ici_typecheck() is available) except the return value 
should be stored through *retv without any extra reference count.

When the id refers to a property, if setv is non-NULL, this is an as-
signment of setv to the property. If the assignment is possible and 
proceeds without error, setv should be assigned to *retv prior to re-
turn (else *retv should be unmodified).

When the id refers to a property and setv is NULL, this is a fetch, 
and *retv should be set to the value, without any extra reference 
count.
The ICI Programming Language   175



Chapter 8: Interfacing with C and C++

176   The ICI P
In all cases, 0 indicates a successful return (although if *retv has not 
been updated, it will be assumed that the id was not actually a mem-
ber of this object and an error may be raised by the calling code). 
Non-zero on error, usual conventions.

h_general_intf An optional function (NULL if not needed) to implement general 
fetch and assign processing on the handle, even when the keys are 
not known in advance (as might happen, for example, if the object 
could be indexed by integers). If h_member_intf is non-NULL, and 
satisfied a fetch or assign first, this function is not called.

If setv is non-NULL, this is an assignment. If the assignment is to a 
key (k) that is valid and the assignment is successful, *retv should 
be updated with setv.

If setv is NULL, this is a fetch, and *retv should be set to the fetched 
value.

In both cases, no extra reference should be given to the returned ob-
ject.

In both cases, 0 indicates a successful return (although if *retv has 
not been updated, it will be assumed that the key was not actually a 
member of this object and an error may be raised by the calling 
code). Non-zero on error, usual conventions.

ici_hash_unique 

unsigned long ici_hash_unique(ici_obj_t *o)   

This is a convenience function which can be used directly as the t_hash entry in a type’s 
ici_type_t struction if object of this type are intrinsically unique. That is, the object is one-to-one 
with the memory allocated to hold it. An object type would be instrinsically unique if you didn’t 
want to support comparison that considered the contents, and/or didn’t want to support copying. 
If you use this function you should almost certainly also be using ici_cmp_unique and 
ici_copy_simple.

It returns hash based on the address o.

ici_incref 

 #define ici_incref(o) ...  

Increment the object ’o’s reference count. References from ordinary machine data objects (ie. 
variables and stuff, not other objects) are invisible to the garbage collector. These refs must be 
accounted for if there is a possibility of garbage collection. Note that most routines that make 
objects (new_*(), copy() etc...) return objects with 1 ref. The caller is expected to ici_decref() it 
when they attach it into wherever it is going.

ici_init 

int ici_init(void)   

Perform basic interpreter setup. Return non-zero on failure, usual conventions.
rogramming Language



Detailed description of ICI’s C API: ici_int_new
After calling this the scope stack has a struct for autos on it, and the super of that is for statics. 
That struct for statics is where global definitions that are likely to be visible to all code tend to 
get set. All the intrinsic functions for example. It forms the extern scope of any files parsed at 
the top level.

In systems supporting threads, on exit, the global ICI mutex has been acquired (with 
ici_enter()).

ici_int_new 

ici_int_t * ici_int_new(long i)   

Return the int object with the value v. The returned object has had its ref count incremented. 
Returns NULL on error, usual convention. Note that ints are intrinsically atomic, so if the given 
integer already exists, it will just incref it and return it.

Note, 0 and 1 are available directly as ici_zero and ici_one.

ici_int_ret 

int ici_int_ret(long ret)   

Use return ici_int_ret(ret); to return an integer (i.e. a C long) from an intrinsic fuction.

ici_int_t 

 struct ici_int
 {
     ici_obj_t   o_head;
     long        i_value;
 }  

The C struct that is the ICI int object.

ici_interface_check 

int ici_interface_check(unsigned long mver, unsigned long 
bver, char const *name)   

Check that the seperately compiled module that calls this function has been compiled against a 
compatible versions of the ICI core that is now trying to load it. An external module should call 
this like:

 if (ici_interface_check(ICI_VER, ICI_BACK_COMPAT_VER, 
"myname"))
     return NULL; 

As soon as it can on load. ICI_VER and ICI_BACK_COMPAT_VER come from ici.h at the 
time that module was compiled. This functions compares the values passed from the external 
modules with the values the core was compiled with, and fails (usual conventions) if there is 
any incompatibility.
The ICI Programming Language   177



Chapter 8: Interfacing with C and C++

178   The ICI P
ici_leave 

ici_exec_t * ici_leave(void)   

Leave code that uses ICI data. ICI data refers to *any* ICI objects or static variables. You would 
want to call this because you are about to do something that uses a lot of CPU time or blocks for 
any real time. But you must not even sniff any of ICI’s data until after you call ici_enter() again. 
ici_leave() releases the global ICI mutex that stops ICI threads from simultaneous access to 
common data. All ICI objects are "common data" because they are shared between threads.

Returns the pointer to the ICI execution context of the current thread. This must be preserved (in 
a local variable on the stack or some other thread safe location) and passed back to the matching 
call to ici_enter() you will make some time in the future.

If the current thread is in an ICI level critical section (e.g. the test or body of a watifor) this will 
have no effect (but should still be matched with a call to ici_enter().

This function never fails.

Note that even ICI implementations without thread support provide this function. In these impl-
emnetations it has no effect.

ici_main 

int ici_main(int argc, char *argv[])   

An optional main entry point to the ICI interpreter. ici_main handles a complete interpreter life-
cycle based on the given arguments. A command line ICI interpreter is expected to simply pass 
its given argc and argv on to ici_main then return its return value.

If ici_main2 fails (that is, returns non-zero) it will also set ici_error in the usual ICI manner. 
However it will have already printed an error message on standard error, so no further action 
need be taken.

ici_main handles all calls to ici_init() and ici_uninit() within its scope. A program calling 
ici_main should *not* call ici_init().

argc and argv are as standard for C main functions. For details on the interpretation of the argu-
ments, see documentation on normal command line invocation of the ICI interpreter.

ici_make_handle_member_map 

ici_obj_t * ici_make_handle_member_map(ici_name_id_t *ni)   

Build the map that ici_handle_t objects use to map a member name (used in ICI code) to an 
integer ID (used in the C code). The returned map is actually an ICI struct. It is returned with 1 
refernce count.

The argument ni should be a pointer to the first element of an arrary of ici_name_id_t structs 
that contain the names of members and the integer IDs that your code would like to refere to 
them by. All members that are to be invoked as methods calls must include the flag 
H_METHOD in the ID. (This flag is removed from the ID when it is passed back to your code. 
H_METHOD is the most significant bit in the 32 bit ID.) The list is terminated by an entry with 
a name of NULL.

