Database | ndependent Abstraction Layer
for C

libdbi Programmer’s Guide (OUTDATED SEE
README!)

David A. Parker

Neon Goat Productions

david@neongoat.com

Database Independent Abstraction Layer for C: libdbi Programmer’s Guide (OUTDATED SEE
README!)
by David A. Parker

Document revision: $1d: programmers-guide.sgml,v 1.10 2002/10/26 23:19:46 dap Exp $ Edition
Published $Date: 2002/10/26 23:19:46 $
Copyright © 2001-2002 David Parker, Neon Goat Productions

libdbi implements a database-independent abstraction layer in C, similar to the DBI/DBD layer in Perl. Writing
one generic set of code, programmers can leverage the power of multiple databases and multiple simultaneous
database connections by using this framework.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1
or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no
Back-Cover Texts. A copy of the license is included in Appendix A.

Table of Contents

O 1 T [0 Tox o SRS 1
1.0 DESCIIPTION .vtet ettt bbbt e bbbkt b bbbt b bbb re bt bbb bt et b b e b bt e b bbb enas 1
1.2. libdbi Concepts and TErMINOIOGYccvieiiiieieece e st sre et st rere e ne e 1
1.3. Modifications and redistribution of DIcccoeviiiiiiii e 1
L4, CONMTACT INTO...ceiitiie ettt b bbbt bt et eb b s eb e b nb e e st b e b e nes 1

2. libdbi in a Nutshell (QUICKSLArt GUITE)cevirieirieiiirieesiee ettt 2
2.1, QUICK OVEIVIBW.ietiriiietisestetesiete st es sttt sttt sttt b st b e b bbb e b8 b bbb b st bttt en et b e b ene e 2
2.2. GENErIC EXAMPIE PIOGIAM ..ottt bbbttt bbbt 2

I T o Lo | o TR AN oI L = = g Tor TSRO 4
B0 0o £ T o] 1 VA 0o o] S 4

3.1, dADI_INITIAIIZE ..o bbb 4
K T0 7o | o T V1 [0 o SRS 4
T o | oY= 657 o o OO USOTRT PR SR 4
3.2, DIIVEE INFIASIIUCTUIE ..ottt ettt sttt sttt ettt es et et et se et ene et et e ete s 4
IO o | o T o [Y71 S) OSSR 4
I o | o o [1Y/=T g o] o =] o OSSP TESPRTTTR 5
3.2.3. dbi_driver_iS_reServVed WOIGcooirieririrerieieicete ettt et 5
3.2.4. dbi_driver_Specific_TUNCHIONccccoiiieere e et 5
3.2.5. dDi_driVer_QUOLE SEIING......coviieieiee ettt sttt st se et r b e s 6
3.2.6. DrIVEr INFOIMALION......ccuiiiieie ettt ettt et nee s 6
3.2.6.1. dDi_driVEr gL NAIME.....ciiiiiiieieiieiieie ettt b et sb e e et seeneane s 6
3.2.6.2. dbi_driver_get fileName..........ccoeririiiii e e 6
3.2.6.3. dbi_driver_get deSCriPLION.........curireiiiie ettt e aenea 6
3.2.6.4. dbi_driver_get_ MaiNtaiNercooreiiire ittt st s seesaenea 7
3.2.6.5. dDI_driVEr gL UFL...cuieeiiiiee et st 7
3.2.6.6. ADI_driVEr gL VEISION.....ciitiiiiieieeeiete ettt et sttt e e ene s 7
3.2.6.7. dbi_driver_get_date COMPIIEd.........ccveviiiiiiicicicee e 7

3.3. CONNECLION INFTASIIUCTUIE.eviiiiiieti et bbbt bbbt bbbt 8
IO 20 o | o T o 1o T 1.2 USSR 8
IR 207 | o T o] 1 T] o V=13 PSS 8
IR I Mo o T o] g T o <1 Ao |6 1YY RSP 8
IR IS o | o T o] g T Y=1 A 0] o1 o RSP 9
3.3.5. dbi_conn_set_ OPtION_ NUMETIC. ... cviiiiiieieeire sttt st e st se e neere e ene e 9
3.3.6. dDi_CONN_ gL OPLION ...viiiice ettt b e et e et e e e s 9
3.3.7. dbi_conn_get_OptiON_ NUMETICeiciceee ittt sttt e re e sneae e 10
3.3.8. dbi_conn_get_optioN_ LIStccoiiiiiiecici e e 10
IS Ao o o] o g Tl [=F: T o] o1 o] o PSSR 10
IR I8 0 Ao o T o] o o (=T U o] o] o] 1 RS STRS 11
3.3.11. dDi_CONN_GEL SOCKELeuvcvreieiteiee ettt sttt r e e se e tesr e e naereseesneneanens 11
IO T8 720 o o T o] o T o [0 11 SRR 11
3.3.13L ErTOr HANAIING ...ttt 11
1T 20 0 0 o o T oo 0 T (. SOOI 12
3.3.13.2. dbi_conn_error_handIer...........cooiiiiie e 12

3.4. SQL and Database INFraStrUCLUIEcoiiieieiciieese ettt st e 12
3.4. 1. ADI_CONN_CONNECT......cctiiteeiiieie sttt sttt st st ee e b s et e b see e e e snenbe e 12
3.4.2..dDi_CONN_GEL AD TSt e ene s 13
3.4.3. dbi_conn_get_table TiSt.........ccoiiiiieieec et e 13
344, ADI_CONN_QUETY ...cvteiiieieiee ettt ettt n et n s 13
3.4.5. dDi_CONN_QUEIY NUIL....ceiiiiii ettt st eneene s 14
3.4.6. dDI_CONN_SEIECT AD ..o e e 14
347, ADI_FESUIT_gBE CONM. ..ttt bttt et b e eresne s 14
3.4.8. UDI_FESUIT FrBE ..ttt b et 15
3.4.9. UDI_FESUIT_SEEK FOWeiiiiiciiciectee ettt bttt et sae e eresne s 15
3.4.10. dDI_TESUIL_FIFSE FOW .. .ieeiecei ettt sttt eneene s 15

