
New Features of oo2c v2
$Revision: 1.7 $ covering oo2c-2.1.9

Michael van Acken mva@users.sf.net

mailto:mva@users.sf.net

i

Table of Contents

1 Introduction . 1

2 Programs . 1

3 Library Modules . 2

4 Doc Comments . 2
4.1 Inline Commands . 2
4.2 Block Commands. 4
4.3 Glyphs . 4

5 Built-in Type STRING. 5

6 Exceptions . 5
6.1 TRY and RAISE . 5
6.2 Checked vs Unchecked Exceptions . 6
6.3 Implementation Notes . 7

7 Parametric Types . 7

8 Initialization Functions . 9

Appendix A Example Module 9

Appendix B Document History 11

Chapter 3: Library Modules 1

1 Introduction

oo2c v2 is a complete rewrite of the compiler and associated tools. Some highlights are

• Reduced internal complexity, at the expense of more computational overhead. This goes
hand in hand with the ability to add experimental language features to the compiler.

• A simplified internal SSA code representation that eliminates the need to keep track
the block structure of nested statements. This reduces the complexity of most code
transformations. On the other hand, producing the target code becomes more difficult.

• A broader range of code transformations, including loop rewriting and partial redun-
dancy elimination on top of the existing ones (common subexpression elimination, loop
invariant code motion, constant propagation, algebraic transformations, and dead code
elimination).

• A large set of regression tests, increasing the reliability and stability of compiler releases.

• More built-in support for building and installing third party packages.

• Writing FOREIGN modules to interface with external libraries has become easier. A
simple #include pulls in all the run-time type and module meta data a module needs
to provide to the run-time system.

The v2 compiler implements most, but not all, of the features of its predecessor. Most
programs should compile without changes, although some of the more esoteric features and
library modules have been dropped. The following sections summarize the omissions and
additions. For the most part, the language extensions are experimental in nature and should
not be considered final.

2 Programs

The biggest change to the behavior of the programs oo2c, oob, ooef, and oowhereis
is the introduction of so called repositories to structure source code, intermediate, and
executable files. A repository is a path to a directory r with ‘r/src/’ holding the source
code, ‘r/pkginfo.xml’ any repository meta data, ‘r/sym/’ the symbol files, and so on.
When looking for a particular module, all configured repositories are searched. Output files
for a particular module (symbol file, C files, objects files, and so on) are placed into the
repository that holds the module’s source code.

The tool oocn is gone. Part of its functionality have been moved into the compiler
oo2c: converting a module’s public interface and its documentation strings to HTML and
listing all uses of a particular object. Some of the command line options of oo2c have been
replaced, and it has a whole new set of commands dealing with packages: build, install,
uninstall, etc. Packages allow to install a set of library modules, module documentation,
executables, and auxiliary files from the meta data of a ‘pkginfo.xml’ file.

Please refer to the man page of oo2c for the details.

Chapter 4: Doc Comments 2

3 Library Modules

With the switch from oo2c v1 to v2 a number of highly specialized and rarely used library
modules were dropped, while at the same time whole families of modules were included that
were distributed separately in the past.

Replaced by other modules: Filenames (use OS:Path instead), Integers (use
Object:BigInt), Kernel and Types (functionality covered by RT0), and Rts (see
OS:ProcessManagement).

Removed without replacement: ComplexMath, JulianDay, LComplexMath, LocNumConv,
LocNumStr, LocStrings, LocText, LocTextRider, Locales, LongInts, LowLReal,
LowReal, OakFiles, OakIn, OakMath, OakMathL, OakStrings, Reals, Signal, and
Strings2.

New modules:

ADT:* A set of abstract data types, most importantly ArrayList and Dictionary.
Also provides a framework for serializing arbitrary graphs of objects.

IO:* IO modules for files and sockets, providing an interface that is closer to the I/O
capabilities provided by libc. Also mappers based on the new classes, and an
abstraction for the ‘select()’ function.

OS:* Various low-level modules dealing with file systems, file names, and processes.

Preliminary modules (their interface might change significantly in the future, although
their general functionality will continue to be part of the core distribution):

URI:* Data types representing Uniform Resource Identifiers (both hierarchical and
opaque), plus an URI parser.