For example:

 enum {P_Property1, P_Property2, M_Method1, M_Method2, ...}; 
rogramming Language



Detailed description of ICI’s C API: ici_mem_new
 static ici_name_id_t member_name_ids[] =
 {
     {"Property1",        P_Property1},
     {"Property2",        P_Property1},
     {"Method1",          M_Method1},
     {"Method2",          M_Method2},
     {NULL},
 } 

 ici_obj_t   *ici_member_map; 

 ...
     ici_member_map = 
ici_make_handle_member_map(member_name_ids)
     if (ici_member_map == NULL)
         ... 

ici_mem_new 

ici_mem_t * ici_mem_new(void *base, size_t length, int 
accessz, void (*free_func)())   

Return a new ICI mem object refering to the memory at address base with length length, which 
is measured in units of accessz bytes. accessz must be either 1, 2 or 4. If free_func is provided it 
will be called when the mem object is about to be freed with base as an argument.

Returns NULL on error, usual conventions.

ici_method 

int ici_method(ici_obj_t *inst, ici_str_t *mname, char 
*types, ...)   

Call the method mname of the object inst with simple argument marshalling.

See ici_func() for an explanation of types. Apart from calling a method, this function behaves in 
the same manner as ici_func().

ici_method_check 

int ici_method_check(ici_obj_t *o, int tcode)   

Return 0 if o (the subject object argument supplied to C implemented methods) is present (indi-
cating a method call was made) and is an object with a super and, (if tcode != TC_NONE) has 
the given type code. Else return 1 and set error appropriately.

ici_method_new 

ici_method_t * ici_method_new(ici_obj_t *subject, ici_obj_t 
*callable)   

Returns a new ICI method object that combines the given subject object (typically a struct) with 
the given callable object (typically a function). A method is also a callable object.
The ICI Programming Language   179



Chapter 8: Interfacing with C and C++

180   The ICI P
Returns NULL on error, usual conventions.

ici_module_new 

ici_objwsup_t * ici_module_new(ici_cfunc_t *cf)   

Create a new module struct and assign the given cfuncs into it (as in ici_assign_cfuncs()). 
Returns NULL on error, usual conventions. The returned struct has an incref the caller owns.

ici_nalloc 

void * ici_nalloc(size_t z)   

Allocate an object of the given size. Return NULL on failure, usual conventions. The resulting 
object must be freed with ici_nfree() and only ici_nfree(). Note that ici_nfree() also requires to 
know the size of the object being freed.

This function is preferable to ici_alloc(). It should be used if you can know the size of the allo-
cation when the free happens so you can call ici_nfree(). If this isn’t the case you will have to 
use ici_alloc().

See also: ICIs allocation functions, ici_talloc(), ici_alloc(), ici_nfree().

ici_need_stdin 

ici_file_t * ici_need_stdin(void)   

Return the ICI file object that is the current value of the stdin name in the current scope. Else 
NULL, usual conventions. The file has not increfed (it is referenced from the current scope, 
until that assumption is broken, it is known to be uncollectable).

ici_need_stdout 

ici_file_t * ici_need_stdout(void)   

Return the file object that is the current value of the stdout name in the current scope. Else 
NULL, usual conventions. The file has not increfed (it is referenced from the current scope, 
until that assumption is broken, it is known to be uncollectable).

ici_nfree 

void ici_nfree(void *p, size_t z)   

Free an object allocated with ici_nalloc(). The size passed here must be exactly the same size 
passed to ici_nalloc() when the allocation was made. If you don’t know the size, you should 
have called ici_alloc() in the first place.

See also: ICIs allocation functions, ici_nalloc().

ici_null 

 #define ici_null ...  

This ICI NULL object. It is of type (ici_obj_t *).
rogramming Language



Detailed description of ICI’s C API: ici_null_ret
ici_null_ret 

 #define ici_null_ret() ...  

Use return ici_null_ret(); to return a ICI NULL from an intrinsic fuction.

ici_obj_t 

 struct ici_obj
 {
     char        o_tcode;
     char        o_flags;
     char        o_nrefs;
     char        o_leafz;
 }  

This is the universal header of all objects. Each object includes this as its first element. In the 
real structures associated with each object type the type specific stuff follows 

o_tcode The small integer type code that characterises this object. Standard 
core types have well known codes identified by the TC_* defines. 
Other types are registered at run-time and are given the next avail-
able code.

This code can be used to index ici_types[] to discover a pointer to 
the type structure.

o_flags Some boolean flags. Well known flags that apply to all objects oc-
cupy the lower 4 bits of this byte. The upper four bits are available 
for object specific use. See O_* below.

o_nrefs A small integer count of the number of references to this object that 
are *not* otherwise visible to the garbage collector.

o_leafz If (and only if) this object does not reference any other objects (i.e. 
its t_mark() function just sets the O_MARK flag), and its memory 
cost fits in this signed byte (< 127), then its size can be set here to 
accelerate the marking phase of the garbage collector. Else it must 
be zero. 

The generic flags that may appear in the lower 4 bits of o_flags are:

O_MARK The garbage collection mark flag.

O_ATOM Indicates that this object is the read-only atomic form of all objects 
of the same type with the same value. Any attempt to change an ob-
ject in a way that would change its value with respect to the t_cmp() 
function (see ici_type_t) must check for this flag and fail the attempt 
if it is set.

O_SUPER This object can support a super.

ici_objname 

char * ici_objname(char p[ICI_OBJNAMEZ], ici_obj_t *o)   

Format a human readable version of the object o into the buffer p in less than 30 chars. Returns 
p. See The error return convention for some examples.
The ICI Programming Language   181



Chapter 8: Interfacing with C and C++

182   The ICI P
ici_objwsup_t 

 struct ici_objwsup
 {
     ici_obj_t       o_head;
     ici_objwsup_t   *o_super;
 }  

"Object with super." This is a specialised header for all objects that support a super pointer. All 
such objects must have the O_SUPER flag set in o_flags and provide the t_fetch_super() and 
t_assign_super() functions in their type structure. The actual o_super pointer will be NULL if 
there is no actual super, which is different from O_SUPER being clear (which would mean there 
could not be a super, ever).

ici_parse 

int ici_parse(ici_file_t *f, ici_objwsup_t *s)   

Parse the given file f in the given scope s. It is common to call this function with s being 
ici_vs.a_top[-1], that is, the current scope.

Returns non-zero on error, usual conventions.

ici_parse_file 

int ici_parse_file(char *mname, char *file, ici_ftype_t 
*ftype)   

Parse a file as a new top-level module. This function create new auto and static scopes, and 
makes the current static scope the exern scope of the new module. This function takes a generic 
file-like stream. The specific stream is identified by file and the stdio-like access functions 
required to read it are contained in the structure pointed to by ftype. A name for the module, for 
use in error messages, is supplied in mname (typically the name of the file).