3.4.11. dDI_TESUIL TASE FOW.....cveiicei ettt st e se et se e neere e e eneenens 15

3.4.12. ADI_TESUIL DIV _FOW ...ttt ettt st ettt se bbb e eneene s 16

3.4.13. ADI_FESUIT NEXE FOW ...ttt ettt ettt e bbb e eneene s 16
3.4.14. dDI_reSUIt gt NUMIFOWS.c.ciiieiieiietes ettt ettt sttt sttt seeneene s 16
3.4.15. dbi_result_get nuMrows_affeCted..........couiireiiie e 17
3.5, RetrieVING FIEld JatAc.eeieeiiieieeice e 17
3.5.1. dbi_result_get field_SIZe ..o e 17
3.5.2. dbi_result_get_field_SIZe 10Xcooeieiiriiiieiee et e 17
3.5.3. dbi_result_get_field_1engthcooooiiii e 18
3.5.4. dbi_result_get_field_1ength_IaXccoiiiiiiiie e 18
3.5.5. dbi_result_get fIeld TaXccciiiiiiecece e 18
3.5.6. dbi_result_get field NAME......cccv e e 19
3.5.7. dbi_result_get NUMFIEIAS. ..o ene s 19
3.5.8. dbi_result_get field tYPe ...cvciiiiiceceee e 19
3.5.9. dbi_result_get field type 10Xccccieieiiiiieccce e e 20
3.5.10. dbi_result_get field_attrib.........cccoeveiiiiiiicce e 20
3.5.11. dbi_result_get_field_attrib_idX.......ccccoeiiiiniiiciiire e 20
3.5.12. dbi_result_get field_attribscccccveieiiiicece e e 21
3.5.13. dbi_result_get_field_attribs_idXcccceoiiiiirieiiiicsse e e 21
3.5.14. dbi_result_get fielUS......ccvcr i e 21
3.5.15. dbi_result_bind_fields........c.cciiiiiiiiie e 22
3.5.16. dDi_reSUIt gBL ChaN.....ccviicee e e et ereene 23
3.5.17. dDi_reSUIt gL UCNAT......cicei et eneene s 23
3.5.18. dbi_resUlt_get SNOMtc.vcuice e e e ene 23
3.5.19. dDi_reSUIt_ gt USNOITcuiiieiieee et e s e ene s 23
3.5.20. dDI_FeSUIT_ gL 10N ...ttt s ene 24
3.5.21. dDi_reSUIt_get_UIONG .c.voueieieieiee bbb e 24
3.5.22. dbi_result_get_loNgIoNG ..o 24
3.5.23. dbi_result_get_UIONGIONGc.coiviiiiiiriiriese e 25
3.5.24. dDi_reSUlt_get_flOALceouiiiieee e e 25
3.5.25. dbi_result_get_dOUDIE..........coii e 25
3.5.26. dDI_reSUIt_ gL SEIING .ovieieieeiee ettt e st e ene s 26
3.5.27. dDi_result_get_DINAIYcooiiiie e e 26
3.5.28. dDi_result_get_StriNQ_COPY....ccririiiriirieiirieieisieie sttt 26
3.5.29. dbi_result_get_DIiNary_COPYcuriiiireirieisee e 27
3.5.30. dbi_result_get datetime..... ... e e 27
3.5.31. dDi_resUlt_DINA_ChArccciie e e e 27
3.5.32. dbi_result_DiNd_UCKhArccoiiiieee e e e 28
3.5.33. dbi_result_bind_SNOMt........c.coi i e e 28
3.5.34. dbi_result_Bind_USNOI ..o e eneene s 28
3.5.35. dbi_result_BiNd_1ONQccvciiiiiiieccce e e e ene 29
3.5.36. dbi_result_bind_UIONG.......c.coviiiiicice et srenaene 29
3.5.37. dbi_result_bind_1oNGIONG........cciiieieiie et 29
3.5.38. dbi_result_bind_UloNGIONG.......cccoovcieiiiie e 30
3.5.39. dbi_result_bind_float.........c.ccoiiiiiiiiiciie e e 30
3.5.40. dbi_result_bind_dOUBIEcccvivie e 30
3.5.41. dbi_result_BiNd_StrNGccciiiiiiiiecrcc e ene 31
3.5.42. dbi_result_bind_DINArYccooiiiiice e e 31
3.5.43. dbi_result_bind_StriNG_COPY ...vivreieierie ittt st re e s nas 31
3.5.44. dbi_result_bind_DIiNary COPYcccccvciviiiiiieiecs et 32
3.5.45. dbi_result_bind_datetimecccoveieiiiie i 32
3.5.46. dbi_result_get Char 10Xc.ccviiiiiecici e 33
3.5.47. dDi_result_get_UCHAr I0Xccoiiiieieie e e 33
3.5.48. dbi_result_get_SNOM_ T0Xcccoiiireeice e e 33
3.5.49. dbi_result_get_USNOIT_IAX ...c.ciiiirieiieiee e s 33
3.5.50. dDi_result_get_10NQ_ 10X ...c..oiiiiiiieieie e e e 34
3.5.51. dbi_result_get_UIONG T0Xccciiiireieiee e e 34
3.5.52. dbi_result_get_1onglong_ 10Xcooieiriiieee e 34

3.5.53. dbi_result_get_ulonglonNg_ 10Xcoveeiiiieieie e e 35

3.5.54. dbi_result_get_float iaX ..o 35

3.5.55. dbi_result_get_double 10X ... 35
3.5.56. dDi_result_get StrNG 10Xccoviirieieire et 36
3.5.57. dbi_result_get_DINAry 10Xccocoooieiie e e 36
3.5.58. dbi_result_get_StriNg_COPY 10Xevueeeiiirierieirie et st 36
3.5.59. dbi_result_get_binary COPY 10Xcoiueiiiiriierereree et 37
3.5.60. dbi_result_get_datetime _TaX........coeieiiriiieieie et 37

A. GNU Free DOCUMENTALION LICENSE......cueiieeie ettt s eee sttt esette s st e s st e s e e te s seasessabesssstesssesssbeessasesssannssrenss 38

Chapter 1. Introduction

1.1. Description

libdbi provides application developers with a database independent abstraction layer for C. It handles the
database-specific implementations for each type of database, so that you can use the same exact code with any
type of database server that libdbi supports. You can initiate and use multiple database connections
simultaneously, regardless of the types of database servers you are connecting to. The plugin architecture allows
for new database drivers to be easily added dynamically by a third party.