XML:* A call-back based XML 1.0 parser. Also includes support for XML namespaces
and validation.

4 Doc Comments

Documentation describing the public interface of a module can embedded into the source
code using doc comments. Such comments start with a special delimiter ‘(**’, like ‘(**Some
explanation. *)’, and refer to the declaration preceding them. Within doc comments, a
subset of the GNU Texinfo command set can be used to mark up the text.

The following sections summarise the commands implemented by the OOC parser.
Please refer to the Texinfo manual for a more thorough description of the their syntax
and intended use.

4.1 Inline Commands

Inline commands take a single argument in curly braces like ‘@code{ABS()}’.

Chapter 4: Doc Comments 3

Font and style commands:

@asis used with @table for entries without added highlighting

@cite name of a book (with no cross reference link available)

@code syntactic tokens

@command command names

@dfn introductory or defining use of a technical term

@emph emphasis; produces italics in printout

@file file name

@kbd input to be typed by users

@samp literal example or sequence of characters

@strong stronger emphasis than @emph; produces bold in printout

@var meta-syntactic variables (for example, formal procedure parameters)

References:

@email an email address

@url indicate a uniform resource locator (URL)

@uref reference to a uniform resource locator (URL)

Referencing Oberon declarations:

@omodule module name

@oconst name of a constant

@ofield designator referring to a record field

@oparam parameter name

@oproc designator referring to a procedure (normal or type-bound)

@otype type name

@ovar variable name

Designators can contain arbitrary ‘.member’ parts, referring to members of modules,
procedures, or records. For example, ‘@oparam{MyModule.MyPointer.MyProc.param}’
would refer to the parameter ‘param’ of the type-bound procedure ‘MyProc’ from module
‘MyModule’ that has ‘MyPointer’ as its receiver type. Unless prefixed by a ‘*’, names and
designators must refer to existing declarations and the class of the indicated object must
match the command name. If the designator is prefixed with a ‘*’, then the designator is
not checked by the compiler. In this case, it must begin with a fully qualified module name
and use the canonical designator for the indicated object. This variant should only be
used to refer to an object from another module if the module is not part of the IMPORT list.

Chapter 5: Built-in Type STRING 4

4.2 Block Commands

Block commands start with the command ‘@cmd’ on a line of its own, often followed by one
or more arguments, and end with ‘@end cmd’, also on a line of its own.

Lists and tables:
@enumerate

enumerated lists, using numbers or letters

@itemize itemised lists with and without bullets

@table two-column tables with highlighting

@item, @itemx
used with the above lists and tables for each entry

Paragraph formatting:
@example example that is not part of the running text (fixed font)

@noindent
prevents paragraph indentation

Pre- and post-conditions:
@precond pre-conditions of a procedure

@postcond
post-conditions of a procedure

4.3 Glyphs
@@ the character ‘@’

@{ the character ‘{’

@} the character ‘}’

@dots{} ellipsis ‘...’

@bullet{}
a ‘•’, typically used with @itemize

@minus{} a minus sign, ‘−’

@result{}
result of evaluating an expression, ‘⇒’

--- an em-dash for text ‘—’

Chapter 6: Exceptions 5

5 Built-in Type STRING

The predefined identifier STRING is an alias for the type ‘Object.String’, which implements
Unicode strings. The semantics of this type are defined for the most part by the regular
module ‘Object’1, with two exceptions: the compiler converts string constants to instances
of STRING automatically, and the operator ‘+’ performs string concatenation.

String constants are assignment compatible with variables of type ‘Object.Object’.
Such an assignment automatically converts the constant into an instance of STRING. That
is, a string constant can be used instead of a STRING in an assignment, for a procedure
argument passed to a value parameter, and as a function result. The string object is
created once, as part of the module’s initialization code, not each time its surrounding code
is evaluated.

The operator ‘+’ is defined for string operands and returns the concatenation of its
operands. The result is of type STRING.

Please note that comparison of string values is done by means of the type-bound pro-
cedure ‘String.Equals’. The definition of the operators ‘=’ and ‘#’ has not been changed.
That is, they test for object identity by comparing the strings’ pointer values.