This function can be used when the source of data to be parsed is not a real file, but some other 
source like a resource.

The file is closed prior to a successful return, but not a failure.

Return 0 if ok, else -1, usual conventions.

ici_parse_fname 

int ici_parse_fname(char *fname)   

Parse a file as a new top-level module. This function create new auto and static scopes, and 
makes the current static scope the exern scope of the new module. This function takes a file 
name which it opens with fopen (as opposed to ici_parse_file which can be used to parse more 
generic data sources).

Return 0 if ok, else -1, usual conventions.

ici_ptr_new 

ici_ptr_t * ici_ptr_new(ici_obj_t *a, ici_obj_t *k)   
rogramming Language



Detailed description of ICI’s C API: ici_register_type
Return a new ICI pointer object. The pointer will point to the element keyed by k in the object a.

The returned object has had it’ reference count incremented.

Returns NULL on error, usual conventions.

ici_register_type 

int ici_register_type(ici_type_t *t)   

Register a new ici_type_t structure and return a new small int type code to use in the header of 
objects of that type. The pointer t passed to this function is retained and assumed to remain valid 
indefinetly (it is normally a statically initialised structure).

Returns the new type code, or zero on error in which case ici_error has been set.

ici_rego 

 #define ici_rego(o) ...  

Register the object o with the garbage collector. Object that are registered with the garbage col-
lector can get collected. This is typically done after allocaton and initialisation of basic fields 
when making a new object. Once an object has been registered with the garbage collector, it can 
*only* be freed by the garbage collector.

(Not all objects are registered with the garabage collector. The main exception is staticly defined 
objects. For example, the ici_cfunt_t objects that are the ICI objects representing functions 
coded in C are typically staticly defined and never registered. However there are problems with 
unregistered objects that reference other objects, so this should be used with caution.)

ici_ret_no_decref 

int ici_ret_no_decref(ici_obj_t *o)   

General way out of an intrinsic function returning the object o where the given object has no 
extra refernce count. Returns 0 indicating no error.

This is suitable for using as a return from an intrinsic function as say:

 return ici_ret_no_decref(o); 

If the object you are returning has an extra reference which must be decremented as part of the 
return, use ici_ret_with_decref() (above).

ici_ret_with_decref 

int ici_ret_with_decref(ici_obj_t *o)   

General way out of an intrinsic function returning the object o, but the given object has a refer-
ence count which must be decref’ed on the way out. Return 0 unless the given o is NULL, in 
which case it returns 1 with no other action.

This is suitable for using as a return from an intrinsic function as say:

 return ici_ret_with_decref(objof(ici_int_new(2))); 
The ICI Programming Language   183



Chapter 8: Interfacing with C and C++

184   The ICI P
(Although see ici_int_ret().) If the object you wish to return does not have an extra reference, 
use ici_ret_no_decref().

ici_set_new 

ici_set_t * ici_set_new()   

Return a new ICI set object. The returned set has been increfed. Returns NULL on error, usual 
conventions.

ici_sopen 

ici_file_t * ici_sopen(char *data, int size, ici_obj_t *ref)   

Create an ICI file object that treats the given data (of length size) as a read-only file. If ref is 
non-NULL it is assumed to be an object that must hang around for this data to stay valid, and 
the data is used in-place (this is used when reading an ICI string as a file). But if ref is NULL, it 
is assumed that the data must be copied into a private allocation first. The private allocation will 
be freed when the file is closed.

Returns NULL on error, usual conventions.

ici_src_t 

 struct ici_src
 {
     ici_obj_t   s_head;
     int         s_lineno;
     ici_str_t   *s_filename;
 }  

The C struct which is the ICI src object. These are never seen by ICI script code. They are 
source line markers that are passed to debugger functions to indicate source location. 

s_filename The name of the source file this source marker is associated with.

s_lineno The linenumber.

ici_str_alloc 

ici_str_t * ici_str_alloc(int nchars)   

Allocate a new string object (single allocation) large enough to hold nchars characters, and reg-
ister it with the garbage collector. Note: This string is not yet an atom, but must become so as it 
is *not* mutable.

WARINING: This is *not* the normal way to make a string object. See ici_str_new().

ici_str_buf_new 

ici_str_t * ici_str_buf_new(int n)   

Return a new mutable string (i.e. one with a seperate growable allocation). The initially allo-
cated space is n, but the length is 0 until it has been set by the caller.
rogramming Language



Detailed description of ICI’s C API: ici_str_get_nul_term
The returned string has a reference count of 1 (which is caller is expected to decrement, eventu-
ally).

Returns NULL on error, usual conventions.

ici_str_get_nul_term 

ici_str_t * ici_str_get_nul_term(char *p)   

Make a new atomic immutable string from the given nul terminated string of characters.

The returned string has a reference count of 0, unlike ici_str_new_nul_term() which is exactly 
the same in other respects.

Returns NULL on error, usual conventions.

ici_str_need_size 

int ici_str_need_size(ici_str_t *s, int n)   

Ensure that the given string has enough allocated memory to hold a string of n characters (and a 
guard 0 which this routine stores). Grows ths string as necessary. Returns 0 on success, 1 on 
error, usual conventions. Checks that the string is mutable and not atomic.

ici_str_new 

ici_str_t * ici_str_new(char *p, int nchars)   

Make a new atomic immutable string from the given characters.

Note that the memory allocated to a string is always at least one byte larger than the listed size 
and the extra byte contains a 0. For when a C string is needed.

The returned string has a reference count of 1 (which is caller is expected to decrement, eventu-
ally).

See also: ici_str_new_nul_term() and ici_str_get_nul_term().

Returns NULL on error, usual conventions.

ici_str_new_nul_term 

ici_str_t * ici_str_new_nul_term(char *p)   

Make a new atomic immutable string from the given nul terminated string of characters.

The returned string has a reference count of 1 (which is caller is expected to decrement, eventu-
ally).

Returns NULL on error, usual conventions.

ici_str_ret 

int ici_str_ret(char *str)   

Use return ici_str_ret(str); to return a nul terminated string from an intrinsic fuction. The string 
will be converted into an ICI string.
The ICI Programming Language   185



Chapter 8: Interfacing with C and C++

186   The ICI P
ici_struct_new 

ici_struct_t * ici_struct_new(void)   

Return a new ICI struct object. The returned struct has been increfed. Returns NULL on error, 
usual conventions.

ici_struct_unassign 

void ici_struct_unassign(ici_struct_t *s, ici_obj_t *k)   

Remove the key k from the ICI struct object s, ignoring super-structs.

ici_talloc 

 #define ici_talloc(t) ...  