1.2. libdbi Concepts and Terminology

In this guide, the terms “user” and “programmer” are used interchangably, since the target audience is the
software developer using libdbi in his program. The libdbi architecture provides serveral “drivers”, one for each
type of database server. All drivers are loaded into memory upon libdbi initiallization and are made available to
the programmer. Once a driver is instantiated, it represents a distinct database session and is called a
“connection”. Multiple connections may exist for a single driver, and all will function independently of each
other. A star character (*) represents a wildcard matching any letters. For example, “dbi_conn_*” would

represent all functions beginning with “dbi_conn_".

1.3. Modifications and redistribution of libdbi

libdbi is Copyright © 2001-2002, David Parker and Mark Tobenkin.

libdbi is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any
later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

1.4. Contact Info

Please email us with any bugs, ideas, feature requests, or questions. The libdbi website has the latest version of
this documentation and the libdbi software, as well as a central database of third-party drivers.

« http://libdbi.sourceforge.net
- David Parker <davi d@eongoat . conm>

- Mark Tobenkin <mar k@r ent woodr adi 0. con®

Chapter 2. libdbi in a Nutshell (Quickstart Guide)

2.1. Quick Overview

libdbi uses a plugin system that allows various databases to be supported simultaneously, and can dynamically
load or unload drivers that are supplied by libdbi or a third party. The library is initiallized by calling
dbi_initialize and a connection instance is started by calling either dbi_conn_new or both dbi_driver_open and
dbi_conn_open.

The connection’s options (username, password, hostname, etc.) are set with dbi_conn_set_option and
dbi_conn_set_option_numeric. Once all options are set, dbi_conn_connect will connect to the database, waiting
to handle a dbi_conn_query. After a successful query, you can retrieve rows with dbi_result_first_row,
dbi_result_last_row, dbi_result_prev_row, dbi_result_next_row, and dbi_result_seek_row.

There are two methods for fetching field data, and two ways to perform each method. You can either "pull” the
data from DBI using the dbi _r esul t _get _* family of functions, or have DBI automatically "push" the data
into predefined variables with the dbi _r esul t _bi nd_* family of functions.

Pulling the data from the database can be done with one of the "get" functions such as dbi_result_get_long or
dbi_result_get_string, which simply return the data in the field you asked for. You can also get more than one
field at a time with dbi_result_get fields, which uses a printf-like syntax.

If you want DBI to automatically fill your program’s variables with field values whenever a new row is fetched,
you can "bind" fields to your variables. Bindings are set up with dbi_result_bind_long, dbi_result_bind_string,
and the rest of the bind family of functions. Like the associated "get" function, you can set up multiple bindings
at once with the dbi_result_bind_fields function.

Caveats:

« For fields holding integers (not fractional numbers), DBI differentiates between signed and unsigned
variables. By default, DBI returns signed values. If you want an unsigned value, prepend a "u" to the name of
the target type. For example, dbi_result_bind_short becomes dbi_result_bind_ushort.

« You must set up any bindings AFTER a successful query but BEFORE you fetch any rows. Even if you are
using field bindings, you can still use the dbi_result_get * functions as usual. (actually, I lied... setting up a
binding should theoretically work at any time, but don’t plan on this behavior in future versions)

« All string and binary data returned or bound from DBI is READ-ONLY. If you want your own local copy that
can be modified at will, use dbi_result_get_string_copy, dbi_result_get binary_copy,
dbi_result_bind_string_copy, or dbi_result_bind_binary_copy. You will be responsible for freeing the
memory allocated by these functions.

dbi_result_next_row and the other row-seeking functions will return zero when there are no more rows available.
Before the next database operation is performed, you must call dbi_result_free. Before the program terminates,
the connection must be disconnected and unloaded with dbi_conn_close and libdbi must be unloaded with
dbi_shutdown.

2.2. Generic Example Program

#i ncl ude <stdi o. h>
#i ncl ude <dbi / dbi . h>

int main() {
dbi _conn conn;
dbi _result result;

doubl e threshold = 4. 333333;
unsi gned | ong i dnunber;
const char *full nane;

dbi _initialize(NULL);
conn = dbi _conn_new"nysql");

dbi _conn_set _option(conn, "host", "l ocal host");
dbi _conn_set _option(conn, "usernane", "chug");
dbi _conn_set _option(conn, "password", "dIP'");
dbi _conn_set _option(conn, "dbnane", "db_name");

dbi _conn_connect (conn);
result = dbi_conn_query(conn, "SELECT id, name FROM coders "
"WHERE hours_of _sleep > %. 2f", threshol d)

while (dbi_result_next_row(result)) {

i dnunber = dbi _result_get_ulong(result, "id");
full name = dbi _result_get_string(result, "name");
printf("%. %\n", idnunber, fullnane);

}

dbi _result _free(result);
dbi _conn_cl ose(conn);
dbi _shut down()

return O;

}

Compile with: gcc -Im -Idl -ldbi -o foo foo.c

Of course, a complete program should be checking for errors. This example omits error-checking for the sake of
clarity. There are also other ways to retrieve data after a successful query. Keep reading on to see the rest.

Chapter 3. libdbi API Reference

3.1. Core Library Functions

3.1.1. dbi_initialize

int dbi_initialize(const char *driverdir)

Locates all available shared modules (drivers) and loads them into memory.

Arguments

dri verdi r: The directory to search for drivers. If NULL, DBI_DRIVER_DIR (defined at compile time)
will be used instead.

Returns

The number of drivers successfully loaded, or -1 if there was an error.