6 Exceptions

There are four user visible parts to exceptions:
• The module ‘Exception’, defining the types ‘Exception’, ‘Checked’, and ‘Unchecked’

and implementing the required run-time support.
• A new statement, TRY, to transfer control to exception handlers if a statement sequence

raises an exception.
• A new predefined procedure, RAISE, to raise an exception.
• An extended syntax for procedures and procedure types, to declare which checked (or

unchecked) exception can be raised by a procedure.

6.1 TRY and RAISE

Exceptions behave pretty much like their counterparts in Python or Java. The statement
TRY
S

CATCH T1(t1):
C1

CATCH T2(t2):
C2

END;

is roughly equivalent to
1. Push exception handler for this TRY block (‘Exception.PushContext’).

1 The module ‘Object’ does not need to be imported to use STRING. It is part of the run-time system and
as such included into every program.

Chapter 6: Exceptions 6

2. Evaluate S, followed by ‘Exception.PopContext’. If there are any RETURN or EXIT
statements within S that would cause control flow to leave the TRY statement, then
they also do an implicit ‘PopContext’ as part of the non-local exit.

3. If an exception is raised during S, then do

Exception.PopContext;
temp := Exception.Current();
WITH temp: T1 DO
t1 := temp;
C1;

| temp: T2 DO
t2 := temp;
C2;

ELSE
Exception.ActivateContext;

END;
Exception.Clear;

An exception is raised by calling the predefined procedure RAISE with an instance of
‘Exception’. This passes control to the nearest CATCH clause whose type is an extension of
the raised exception, if such a clause exist. Otherwise, the exception is written to stderr
and the program is aborted.

Within a CATCH, the optional name given in parenthesis refers to the current exception
that triggered the CATCH. Its type is the one from the CATCH clause. The variable is read-
only.

Within the module body no exceptions can be passed up, because there is no caller. As
a consequence, any exception that is not caught explicitly is written to stderr and aborts
the program. For checked exceptions, the compiler emits a warning if they are not caught
in the module body.

6.2 Checked vs Unchecked Exceptions

There are two kinds of exceptions, checked and unchecked. The compiler enforces a stricter
set of restrictions on the usage of checked exceptions. During program run-time, there is
no difference between the two.

A checked exception E must either be caught within a procedure, or the procedure must
declare that it may pass an exception of type E up to its caller. For example,

PROCEDURE P() RAISES E;

declares that evaluation of ‘P’ may raise an exception of type E, or an extension thereof.

An exception is of the “checked” variant if it is an extension of the class
‘Exception.Checked’. The base class ‘Exception.Exception’ is also treated as “checked”.

On the other hand, an unchecked exception can be raised anytime, without the need to
declare or catch it. It is possible to add an unchecked exception to the ‘RAISES’ list of a
procedure declaration for documentation purposes. In this case, it is not a compile time
error if the caller does not catch this exception, and does not declare to pass it on. An
exception is “unchecked” if it is an extension of the class ‘Exception.Unchecked’.

Chapter 7: Parametric Types 7

Please note that the record type of the exception class, ‘Exception.ExceptionDesc’,
is no longer exported. This means that it is not possible to extend it directly. Applica-
tions must use either ‘Exception.CheckedDesc’ or ‘Exception.UncheckedDesc’ to create
specialized exception classes.

6.3 Implementation Notes

A TRY block is mapped to C’s ‘setjmp()’ function by oo2c. The amount of data stored
by this function depends on the target architecture and may differ by a factor of ten or
more. For example, on a ‘ix86’ processor, only 72 bytes are stored, while on a ‘PPC’ this is
768 bytes. As a consequence, the work done by the program within a TRY should be large
enough to amortize the costs of the TRY for all possible targets.

On some systems2, raising an exception also stores information about the top 20 acti-
vation frames on the call stack. This means that raising an exception can be moderately
expensive as well. Therefore they should only be used to report exceptional conditions that
are rarely triggered.