Allocate an object of the given type t. Return NULL on failure, usual conventions. The resulting 
object *must* be freed with ici_tfree(). Note that ici_tfree() also requires to know the type of the 
object being freed.

ici_tfree 

 #define ici_tfree(p, t) ...  

Free the object o which was allocated by a call to ici_talloc() with the type t. The object *must* 
have been allocated with ici_talloc().

ici_type_t 

 struct ici_type
 {
     unsigned long (*t_mark)(ici_obj_t *);
     void        (*t_free)(ici_obj_t *);
     unsigned long (*t_hash)(ici_obj_t *);
     int         (*t_cmp)(ici_obj_t *, ici_obj_t *);
     ici_obj_t   *(*t_copy)(ici_obj_t *);
     int         (*t_assign)(ici_obj_t *, ici_obj_t *, 
ici_obj_t *);
     ici_obj_t   *(*t_fetch)(ici_obj_t *, ici_obj_t *);
     char        *t_name;
     void        (*t_objname)(ici_obj_t *, char 
[ICI_OBJNAMEZ]);
     int         (*t_call)(ici_obj_t *, ici_obj_t *);
     ici_str_t   *t_ici_name;
     int         (*t_assign_super)(ici_obj_t *, ici_obj_t *, 
ici_obj_t *, ici_struct_t *);
     int         (*t_fetch_super)(ici_obj_t *, ici_obj_t *, 
ici_obj_t **, ici_struct_t *);
     int         (*t_assign_base)(ici_obj_t *, ici_obj_t *, 
ici_obj_t *);
     ici_obj_t   *(*t_fetch_base)(ici_obj_t *, ici_obj_t *);
     ici_obj_t   *(*t_fetch_method)(ici_obj_t *, ici_obj_t 
rogramming Language



Detailed description of ICI’s C API: ici_type_t
*);
     void        *t_reserved2;   /* Must be zero. */
     void        *t_reserved3;   /* Must be zero. */
     void        *t_reserved4;   /* Must be zero. */
 }  

Every object has a header. In the header the o_tcode (type code) field can be used to index the 
ici_types[] array to discover the obejct’s type structure. This is the type structure.

Implemantations of new types typically declare one of these strutures statically and initialise its 
members with the functions that determine the nature of the new type. (Actually, most of the 
time it is only initialised as far as the t_name field. The remainder is mostly for intenal ICI use 
and should be left zero.) 

t_mark(o) Must sets the O_MARK flag in o->o_flags of this object and all ob-
jects referenced by this one which don’t already have O_MARK set. 
Returns the approximate memory cost of this and all other objects it 
sets the O_MARK of. Typically recurses on all referenced objects 
which don’t already have O_MARK set (this recursion is a potential 
problem due to the uncontrolled stack depth it can create). This is 
only used in the marking phase of garbage collection.

The macro ici_mark() calls the t_mark function of the object (based 
on object type) if the O_MARK flag of the object is clear, else it re-
turns 0. This is the usual interface to an object’s mark function.

The mark function implemantation of objects can assume the 
O_MARK flag of the object they are being invoked on is clear.

t_free(o) Must free the object o and all associated data, but not other objects 
which are referenced from it. This is only called from garbage col-
lection. Care should be taken to remember that errors can occur dur-
ing object creation and that the free function might be asked to free 
a partially allocated object.

t_cmp(o1, o2) Must compare o1 and o2 and return 0 if they are the same, else non 
zero. This similarity is the basis for merging objects into single 
atomic objects and the implementation of the == operator.

Currently only zero versus non-zero results are significant. However 
in future versions the t_cmp() function may be generalised to return 
less than, equal to, or greater than zero depending if o1 is less than, 
equal to, or greater than o2. New implementations would be wise to 
adopt this usage now.

Some objects are by nature both unique and intrinsically atomic (for 
example, objects which are one-to-one with some other allocated 
data which they alloc when the are created and free when they die). 
For these objects the existing function ici_cmp_unique() can be 
used as their implementation of this function.

It is very important in implementing this function not to miss any 
fields which may otherwise distinguish two obejcts. The cmp, hash 
and copy operations of an object are all related. It is useful to check 
that they all regard the same data fields as significant in performing 
their operation.

t_copy(o)
The ICI Programming Language   187



Chapter 8: Interfacing with C and C++

188   The ICI P
Must returns a copy of the given object. This is the basis for the im-
plementation of the copy() function. On failure, NULL is returned 
and error is set. The returned object has been ici_incref’ed. The re-
turned object should cmp() as being equal, but be a distinct object 
for objects that are not intrinsically atomic.

Intrinsically atomic objects may use the existing function 
ici_copy_simple() as their implemenation of this function.

Return NULL on failure, usual conventions.

t_hash(o) Must return an unsigned long hash which is sensitive to the value of 
the object. Two objects which cmp() equal should return the same 
hash.

The returned hash is used in a hash table shared by objects of all 
types. So, somewhat problematically, it is desireable to generate 
hashes which have good spread and seperation across all objects.

Some objects are by nature both unique and intrinsically atomic (for 
example, objects which are one-to-one with some other allocated 
data which they alloc when the are created and free when they die). 
For these objects the existing function ici_hash_unique() can be 
used as their implementation of this function.

t_assign(o, k, v) Must assign to key k of the object o the value v. Return 1 on error, 
else 0.

The existing function ici_assign_fail() may be used both as the im-
plementation of this function for object types which do not support 
any assignment, and as a simple method of generating an error for 
particular assignments which break some rule of the object.

Not that it is not necessarilly wrong for an intrinsically atomic object 
to support some form of assignment. Only for the modified field to 
be significant in a t_cmp() operation. Objects which are intrinsically 
unique and atomic often support assignments.

Return non-zero on failure, usual conventions.

t_fetch(o, k) Fetch the value of key k of the object o. Return NULL on error.

Note that the returned object does not have any extra reference 
count; however, in some circumstances it may not have any garbage 
collector visible references to it. That is, it may be vunerable to a 
garbage collection if it is not either incref()ed or hooked into a ref-
erenced object immediately. Callers are responsible for taking care.

The existing function ici_fetch_fail() may be used both as the imple-
mentation of this function for object types which do not support any 
assignment, and as a simple method of generating an error for par-
ticular fetches which break some rule of the object.