3.1.2. dbi_shutdown

voi d dbi _shut down()

Frees all loaded drivers and terminates the DBI system. You should close each connection you opened before
shutting down, but libdbi will clean up after you if you don’t.

3.1.3. dbi_version

const char *dbi _version()

Requests the version of libdbi. The calling program must not attempt to free the returned string.

Returns

A string containing the library’s name and version.

3.2. Driver Infrastructure

3.2.1. dbi_driver_list

dbi _driver dbi_driver_list(dbi_driver Current)

Enumerates all loaded drivers. If Current is NULL, the first available driver will be returned. If Current is a valid
driver, the next available driver will be returned.

Arguments

Cur r ent : The current driver in the list of drivers.

Returns

The next available driver, or NULL if there is an error or no more are available.

3.2.2. dbi_driver_open

dbi _driver dbi _driver_open(const char *nane)

Locate the driver with the specified name.

Arguments

nane: The name of the driver to open.

Returns

The requested driver, or NULL if there is an error or it is not found.

3.2.3. dbi_driver_is_reserved word

int dbi_driver_is_reserved_word(dbi _driver Driver, const char *word)

Looks for the specified word in the list of reserved words. The result of this function may vary between
databases. Case does not matter.

Arguments
Dri ver: The target driver.

wor d: The word to check against the reserved word list.

Returns

-1 if an error occurs, 0 if the word is not reserved, 1 otherwise.

3.2.4. dbi_driver_specific_function

voi d *dbi _driver_specific_function(dbi _driver Driver, const char *nane)

Returns a function pointer to the specifed custom function. This can be used to access database-specific
functionality, but it will restrict your code to one particular database, lessening the benefits of using libdbi.

Arguments
Dri ver: The target driver.

name: The name of the custom function.

Returns

If the custom function is found, a pointer to that function. If not, returns NULL.

3.2.5. dbi_driver_quote_string

int dbi _driver_quote_string(dbi _driver Driver, char **orig)

Encloses the target string in the types of quotes that the database expects, and escapes any special characters.
The original string will be freed and will point to a newly allocated one (which you still must free on your own).

Arguments
Dri ver: The target driver.

ori g: A pointer to the string to quote and escape.

Returns

The new string’s length.

3.2.6. Driver Information

3.2.6.1. dbi_driver_get_name

const char *dbi _driver_get_nane(dbi _driver Driver)

Requests the name of the specified driver. The calling program must not attempt to free the returned string.

Arguments

Dri ver: The target driver.

Returns

A string containing the driver’s name.

3.2.6.2. dbi_driver_get_filename

const char *dbi _driver_get filename(dbi _driver Driver)

Requests the filename of the specified driver. The calling program must not attempt to free the returned string.
Arguments
Dri ver: The target driver.

Returns

A string containing the driver’s full path and file name.

3.2.6.3. dbi_driver_get_description

const char *dbi _driver_get _description(dbi_driver Driver)

Requests a description of the specified driver. The calling program must not attempt to free the returned string.

Arguments

Dri ver: The target driver.

Returns

A string containing the driver’s description. It will be one or two short sentences with no newlines.

3.2.6.4. dbi_driver_get_maintainer

const char *dbi _driver_get _rmai ntai ner(dbi _driver Driver)

Requests the maintainer of the specified driver. The calling program must not attempt to free the returned string.

Arguments

Dri ver: The target driver.

Returns

A string containing the driver maintainer’s full name and email address.

3.2.6.5. dbi_driver_get_url

const char *dbi _driver_get _url (dbi _driver Driver)

Requests the maintainer’s URL for the specified driver. This is useful for drivers maintained by a third party. The
calling program must not attempt to free the returned string.

Arguments

Dri ver: The target driver.

3.2.6.6. dbi_driver_get_version

const char *dbi _driver_get _version(dbi_driver Driver)

Requests the version of the specified driver. The calling program must not attempt to free the returned string.
Arguments
Dri ver: The target driver.

Returns

A string containing the driver’s version.

3.2.6.7. dbi_driver_get_date _compiled

const char *dbi _driver_get_date_conpil ed(dbi _driver Driver)

Requests the compilation date of the specified driver. The calling program must not attempt to free the returned
string.

Arguments

Dri ver: The target driver.

Returns

A string containing the date the driver was compiled.

3.3. Connection Infrastructure

3.3.1. dbi_conn_new

dbi _conn dbi _conn_new(const char *nane)

Creates a connection instance of the driver specified by "name". This is a shortcut for calling dbi_driver_open()
and passing the result to dbi_conn_open().

Arguments
nanme: The name of the desired driver.

Returns

A connection instance of the specified driver, or NULL if there was an error.

3.3.2. dbi_conn_open

dbi _conn dbi _conn_open(dbi _driver Driver)

Creates a connection instance of the specified driver. This connection can be used to perform queries and set
options.

Arguments
Dri ver: The target driver.

Returns

A connection instance of the specified driver, or NULL if there was an error.

3.3.3. dbi_conn_get_driver

dbi _driver dbi _conn_get _driver (dbi _conn Conn)

Returns the driver type of the specified connection.

Arguments

Conn: The target connection.

Returns

The driver type of the target connection.

3.3.4. dbi_conn_set_option

int dbi _conn_set_option(dbi _conn Conn, const char *key, char *val ue)

Sets a specified connection option to a string value.

Arguments
Conn: The target connection.
key: The name of the target setting. Must only contain alphanumerics and the underscore character.

val ue: The string value of the target setting.

Returns

-1 on error, 0 on success.

3.3.5. dbi_conn_set_option_numeric

int dbi _conn_set_option_nuneric(dbi _conn Conn, const char *key, int value)

Sets a specified connection option to a numeric value.

Arguments
Conn: The target connection.
key: The name of the target setting. Must only contain alphanumerics and the underscore character.

val ue: The numeric value of the target setting.

Returns

-1 on error, 0 on success.

3.3.6. dbi_conn_get_option

const char *dbi _conn_get_option(dbi _conn Conn, const char *key)

Retrieves the string value of the specified option set for a connection.