7 Parametric Types

A parametric type can be seen as a type definition with a certain degree of freedom. The
freedom comes in form of type parameters acting as placeholders for type arguments that
are provided when the parametric type is used in a particular context. There are two
restrictions on type parameters and type arguments: the parameter must be based on a
record pointer, and the argument must be an extension of the parameter’s base type.

Take for example the type ‘ArrayList’. The element type of the list can be any type de-
rived from ‘Object’, like ‘MyElementType’, which is provided when creating an ‘ArrayList’
variable:

TYPE
ArrayList*(E: Object.Object) = POINTER TO ArrayListDesc(E);
ArrayListDesc*(E: Object.Object) = RECORD
...

END;
...
VAR myList: ArrayList(MyElementType);

The compiler statically detects any uses of ‘myList’ or of its methods that are incompatible
with the declared element type ‘MyElementType’.

The implementation of parametric types extends the syntax in three places:
• A type declaration can have a list of type parameters.
• Usage of a parametric type can provide a list of type arguments.
• For a type-bound procedure of a parametric type, the receiver declaration must provide

the names of local aliases for the type parameters of the base type. These names act
as type variables within the procedure.

2 At the time of writing, this means all systems running with GNU libc and implementing the
‘backtrace()’ function.

Chapter 8: Initialization Functions 8

(For the details, please refer to the EBNF grammar at the end of this section.)

A type declared with a type parameter list like ‘T(t1:B1,t2:B2,...,tn:Bn)’ is called
a parametric type. The formal type Bi of a type parameter declaration is called its type
bound. The type bound must be a record pointer. A type name ti is visible to the end of
the type declaration.

For a qualified type expression of the form ‘T(A1,A2,...,An)’,

a. the type T must be a parametric type,

b. it must have the same number of type arguments as there are type parameters, and

c. each actual type parameter Ai is either an extension of the corresponding type bound
Bi, or Ai is a type variable whose bound is an extension of Bi.

If T is a parametric type as defined above, then the type expression ‘T’ (without any
type arguments) is equivalent to the qualified type “T(B1,B2,...,Bn)’, where each type
argument equals the corresponding type bound. Bi and ‘Ai’ can be forward references to
types that are defined later.

A type-bound procedure of a parametric type must define a list of type names after its
receiver type, for example

PROCEDURE (r: P(T1,T2,...)) TBProc(...);

Each name is a type alias for the corresponding type parameter of the procedure’s base
record type. Within a type-bound procedure, a variable ‘v: Ti’, with Ti declared with a
type bound ‘Ti: Bi’, can for the most part be used like it had been declared as ‘v: Bi’.
The exceptions are that it can only be assigned values of type Ti (or NIL), and that NEW is
not applicable to such a variable.

Two qualified types are considered to be the same type, if they have the same base type
and if their corresponding type arguments are of the same type.

NIL is assignment compatible with a parametric type if it is assignment compatible with
the type’s base type.

‘NEW()’ is applicable to a variable of parametric type if its base type is a pointer.

Syntax:

TPSection = ident {"," ident} ":" Qualident.
TypePars = "(" [TPSection {";" TPSection}] ")".
TypeDecl = IdentDef [TypePars] "=" Type ";".

QualType = Qualident ["(" [QualType {"," QualType}] ")"].
Type = QualType|ArrayType|RecordType|PointerType|ProcType.
RecordType = "RECORD" ["("QualType")"] ... "END".
FormalPars = ["(" [FPSection {";" FPSection}] ")" [":" QualType]].

AliasList = "(" [ident {"," ident}] ")".
Receiver = "(" ["VAR"] ident ":" ident [AliasList] ")".

Note: Polymorphic procedures, where free type parameters are added to a formal pa-
rameter list to place an additional restriction on the acceptable argument lists of calls, are
currently not supported.

Appendix A: Example Module 9

8 Initialization Functions

The compiler provides a common notation to define an initialization procedure for an object,
to redefine the initialization procedure within an extended type, and to call this procedure
automatically when creating an object. For this, a class may provide a type-bound proce-
dure INIT, like

PROCEDURE (l: List) INIT*(initialSize: LONGINT);

Such a procedure has the special property that a call to it always binds to the procedure
bound to the static type of the receiver, not the dynamic one. In this it behaves like a call
to a normal procedure, where the actual code to be evaluated is known at compile time.