Return NULL on failure, usual conventions.

t_name The name of this type. Use for the implementation of typeof() and in 
error messages. But apart from that, type names have no fundamen-
tal importance in the langauge and need not even be unique.

t_objname(o, p)
rogramming Language



Detailed description of ICI’s C API: ici_typecheck
Must place a short (less than 30 chars) human readable representa-
tion of the object in the given buffer. This is not intended as a basis 
for re-parsing or serialisation. It is just for diagnostics and debug. 
An implementation of t_objname() must not allocate memory or 
otherwise allow the garbage collector to run. It is often used to gen-
erate formatted failure messages after an error has occured, but be-
fore cleanup has completed.

t_call(o, s) Must call the object o. If the object does not support being called, 
this should be NULL. If s is non-NULL this is a method call and s 
is the subject object of the call. Return 1 on error, else 0. The envi-
ronment upon calling this function is the same as that for intrinsic 
functions. Functions and techniques that can be used in intrinsic 
function implementations can be used in the implementation of this 
function. The object being called can be assumed to be on top of the 
operand stack (i.e. ici_os.a_top[-1])

t_ici_name A ici_str_t copy of t_name. This is just a cached version so that ty-
peof() doesn’t keep re-computing the string.

t_fetch_method An optional alternative to the basic t_fetch() that will be called (if 
supplied) when doing a fetch for the purpose of forming a method. 
This is really only a hack to support COM under Windows. COM 
allows remote objects to have properties, like object.property, and 
methods, like object:method(). But without this special hack, we 
can’t tell if a fetch operation is supposed to perform the COM get/
set property operation, or return a callable object for a future method 
call. Most objects will leave this NULL.

Return NULL on failure, usual conventions.

ici_typecheck 

int ici_typecheck(char *types, ...)   

Marshall function arguments in a call from ICI to C. This function may only be called from the 
implementation of an intrinsic function.

types is a character string. Each character corresponds to an actual argument in the ICI side of 
the call. Each is checked according to the particular letter, and possibly converted and/or 
assigned through a corresponing pointer to a C-side data item provided in the vargars argument 
list to this function.

Any detected type mismatches result in a non-zero return. If all types match, all assignments 
will be made and zero will be returned.

The key letters that may be used in types, and their meaning, are:

o Any ICI object is required in the ICI actuals, the corresponding vararg must be a 
pointer to an (ici_obj_t *); which will be set to the actual argument.

h An ICI handle object. The next available vararg must be an ICI string object. The 
corresponding ICI argument must be a handle with that name. The next (again) 
available vararg after that is a pointer to store the (ici_handle_t *) through.

p An ICI ptr object is required in the actuals, then as for o.

d An ICI struct object is required in the actuals, then as for o.
The ICI Programming Language   189



Chapter 8: Interfacing with C and C++

190   The ICI P
a An ICI array object is required in the actuals, then as for o.

u An ICI file object is required in the actuals, then as for o.

r An ICI regexp object is required in the actuals, then as for o.

m An ICI mem object is required in the actuals, then as for o.

i An ICI int object is required in the actuals, the value of this int will be stored 
through the corresponding pointer which must be a (long *).

f An ICI float object is required in the actuals, the value of this float will be stored 
through the corresponding pointer which must be a (double *).

n An ICI float or int object is required in the actuals, the value of this float or int will 
be stored through the corresponding pointer which must be a (double *).

s An ICI string object is required in the actuals, the corresponding pointer must be a 
(char **). A pointer to the raw characters of the string will be stored through this 
(this will be 0 terminated by virtue of all ICI strings having a gratuitous 0 just past 
their real end). These characters can be assumed to remain available until control 
is returned back to ICI because the string is still on the ICI operand stack and can’t 
be collected. Once control has reurned to ICI, they could be collected at any time.

- The acutal parameter at this position is skipped, but it must be present.

* All remaining actual parametes are ignored (even if there aren’t any).

The capitalisation of any of the alphabetic key letters above changes their meaning. The acutal 
must be an ICI ptr type. The value this pointer points to is taken to be the value which the above 
descriptions concern themselves with (i.e. in place of the raw actual parameter).

There must be exactly as many actual arguments as key letters unless the last key letter is a *.

Error returns have the usual ICI error conventions.

ici_typeof 

 #define ici_typeof(o) ...  

Return a pointer to the ici_type_t struct of the given object.

ici_uninit 

void ici_uninit(void)   

Shut down the interpreter and clean up any allocations. This function is the reverse of ici_init(). 
It’s first action is to call any wrap-up functions registered through ici_atexit()

Calling ici_init() again after calling this hasn’t been adequately tested.

This routine currently does not handle shutdown of other threads, either gracefully or ungrace-
fully. They are all left blocked on the global ICI mutex without any help of recovery.

ici_waitfor 

int ici_waitfor(ici_obj_t *o)   

Wait for the given object to be signaled. This is the core primitive of the waitfor ICI language 
construct. However this function only does the actual waiting part. When called, it will release 
rogramming Language



Building ICI on various platforms: ici_wakeup
the ICI mutex, and wait for the object o to be signaled by an ici_wakeup call. It will the re-
aquire the mutex and return. It should always be assumed that any particular object could be 
"woken up" for reasons that are not aparent to the waiter. In other words, always check that the 
condition that necessitates you waiting has really finished.

The caller of this function would use a loop such as:

 while (condition-not-met)
     waitfor(object); 

Returns non-zero on error. Usual conventions. Note that this function will always fail in imple-
mentations without thread support.

ici_wakeup 

int ici_wakeup(ici_obj_t *o)   

Wake up all ICI threads that are waiting for the given object (and thus allow them re-evaluate 
their wait expression).

ici_yield 

void ici_yield(void)   

Allow a switch away from, and back to, this ICI thread, otherwise no effect. This allows other 
ICI threads to run, but by the time this function returns, the ICI mutex has be re-acquired for the 
current thread. This is the same as as ici_enter(ici_leave()), except it is more efficient when no 
actual switching was required.

Note that even ICI implementations without thread support provide this function. In these impl-
emnetations it has no effect.

Building ICI on various platforms

Windows

Coming soon.

Some tips for debugging extension modules in Visual C: In order to make sure that the ICI 
executable loads the debug version you have built (rather than an installed version of the exten-
sion module), do this: For Program arguments in the Settings/Debug/General tab, use:

-e "rpush(path, \"Debug\");" -f test.ici

for the Debug build, and:

-e "rpush(path, \"Release\");" -f test.ici

for the Release build. 

UNIX-like systems

Coming soon.
The ICI Programming Language   191



Chapter 8: Interfacing with C and C++

192   The ICI P
How it works

These are notes for a new chapter. Cover:

• Implementation of parser/compiler and execution engine using the common data structures.

• Operation of the execution engine.

• Logic behind objects semantics - single pointer, no special cases.