Arguments
Conn: The target connection.

key: The name of the target setting.

Returns

A read-only string with the setting, or NULL if it is not available.

3.3.7. dbi_conn_get_option_numeric

int dbi _conn_get_option_nuneric(dbi _conn Conn, const char *key)

Retrieves the integer value of the specified option set for a connection.

Arguments
Conn: The target connection.

key: The name of the target setting.

Returns

The value of the setting, or -1 if it is not available.

3.3.8. dbi_conn_get_option_list

const char *dbi _conn_get_option_list(dbi _conn Conn, const char *current)

Enumerates the list of available options for a connection. If current is NULL, the first available option will be
returned. If current is a valid option name, the next available option will be returned.

Arguments
Conn: The target connection.

cur r ent : The key name of the target option.

Returns

The key name of the next option, or NULL if there was an error or there are no more options.

an

3.3.9. dbi_conn_clear_option

voi d dbi _conn_cl ear _option(dbi _conn Conn, const char *key)

Removes the target option setting from a connection.

Arguments
Conn: The target connection.

key: The name of the target setting.

3.3.10. dbi_conn_clear_options

voi d dbi _conn_cl ear _opti ons(dbi _conn Conn)

Remaoves all option settings from a connection.

Arguments

Conn: The target connection.

3.3.11. dbi_conn_get_socket

int dbi _conn_get_socket (dbi _conn Conn)

Obtain the file descriptor number for the backend connection socket.

Arguments

Conn: The target connection

Returns

-1 on failure, the file descriptor number on success

3.3.12. dbi_conn_close

voi d dbi _conn_cl ose(dbi _conn Conn)

Disconnects the specified connection connection from the database and cleans up the connection session.

Arguments

Conn: The target connection.

P

P

3.3.13. Error Handling

3.3.13.1. dbi_conn_error

int dbi _conn_error(dbi _conn Conn, const char **errnsg_dest)

Returns a formatted message with the error number and description resulting from the previous database
operation.

Arguments
Conn: The target connection.

er rnsg_dest : The target string pointer, which will point to the error message. If NULL, no error message
will be created, but the error number will still be returned. This string is managed by libdbi, so it must not
be modified or freed.

Returns

The error number of the most recent database operation if it resulted in an error. If not, this will return -1.

3.3.13.2. dbi_conn_error_handler

voi d dbi _conn_error_handl er (dbi _conn Conn, dbi_conn_error_handl er_func function, void *user_argunent)

Registers an error handler callback to be triggered whenever the database encounters an error. The callback
function should perform as little work as possible, since the state in which it is called can be uncertain. The
actual function declaration must accept two parameters (and return nothing):

- dbi_conn Conn: the connection object that triggered the error, from which dbi_conn_error() can be called, and
« void *user_argument: a pointer to whatever data (if any) was registered along with the handler.

To remove the error handler callback, specify NULL as the function and user_argument.

Arguments
Conn: The target connection.
functi on: A pointer to the function to call when the error handler should be triggered.

user _ar gumrent : Any data to pass along to the function when it is triggered. Set to NULL if unused.

3.4. SQL and Database Infrastructure

3.4.1. dbi_conn_connect

i nt dbi _conn_connect (dbi _conn Conn)

"~

Connects to the database using the options (host, username, password, port, (etc.) set with dbi_set_option() and
dbi_set_option_numeric(). See the documentation for each specific database driver for the options it recognizes
and requires.

Arguments

Conn: The target connection.

Returns

-1 on failure, zero on success.

3.4.2. dbi_conn_get_db_list

dbi _result dbi _conn_get _db_list(dbi _conn Conn, const char *pattern)

Queries the list of available databases on the server.

Arguments
Conn: The target connection.

patt er n: A string pattern that each name must match.

Returns

A query result object, which will contain database names in the first (zeroth) field (for use with the by-index
field functions).

3.4.3. dbi_conn_get _table list

dbi _result dbi _conn_get _table_list(dbi_conn Conn, const char *db, const char *pattern)

Queries the list of available tables in a particular database.

Arguments
Conn: The target connection.
db: The target database name.

patt er n: A string pattern that each name must match.

Returns

A query result object, which will contain table names in the first (zeroth) field (for use with the by-index
field functions).

3.4.4. dbi_conn_query

dbi _result dbi _conn_query(dbi _conn Conn, const char *formatstr, ...)

Execute the specified SQL query statement.

"~

Arguments
Conn: The target connection.
f or mat st r : The format string for the SQL statement. It uses the same format as printf().

ARG (...) Any variables that correspond to the printf-like format string.

Returns

A query result object, or NULL if there was an error.

3.4.5. dbi_conn_query_null

dbi _result dbi _conn_query_null (dbi _conn Conn, const unsigned char *statenment, unsigned | ong st_|engtl

Execute the specified SQL query statement, which may contain valid NULL characters.

Arguments
Conn: The target connection.
st at ement : The SQL statement, which may contain binary data.

st _| engt h: The number of characters in the non-null-terminated statement string.

Returns

A query result object, or NULL if there was an error.

3.4.6. dbi_conn_select _db

int dbi_conn_sel ect _db(dbi _conn Conn, const char *db)

Switches to a different database on the server.

Arguments
Conn: The target connection.

db: The target database name.

Returns

-1 on failure, zero on success.

3.4.7. dbi_result_get _conn

dbi _conn dbi _result_get_conn(dbi _result Result)

Returns the connection belonging to the specified result object.

Arguments

Resul t : The target query result.

Returns

The connection belonging to the target query result.

3.4.8. dbi_result_free

int dbi _result_free(dbi _result Result)

Frees the result’s query, disables all stored field bindings, and releases internally stored variables.

Arguments

Resul t : The target query result.

Returns

-1 on failure, zero on success.

3.4.9. dbi_result_seek row

int dbi_result_seek_row(dbi _result Result, unsigned int row)

Jump to a specific row in a result set.

Arguments
Resul t : The target query result.

r ow. The ordinal number of the row to seek to. The first row is at position 1, not zero.

Returns

The row number that was fetched, or O if there is an error.

3.4.10. dbi_result_first_row

int dbi _result_first_row(dbi _result Result)

Jump to the first row in a result set.
Arguments
Resul t : The target query result.

Returns

The row number that was fetched, or 0 if there is an error.

P

-

3.4.11. dbi_result_last_row

int dbi _result_last_rowmdbi_result Result)

Jump to the last row in a result set.

Arguments

Resul t : The target query result.

Returns

The row number that was fetched, or O if there is an error.

3.4.12. dbi_result_prev_row

int dbi _result_prev_rowdbi _result Result)

Jump to the previous row in a result set.

Arguments

Resul t : The target query result.

Returns

The row number that was fetched, or O if there is an error.

3.4.13. dbi_result_next_row

int dbi_result_next_rowdbi _result Result)

Jump to the next row in a result set.

Arguments

Resul t : The target query result.

Returns

The row number that was fetched, or O if there is an error.

3.4.14. dbi_result_get_numrows

unsigned int dbi _result_get _nunrows(dbi _result Result)

Returns the number of rows in the specified result set.

Arguments

Resul t : The target query result.

A

Returns

The number of rows in the result set.

3.4.15. dbi_result_get_numrows_affected

unsigned int dbi_result_get_nunrows_affected(dbi _result Result)

Returns the number of rows in the specified result set that were actually modified. Note that not all database
servers support this, in which case it will always be zero. See the documentation for each specific driver for
details.

Arguments

Resul t : The target query result.

Returns

The number of modified rows in the result set.

3.5. Retrieving field data

3.5.1. dbi_result_get field size

unsigned int dbi_result_get field size(dbi _result Result, const char *fiel dnane)

Returns the size in bytes of the value stored in the specified field. This is especially useful for string and binary
data fields, which may have a dynamic size.

Arguments
Resul t : The target query result.

fi el dname: The name of the target field.

Returns

The size in bytes of the target field data.

3.5.2. dbi_result_get field_size idx

unsigned int dbi_result_get field_size_ idx(dbi_result Result, unsigned int idx)

Returns the size in bytes of the value stored in the specified field. This is especially useful for string and binary
data fields, which may have a dynamic size.

A -

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The size in bytes of the target field data.

3.5.3. dbi_result_get_field_length

unsigned int dbi_result_get field_|length(dbi_result Result, const char *fiel dnane)

Returns the length in bytes of the value stored in the specified field. This is always one less than the size, and is
probably only useful for fields containing strings.

Arguments
Resul t : The target query result.

fi el dname: The name of the target field.

Returns

The length in bytes of the target field data.

3.5.4. dbi_result_get field length_idx

unsigned int dbi _result_get field length_idx(dbi_result Result, unsigned int idx)

Returns the length in bytes of the value stored in the specified field. This is always one less than the size, and is
probably only useful for fields containing strings.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The length in bytes of the target field data.

3.5.5. dbi_result_get field idx

int dbi _result_get _field_idx(dbi_result Result, const char *fiel dnane)

Given a field’s name, return that field’s numeric index.

an

Arguments
Resul t : The target query result.

fi el dname: The name of the target field.

Returns

The index (starting at 1) of the target field.

3.5.6. dbi_result_get field_name

const char *dbi _result_get _field_nanme(dbi_result Result, unsigned int idx)

Given a field’s numeric index, return that field’s name.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The target field’s name.

3.5.7. dbi_result_get numfields

unsigned int dbi_result_get_nunfields(dbi_result Result)

Returns the number of fields in the query result.

Arguments

Resul t : The target query result.

Returns

The number of fields in the query result.

3.5.8. dbi_result_get field_type

unsi gned short dbi _result_get_field_type(dbi_result Result, const char *fiel dnane)

Returns the target field’s data type. The constants returned by this function are defined in dbi.h with the prefix
"DBI_TYPE_".

Arguments
Resul t : The target query result.

fi el dname: The target field’s name.

an

Returns

The target field’s data type.

3.5.9. dbi_result_get field type idx

unsi gned short dbi _result_get field type_idx(dbi_result Result, unsigned int idx)

Returns the target field’s data type. The constants returned by this function are defined in dbi.h with the prefix
"DBI_TYPE_".

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The target field’s data type.

3.5.10. dbi_result_get_field_attrib

unsi gned | ong dbi _result_get field attrib(dbi_result Result, const char *fieldnane, unsigned |ong att

Returns the target field’s data type attributes in the specified range. The constants returned by this function are
defined in dbi.h with the prefix "DBI_", followed by the name of the field’s datatype.

Arguments
Resul t : The target query result.
fi el dname: The target field’s name.
attri bmi n: The first attribute value in the range of attributes to extract.

at tri bmax: The last attribute value in the range of attributes to extract. This may be the same as attribmin
if you are only trying to extract a single attribute value.

Returns

The target field’s requested attribute range.

3.5.11. dbi_result_get field_attrib_idx

unsi gned |l ong dbi _result_get field attrib_idx(dbi_result Result, unsigned int idx, unsigned |long attt

Returns the target field’s data type attributes in the specified range. The constants returned by this function are
defined in dbi.h with the prefix "DBI_", followed by the name of the field’s datatype.

~

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).
attri bmi n: The first attribute value in the range of attributes to extract.

attri brmax: The last attribute value in the range of attributes to extract. This may be the same as attribmin
if you are only trying to extract a single attribute value.

Returns

The target field’s requested attribute range.

3.5.12. dbi_result_get field attribs

unsi gned long dbi _result_get _field attribs(dbi _result Result, const char *fiel dnane)

Returns the target field’s data type attributes. The constants returned by this function are defined in dbi.h with the
prefix "DBI_", followed by the name of the field’s datatype.

Arguments
Resul t : The target query result.

fi el dname: The target field’s name.

Returns

The target field’s attributes.

3.5.13. dbi_result_get_field_attribs_idx

unsi gned |l ong dbi _result_get field attribs_idx(dbi_result Result, unsigned int idx)

Returns the target field’s data type attributes. The constants returned by this function are defined in dbi.h with the
prefix "DBI_", followed by the name of the field’s datatype.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The target field’s attributes.