• Garbage collector.

• Lookup-lookaside.
rogramming Language



CHAPTER 9 Obsolete features and 
mistakes
OBSOLETE: Method Calls ###

In addition to the above ICI has a simple mechanism for calling methods — functions contained 
within an object (typically a struct) that accept that object as their first parameter. The method 
call mechanism is enabled via a modification to the call operator, "()", to add semantics for call-
ing a pointer object and through the addition of a new operator, binary-@, to form a pointer 
object from an object and a key. ICI pointers, described below, consist of an object and a key. To 
indirect though the pointer the object is indexed by the key and the resulting object used as the 
result. This is the same operation used in dynamic dispatch in languages such as Smalltalk and 
Objective-C.

The call operator now accepts a pointer as its first operand (we may think of the call operator as 
an n-ary operator that takes a function or pointer object as its first operand and the function 
parameters as the remaining operands). When a pointer is "called", the key is used to index the 
pointer’s container object and the result, which must be a function object, is called. In addition 
the container object within the pointer is passed as an implicit first parameter to the function 
(thus passing the actual object used to invoke the method to the method). Apart from the calling 
semantics the functions used to implemented methods are in all respects normal ICI functions.

Struct objects are typically used as the "container" for objects used with methods. The super 
mechanism provides the hierarchial search needed to allow class objects to be shared by multi-
ple instances and provide a natural means of encapsulating information.

A typical way of using methods is,

/*
 * Define a "class" object representing our
 * class and containing the class methods.
 */
static MyClass = [struct

    doubleX = [func (self)
    {
        return self.x * 2;
    }]
The ICI Programming Language   193



Chapter 9: Obsolete features and mistakes

194   The ICI P
];

...

static a;
a = struct(@MyClass);
a.x = 21;
printf("%d\n", a@doubleX());

We first define a class by using a literal struct to contain our named methods. You could also 
define class variables in this struct as it is shared by all instances of that class. In our class we’ve 
got a single method, doubleX, that doubles the value of an instance variable called x.

Later in the program we create an instance of a MyClass object by making a new struct object 
and setting its super struct to the class struct. The super is made atomic which ensures all 
instances share the same object and makes it read-only for them. Then we create an "instance 
variable" within the object by assigning 21 to a.x and finally invoke the method. We do not pass 
any parameters to doubleX. The call through the pointer object formed by the binary-@ opera-
tor passes "a" implicitly

event = waitfor(event...)

###waitfor has the same name as the new waitfor statement. But I doubt anybody is using this 
function. Can we retire it? TML

Blocks (waits) until an event indicated by any of its arguments occurs, then returns that argu-
ment.  The interpretation of an event depends on the nature of each argument.  A file argument 
is triggered when input is available on the file. A float argument waits for that many seconds to 
expire, an int for that many millisecond (they then return 0, not the argument given). Other 
interpretations are implementation dependent. Where several events occur simultaneously, the 
first as listed in the arguments will be returned.

Note that in some implementations some file types may always appear ready for input, despite 
the fact that they are not.

argc

The count of the number of elements in argv. Initially equal to nels(argv).

Mistakes

All too often in language design you realise you made an early mistake and it’s too late to fix it. 
This is a place I can write them down. There are a lot more than are written here of course.

• Indexing a string should never have returned a one character sub-string. It should have 
returned an integer character code.

• The gsub and smash functions shouldn’t have used \ as their escape character.
rogramming Language



: 
Symbols
40

 at start of line 40
' 39
” 39

A
abs 98
acos 98
alloc 98
any 107
ARG, C API macro 158
argc 194
ARGS, C API macro 158
argv 98
array 98
asin 98
assign 98
atan 99
atan2 99
audible bell 40
auto variable 41

B
back space 40
backslash 39, 40
build 99

C
calendar 100
call 100
carriage return 40
ceil 101
CF_ARG1, C API macro 158
character-code 39
chdir 101
close 101
cmp 101
comments 40
control character 40
copy 101
cos 101
cputime 101
currentfile 101

D
debug 102
del 102
dir 103
double quote 39, 40

E
eof 103
eq 103
escap 40
eventloop 103
execution engine 39
exit 104
exp 104
explode 104
extern 41

F
fail 104
fetch 104
float 104, 112
floor 104
flush 104
fmod 104
fopen 105
form feed 40

G
getchar 105
getcwd 105
getenv 105
getfile 105
getline 105
gettoken 105
gettokens 106
gsub 107

H
hassuper, C API macro 160
hex, character code 40

I
ici_alimit, C API macro 160
ici_alloc, C API function 160
ici_anext, C API macro 161
ici_argcount, C API function 161
ici_argerror, C API function 161
ici_array_find_slot, C API function 162
ici_array_gather, C API function 162
ici_array_get, C API function 162
ici_array_nels, C API function 162
ici_array_new, C API function 162
ici_array_pop, C API function 163
ici_array_push, C API function 163
ici_array_rpop, C API function 163
ici_array_rpush, C API function 163
ici_assign, C API macro 163
ici_assign_base, C API macro 163
ici_assign_cfuncs, C API function 164
ici_assign_fail, C API function 164
ici_assign_super, C API macro 164
ici_astart, C API macro 164
ici_atexit, C API function 165
ici_atom, C API function 165
ici_atom_probe, C API function 165
ICI_BACK_COMPAT_VER, C API macro 159
ici_call, C API function 165
ici_callv, C API function 165
ici_cfunc_t, C API struct 166
ici_chkbuf, C API macro 166
ici_class_new, C API function 166
ici_cmp_unique, C API function 167
ici_copy_simple, C API function 167
ici_debug_t, C API struct 167
ici_decref, C API macro 168
ici_def_cfuncs, C API function 168
ICI_DIR_SEP, C API macro 159
ICI_DLL_EXT, C API macro 159
ici_dont_record_line_nums, C API variable 168
ici_enter, C API function 168
The ICI Programming Language   195