3.5.14. dbi_result_get_fields

int dbi _result_get fields(dbi _result Result, const char *format, ...)

~A

Fetch multiple fields from the current result set, using a printf-like syntax. The formatter string specified field
names and types, and each field’s associated destination variable is passed as an argument following the format
string. Fields in the formatter string are separated by spaces, and follow the format " a. %", where "a" is the
name of the field, and "b" is the field type specifier. Make sure you pass the destination variables’ memory
addresses by prepending the & operator to each variable’s name.

Field type specifiers:

« % / %c: A signed/unsigned character

« o / %uh: A signed/unsigned short integer

« 9% / %l : Asigned/unsigned long integer

« % [/ i : A signed/unsigned long integer

« % / %L: A signed/unsigned long long integer

« 9 : A floating point number

+ %l: A double-precision number

+ 9% A read-only string

« o8 A local copy of a string (must be freed by program)
« o%b: A read-only pointer to binary data

« 98: A local copy of binary data (must be freed by program)
+ % A time_t value representing a DATE and/or TIME

Example usage: dbi _result_get _fields(result, "idnum %l |astname. %", & d_nunber,
&nane)

Arguments
Resul t : The target query result.
f or mat : The field format string as described above.

ARG (...) Pointers to the destination variables corresponding with each field in the format string.

Returns

The number of fields fetched, or -1 if there was an error. If an invalid field name was specified it will not
cause -1 to be returned, and the other fetched fields will work as usual.

3.5.15. dbi_result_bind_fields

int dbi _result_bind fields(dbi _result Result, const char *format, ...)

Bind multiple fields in the current result set, using a printf-like syntax. See dbi_result_get fields for a detailed
explanation of the syntax.

Arguments
Resul t : The target query result.
f or mat : The field format string as described above.

ARG (...) Pointers to the destination variables corresponding with each field in the format string.

~~

Returns

The number of field binding set up, or -1 if there was an error.

3.5.16. dbi_result_get_char

signed char dbi _result_get _char(dbi _result Result, const char *fiel dnanme)

Fetch the data stored in the speficied field, which contains a character.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.17. dbi_result_get_uchar

unsi gned char dbi _result_get_uchar(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains an unsigned character.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.18. dbi_result_get_short

short dbi _result_get_short(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a short integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

~~

3.5.19. dbi_result_get_ushort

unsi gned short dbi _result_get _ushort(dbi _result Result, const char *fiel dname)

Fetch the data stored in the speficied field, which contains an unsigned short integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.20. dbi_result_get_long

long dbi _result_get long(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a long integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.21. dbi_result_get_ulong

unsi gned | ong dbi _result_get_ul ong(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains an unsigned long integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

~ A

3.5.22. dbi_result_get_longlong

Il ong long dbi _result_get | onglong(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a long long integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.23. dbi_result_get_ulonglong

unsi gned |l ong | ong dbi _result_get_ul ongl ong(dbi _result Result, const char *fiel dnanme)

Fetch the data stored in the speficied field, which contains an unsigned long long integer.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.24. dbi_result_get_float

float dbi_result_get _float(dbi_result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a floating-point number.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

~r-

3.5.25. dbi_result_get_double

doubl e dbi _result_get_doubl e(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a double-precision fractional number.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.26. dbi_result_get_string

const char *dbi _result_get_string(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a string. The string may not be modified, and may not
necessairly persist between row fetches.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.27. dbi_result_get_binary

const unsigned char *dbi _result_get_binary(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains binary BLOB data. The data may not be modified, and
may not necessarily persist between row fetches.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

~r

3.5.28. dbi_result_get_string_copy

char *dbi _result_get_string_copy(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains a string. The newly allocated string may be modified
by the host program, but the program is responsible for freeing the string.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.29. dbi_result_get_binary_copy

unsi gned char *dbi _result_get _binary_copy(dbi _result Result, const char *fiel dnane)

Fetch the data stored in the speficied field, which contains binary BLOB data. The newly allocated memory may
be modified by the host program, but the program is responsible for freeing the data.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

3.5.30. dbi_result_get_datetime

time_t dbi_result_get_datetime(dbi _result Result, const char *fiel dname)

Fetch the data stored in the specified field, which contains a DATE and/or TIME value.

Arguments
Resul t : The target query result.

fi el dname: The name of the field to fetch.

Returns

The data stored in the specified field.

~—

3.5.31. dbi_result_bind_char

int dbi_result_bind_char(dbi _result Result, const char *fiel dname, char *bi ndto)

Bind the specified variable to the specified field, which holds a character.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.32. dbi_result_bind_uchar

int dbi_result_bind_uchar(dbi _result Result, const char *fieldnane, unsigned char *bi ndto)

Bind the specified variable to the specified field, which holds an unsigned character.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.33. dbi_result_bind_short

int dbi _result_bind_short(dbi _result Result, const char *fieldnanme, short *bindto)

Bind the specified variable to the specified field, which holds a short integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

~O

3.5.34. dbi_result_bind_ushort

int dbi_result_bind_ushort(dbi_result Result, const char *fieldnane, unsigned short *bindto)

Bind the specified variable to the specified field, which holds an unsigned short integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.35. dbi_result_bind_long

int dbi_result_bind_|ong(dbi _result Result, const char *fiel dnane, |ong *bi ndto)

Bind the specified variable to the specified field, which holds a long integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.36. dbi_result_bind_ulong

int dbi_result_bind_ulong(dbi_result Result, const char *fieldnane, unsigned | ong *bi ndto)

Bind the specified variable to the specified field, which holds an unsigned long integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

"~

3.5.37. dbi_result_bind_longlong

int dbi_result_bind_| ongl ong(dbi _result Result, const char *fiel dnanme, |ong | ong *bi ndto)

Bind the specified variable to the specified field, which holds a long long integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.38. dbi_result_bind_ulonglong

int dbi_result_bind_ul onglong(dbi _result Result, const char *fieldnane, unsigned | ong | ong *bindto)