Chapter 10: 
ici_error, C API variable 169
ici_eval, C API function 169
ici_fetch, C API macro 169
ici_fetch_base, C API macro 169
ici_fetch_fail, C API function 169
ici_fetch_super, C API macro 170
ici_file_close, C API function 170
ici_file_new, C API function 170
ici_float_new, C API function 170
ici_float_ret, C API function 171
ici_float_t, C API struct 171
ici_free, C API function 171
ici_ftype_t, C API struct 171
ici_func, C API function 172
ici_funcv, C API function 172
ici_get_last_errno, C API function 172
ici_get_last_win32_error, C API function 173
ici_handle_method_check, C API function 173
ici_handle_new, C API function 173
ici_handle_probe, C API function 174
ici_handle_t, C API struct 175
ici_hash_unique, C API function 176
ici_incref, C API macro 176
ici_init, C API function 176
ici_int_new, C API function 177
ici_int_ret, C API function 177
ici_int_t, C API struct 177
ici_interface_check, C API function 177
ici_leave, C API function 178
ici_main, C API function 178
ici_make_handle_member_map, C API 

function 178
ici_mem_new, C API function 179
ici_method, C API function 179
ici_method_check, C API function 179
ici_method_new, C API function 179
ici_module_new, C API function 180
ici_nalloc, C API function 180
ici_need_stdin, C API function 180
ici_need_stdout, C API function 180
ici_nfree, C API function 180
ICI_NO_OLD_NAMES, C API macro 159
ici_null, C API macro 180
ici_null_ret, C API macro 181
ICI_OBJ_SET_TFNZ, C API macro 159
ici_obj_t, C API struct 181
ici_objname, C API function 181
ici_objwsup_t, C API struct 182
ici_parse, C API function 182
ici_parse_file, C API function 182
ici_parse_fname, C API function 182
ICI_PATH_SEP, C API macro 160
ici_ptr_new, C API function 182
ici_register_type, C API function 183
ici_rego, C API macro 183
ici_ret_no_decref, C API function 183
ici_ret_with_decref, C API function 183
ici_set_new, C API function 184
ici_sopen, C API function 184
ici_src_t, C API struct 184
ici_str_alloc, C API function 184
ici_str_buf_new, C API function 184
ici_str_get_nul_term, C API function 185

ici_str_need_size, C API function 185
ici_str_new, C API function 185
ici_str_new_nul_term, C API function 185
ici_str_ret, C API function 185
ici_struct_new, C API function 186
ici_struct_unassign, C API function 186
ici_talloc, C API macro 186
ici_tfree, C API macro 186
ici_type_t, C API struct 186
ici_typecheck, C API function 189
ici_typeof, C API macro 190
ici_uninit, C API function 190
ICI_VER, C API macro 160
ici_waitfor, C API function 190
ici_wakeup, C API function 191
ici_yield, C API function 191
identifier, lexicon 40
implode 107
include 107
integer, lexicon 40
interval 107
isa 108
isatom 108

K
keys 108
keywords 40

L
lexical analyser 39
load 108
log 108
log10 108

M
mem 108
module 40
mopen 109

N
NARGS, C API macro 160
nels 109
new 109
newline 40
now 109
num 109

O
octal, character code 40

P
parse 109
parser 39, 41
parsetoken 110
parsevalue 111
path 111
pop 112
popen 112
printf 112
profile 112
push 113
put 113
putenv 113
196   The ICI Programming Language



: 
Q
question mark 40

R
rand 114
reclaim 114
regexp 114
regexpi 114
regular-expression 40
rejectchar 114
rejecttoken 114
remove 115
rename 115
respondsto 115
rpop 115
rpush 115

S
scope 40, 115
seek 115
set 115
signal 116
signam 116
sin 116
single quote 39, 40
sleep 116
smash 116
sopen 117
sort 117
sprintf 118
sqrt 118
static 41
strbuf 118

strcat 118
string 39, 119
string-literal 40
struct 119
sub 119
super 119
syntax 41

notation 41
system 120

T
tab 40
tan 120
thread 120
tochar 120
toint 120
tokenobj 120
tokens 39
top 120
typeof 120, 121

V
variables 40
version 121
vertical tab 40
vstack 121

W
waitfor 194
wakeup 121
web site 11
which 122
The ICI Programming Language   197



Chapter 10: 
198   The ICI Programming Language


	The ICI Programming Language
	CHAPTER 1 Introduction
	CHAPTER 2 A brief tutorial for C programmers
	Hello world
	Program structure
	Variables and arithmetic
	Lexicon, syntax and flow control statements
	Aggregate data types and the nature of objects
	Making and manipulating aggregates

	Literal data items
	Other operations and core functions
	Regular expressions


	CHAPTER 3 Some sample programs
	Ackermann’s function
	Array access
	Count lines/words/characters
	Echo client/server
	Exception mechanisms
	Fibonacci numbers
	Hash (associative array) access
	Hashes, part II
	Heapsort
	Hello world
	List operations
	Matrix multiplication
	Method calls
	Nested loops
	Producer/consumer threads
	Random number generator
	Regular expression matching
	Reverse a file
	Sieve of Eratosthenes
	Spell checker
	Statistical moments
	String concatenation
	Sum a column of integers
	Word frequency count

	CHAPTER 4 ICI Language Reference
	The lexical analyser
	An introduction to variables, modules and scope
	The parser
	Expressions
	Factors
	An introduction to arrays, sets and structs
	Built-in literal factors
	User defined literal factors
	Primary operators
	Terms
	Prefix operators
	Postfix operators
	Binary operators
	Binary operator summary

	Statements
	Simple expression statements
	Compound statements
	The if statement
	The while statement
	The do-while statement
	The for statement
	The forall statement
	The switch, case, and default statements
	The break and continue statements
	The return statement
	The try statement
	The critsect statement
	The waitfor statement
	The null statement
	Declaration statements
	Abbreviated function declarations
	Functions

	Objects
	Equality
	Structure and set keys
	Structure super types
	An aside on variables and scope

	Base types
	array - An ordered sequence of objects
	exec - A thread execution context
	file - An open file reference
	float - A double precision floating point number
	func - A function
	int - A signed 32 bit integer
	mem - A reference to raw machine memory
	method - A binding of a function and a subject object
	ptr - A reference to a storage location
	regexp - A compiled regular expression
	set - An unordered collection of objects
	string - An ordered sequence of 8 bit characters
	struct - An unordered set of mappings

	Operators
	Automatic library loading


	CHAPTER 5 Object-oriented programming in ICI
	Sub-classes
	Global methods
	Taking advantage of dynamic binding
	Standard global methods