Bind the specified variable to the specified field, which holds an unsigned long long integer.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.39. dbi_result_bind_float

int dbi _result_bind_float(dbi_result Result, const char *fieldnanme, float *bindto)

Bind the specified variable to the specified field, which holds a floating-point number.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

~r

3.5.40. dbi_result_bind_double

int dbi_result_bind_doubl e(dbi _result Result, const char *fieldnane, double *bindto)

Bind the specified variable to the specified field, which holds a double-precision fractional number.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.41. dbi_result_bind_string

int dbi _result_bind_string(dbi_result Result, const char *fieldnane, const char **bi ndto)

Bind the specified variable to the specified field, which holds a string. The string must not be modified.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.42. dbi_result_bind_binary

int dbi_result_bind_binary(dbi _result Result, const char *fieldnane, const unsigned char **hindto)

Bind the specified variable to the specified field, which holds binary BLOB data. The data must not be modified.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

~Aa

3.5.43. dbi_result_bind_string_copy

int dbi_result_bind_string_copy(dbi _result Result, const char *fiel dname, char **bi ndto)
Bind the specified variable to the specified field, which holds a string. The newly allocated string may be
modified by the host program, but the program is responsible for freeing the string.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.44. dbi_result_bind_binary_copy

int dbi_result_bind_binary_copy(dbi _result Result, const char *fiel dnanme, unsigned char **bindto)

Bind the specified variable to the specified field, which holds binary BLOB data. The newly allocated data may
be modified by the host program, but the program is responsible for freeing the data.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

Returns

0 upon success, -1 if there was an error

3.5.45. dbi_result_bind_datetime

int dbi_result_bind_datetime(dbi _result Result, const char *fieldnane, tine_t *hbindto)

Bind the specified variable to the specified field, which holds a DATE and/or TIME value.

Arguments
Resul t : The target query result.
fi el dname: The name of the field to bind to.

bi ndt o: A pointer to the variable that will be updated with the specified field’s value.

~

Returns

0 upon success, -1 if there was an error

3.5.46. dbi_result_get_char_idx

signed char dbi _result_get_char_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a character.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.47. dbi_result_get_uchar_idx

unsi gned char dbi _result_get_uchar _idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains an unsigned character.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.48. dbi_result_get_short _idx

short dbi _result_get_short_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a short integer.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

~~

3.5.49. dbi_result_get_ushort_idx

unsi gned short dbi _result_get_ushort_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains an unsigned short integer.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.50. dbi_result_get_long_idx

long dbi _result_get long_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a long integer.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.51. dbi_result_get_ulong_idx

unsi gned | ong dbi _result_get_ul ong_idx(dbi_result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains an unsigned long integer.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.52. dbi_result_get_longlong_idx

long long dbi _result_get_|onglong_ idx(dbi_result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a long long integer.

Arguments
Resul t : The target query result.

i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.53. dbi_result_get_ulonglong_idx

unsi gned |l ong | ong dbi _result_get_ul ongl ong_i dx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains an unsigned long long integer.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.54. dbi_result_get_float_idx

float dbi_result_get _float_idx(dbi_result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a floating-point number.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

~r-

3.5.55. dbi_result_get_double_idx

doubl e dbi _result_get _doubl e_i dx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a double-precision fractional number.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.56. dbi_result_get_string_idx

const char *dbi _result_get _string_idx(dbi_result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a string. The string may not be modified, and may not
necessairly persist between row fetches.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.57. dbi_result_get_binary_idx

const unsigned char *dbi _result_get_binary_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains binary BLOB data. The data may not be modified, and
may not necessarily persist between row fetches.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

~r

3.5.58. dbi_result_get_string_copy_idx

char *dbi _result_get_string_copy_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains a string. The newly allocated string may be modified
by the host program, but the program is responsible for freeing the string.

Arguments
Resul t : The target query result.

i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.59. dbi_result_get_binary copy_idx

unsi gned char *dbi _result_get_binary_copy_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the speficied field, which contains binary BLOB data. The newly allocated memory may
be modified by the host program, but the program is responsible for freeing the data.

Arguments
Resul t : The target query result.
i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

3.5.60. dbi_result_get_datetime_idx

time_t dbi_result_get_datetime_idx(dbi _result Result, unsigned int idx)

Fetch the data stored in the specified field, which contains a DATE and/or TIME value.

Arguments
Resul t : The target query result.

i dx: The index of the target field (starting at 1).

Returns

The data stored in the specified field.

~—

Appendix A. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any textual work, regardless of subject
matter or whether it is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it
can be distributed under the terms of this License. The "Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either
copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or discourage subsequent modification by readers is not
Transparent. A copy that is not "Transparent™ is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read
and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page™" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page™ means the text near the most prominent appearance of the work’s title, preceding
the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the full title with all words of
the title equally prominent and visible. You may add other material on the covers in addition. Copying with
changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of
added material, which the general network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when
you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the Document
(all of its principal authors, if it has less than five).

. State on the Title page the name of the publisher of the Modified \Version, as the publisher.
. Preserve all the copyright notices of the Document.

. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

-1 m O O

. Include, immediately after the copyright notices, a license notice giving the public permission to use the
Modified Version under the terms of this License, in the form shown in the Addendum below.

®

. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled

~r

"History" in the Document, create one stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.
These may be placed in the "History" section. You may omit a network location for a work that was
published at least four years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements"”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements™ or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements”, provided it contains nothing but endorsements of your Modified
Version by various parties--for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made by
the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming
one section entitled "History"; likewise combine any sections entitled "Acknowledgements”, and any sections
entitled "Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

AN

A compilation of the Document or its derivatives with other separate and independent documents or works, in or
on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an
"aggregate", and this License does not apply to the other self-contained works thus compiled with the Document,
on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is
less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that surround
only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the
terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement between the translation and the original
English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this
License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with
the Back-Cover Texts being LIST. A copy of the license isincluded in the section entitled "GNU Free Documentation
License".
If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant.
If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their use
in free software.

Yl