	CHAPTER 6 Core language functions and variables
	Core function summary
	Core language functions
	float|int = abs(float|int)
	angle = acos(x)
	mem = alloc(nwords [, wordz])
	string = argv[]
	array = array(any...)
	float = asin(x)
	value = assign(struct, key, value)
	angle = atan(x)
	angle = atan2(y, x)
	array|struct = build(dims... [, options, content...])
	float|struct = calendar(struct|float)
	return = call(func [, any...], array|NULL)
	float = ceil(x)
	Change the current working directory to the specified path.
	close(file)
	int = cmp(a, b)
	any = copy(any)
	any = any:copy()
	x = cos(angle)
	float = cputime([float])
	file = currentfile(["raw"])
	int = debug([int])
	del(aggr, key)
	array = dir([path,] [regexp,] [format])
	int = eq(obj1, obj2)
	int = eof([file])
	eventloop()
	exit([string|int|NULL])
	float = exp(x)
	array = explode(string)
	fail(string)
	value = fetch(struct, key)
	value = float(x)
	float = floor(x)
	flush([file])
	float = fmod(x, y)
	file = fopen(name [, mode])
	string = getchar([file])
	string = getcwd()
	string = getenv(string)
	string = getfile([file])
	string = getline([file])
	string = gettoken([file [, seps]])
	array = gettokens([file [, seps [, terms, [delims]]]])
	string = gsub(string, string|regexp, string)
	string = implode(array)
	struct = include(string [, scope])
	value = int(any [, base])
	subpart = interval(str_or_array, start [, length])
	int = inst|class:isa(any)
	int = isatom(any)
	array = keys(struct)
	any = load(string)
	float = log(x)
	float = log10(x)
	mem = mem(start, nwords [, wordz])
	file = mopen(mem [, mode])
	int = nels(any)
	inst = class:new()
	float = now()
	number = num(x [, base])
	scope = parse(source [, scope])
	string = parsetoken(file)
	any = parsevalue(file)
	string = path[]
	any = pop(array)
	file = popen(string, [mode])
	float = pow(x, y)
	printf([file,] fmt, args...)
	profile(filename)
	any = push(array, any)
	put(string [, file])
	putenv(string)
	int = rand([seed])
	reclaim()
	re = regexp(string [, int])
	re = regexpi(string [, int])
	rejectchar(file, str)
	rejecttoken(file)
	remove(string)
	any = rpop(array)
	any = rpush(array, any)
	current = scope([replacement])
	int = seek(file, int, int)
	set = set(any...)
	func = signal(string|int [, string|func])
	string = signam(int)
	x = sin(angle)
	sleep(num)
	array = smash(string [, regexp [, replace...] [, include_remainder])
	file = sopen(string [, mode])
	array = sort(array [, func [, arg]])
	string = sprintf(fmt, args...)
	x = sqrt(float)
	string = strbuf([string])
	string = strcat(string [, int] , string...)
	string = string(any)
	struct = struct([super,] key, value...)
	string = sub(string, string|regexp, string)
	current = super(struct [, replacement])
	int = system(string)
	x = tan(angle)
	exec = thread(callable, args...)
	string = tochar(int)
	int = toint(string)
	any = tokenobj(file)
	any = top(array [, int])
	int = trace(string)
	string = typeof(any)
	string = version()
	array = vstack([int])
	wakeup(any)
	struct = which(key [, struct])


	CHAPTER 7 Regular expressions
	Regular expression syntax
	Backslash
	Circumflex and dollar
	Full stop (period,dot)
	Square brackets
	Vertical bar
	Internal option settings
	Subpatterns
	Repetition
	Back references
	Assertions
	Once-only subpatterns
	Conditional subpatterns
	Comments
	Performance
	Author

	CHAPTER 8 Interfacing with C and C++
	Universal rules and conventions
	Include files and libraries
	The nature of ICI objects
	Garbage collection, ici�_incref() and ici_decref()
	The error return convention
	ICI’s allocation functions

	Common tasks
	Writing a simple function that can be called from ICI
	Calling an ICI function or method from C
	Making new ICI primitive types
	Using ICI handle types to interface to C/C++ objects
	Writing and compiling a dynamically loading extension module
	Referring to ICI strings from C code
	Accessing ICI array objects from C
	Using ICI independently from multiple threads

	Summary of ICI’s C API
	Detailed description of ICI’s C API
	ARG
	ARGS
	CF_ARG1
	ICI_BACK_COMPAT_VER
	ICI_DIR_SEP
	ICI_DLL_EXT
	ICI_NO_OLD_NAMES
	ICI_OBJ_SET_TFNZ
	ICI_PATH_SEP
	ICI_VER
	NARGS
	hassuper
	ici_alimit
	ici_alloc
	ici_anext
	ici_argcount
	ici_argerror
	ici_array_find_slot
	ici_array_gather
	ici_array_get
	ici_array_nels
	ici_array_new
	ici_array_pop
	ici_array_push
	ici_array_rpop
	ici_array_rpush
	ici_assign
	ici_assign_base
	ici_assign_cfuncs
	ici_assign_fail
	ici_assign_super
	ici_astart
	ici_atexit
	ici_atom
	ici_atom_probe
	ici_call
	ici_callv
	ici_cfunc_t
	ici_chkbuf
	ici_class_new
	ici_cmp_unique
	ici_copy_simple
	ici_debug_t
	ici_decref
	ici_def_cfuncs
	ici_dont_record_line_nums
	ici_enter
	ici_error
	ici_eval
	ici_fetch
	ici_fetch_base
	ici_fetch_fail
	ici_fetch_super
	ici_file_close
	ici_file_new
	ici_float_new
	ici_float_ret
	ici_float_t
	ici_free
	ici_ftype_t
	ici_func
	ici_funcv
	ici_get_last_errno
	ici_get_last_win32_error
	ici_handle_method_check
	ici_handle_new
	ici_handle_probe
	ici_handle_t
	ici_hash_unique
	ici_incref
	ici_init
	ici_int_new
	ici_int_ret
	ici_int_t
	ici_interface_check
	ici_leave
	ici_main
	ici_make_handle_member_map
	ici_mem_new
	ici_method
	ici_method_check
	ici_method_new
	ici_module_new
	ici_nalloc
	ici_need_stdin
	ici_need_stdout
	ici_nfree
	ici_null
	ici_null_ret
	ici_obj_t
	ici_objname
	ici_objwsup_t
	ici_parse
	ici_parse_file
	ici_parse_fname
	ici_ptr_new
	ici_register_type
	ici_rego
	ici_ret_no_decref
	ici_ret_with_decref
	ici_set_new
	ici_sopen
	ici_src_t
	ici_str_alloc
	ici_str_buf_new
	ici_str_get_nul_term
	ici_str_need_size
	ici_str_new
	ici_str_new_nul_term
	ici_str_ret
	ici_struct_new
	ici_struct_unassign
	ici_talloc
	ici_tfree
	ici_type_t
	ici_typecheck
	ici_typeof
	ici_uninit
	ici_waitfor
	ici_wakeup
	ici_yield

	Building ICI on various platforms
	Windows
	Some tips for debugging extension modules in Visual C:

	UNIX-like systems

	How it works

	CHAPTER 9 Obsolete features and mistakes
	OBSOLETE: Method Calls ###
	event = waitfor(event...)
	argc
	Mistakes