INIT must not return a result, and it must be exported. Its formal parameters do not
need to match the parameter list inherited from the base type, if one exists. If the base
type provides an ‘INIT’ procedure, but there is no super call like ‘l.INIT^(...)’, then the
compiler produces a warning.

As a shortcut to create an object is to use ‘NEW()’ as a function, passing the type of the
the new object as its first argument. ‘v := NEW(T,a1,a2,...)’ is equivalent to

VAR temp: T;
...
NEW(temp);
temp.INIT(a1,a2,...);
v := temp;

The initialization call is omitted if ‘T’ does not define an ‘INIT’ procedure.
Note: The definition of ‘NEW(v)’ when called as a procedure has not changed. That is,

with this use of ‘NEW’ the ‘INIT()’ procedure is not called implicitly for the new object.
Possible changes: Right now, the type argument of ‘NEW()’ must be a record pointer.

This might be relaxed to any pointer type in the future.

Appendix A Example Module

The modules below exercise most of the features described above: strings, parametric types,
exceptions, and initialization functions.

MODULE Example:Map;

(**A simple parametric map type using linked lists. *)

IMPORT Object, E := Exception;

TYPE

Key* = Object.Object;

Value* = Object.Object;

TYPE

Entry(K: Key; V: Value) = POINTER TO EntryDesc(K, V);

EntryDesc(K: Key; V: Value) = RECORD

key: K;

value: V;

next: Entry(K, V);

END;

Appendix A: Example Module 10

TYPE

Map*(K: Key; V: Value) = POINTER TO MapDesc(K, V);

MapDesc(K: Key; V: Value) = RECORD

name: STRING;

entries: Entry(K, V);

END;

PROCEDURE (map: Map(K,V)) Put*(key: K; value: V);

VAR

entry: Entry(K, V);

BEGIN

NEW(entry);

entry.key := key;

entry.value := value;

entry.next := map.entries;

map.entries := entry;

END Put;

PROCEDURE (map: Map(K, V)) Get*(key: K): V

RAISES E.Exception;

VAR

entry: Entry(K, V);

BEGIN

entry := map.entries;

WHILE entry # NIL DO

IF key.Equals(entry.key) THEN

RETURN entry.value;

END;

entry := entry.next;

END;

RAISE(NEW(E.Exception,

"Map ’"+map.name +"’ undefined for ’"+key.ToString()+"’"));

END Get;

PROCEDURE (map: Map(K, V)) INIT*(name: STRING);

BEGIN

map.name := name;

map.entries := NIL;

END INIT;

END Example:Map.

MODULE TestMap;

IMPORT

Example:Map, Object, Object:Boxed, E := Exception, Out;

TYPE

Key = STRING;

Value = Object.Object;

PROCEDURE ShowEntry(map: Map.Map(Key, Value); key: Key);

VAR

value: Value;

BEGIN

TRY

value := map.Get(key);

Out.Object("The value for "+key+" is "+value.ToString());

Appendix B: Document History 11

CATCH E.Exception(e):

Out.Object("Exception: "+e.GetMessage());

END;

Out.Ln

END ShowEntry;

PROCEDURE Test;

VAR

map: Map.Map(Key, Value);

BEGIN

map := NEW(Map.Map(Key,Value), "my map");

map.Put("one", Boxed.NewLongReal(1.0));

map.Put("pi", Boxed.NewLongReal(3.14159265358979));

map.Put("true", Boxed.NewBoolean(TRUE));

map.Put("a rose", "a rose");

ShowEntry(map, "a rose");

ShowEntry(map, "one");

ShowEntry(map, "two");

END Test;

BEGIN

Test;

END TestMap.

Appendix B Document History

1.7 A type variable can be used on the right hand side of a type test or type guard.
Introduced with oo2c-2.1.9.

1.5 Adds information regarding “checked” vs “unchecked” exceptions, which were
introduced with oo2c-2.0.13. Covers oo2c-2.0.15.

1.4 First release. Covers oo2c-2.0.12.

	Introduction
	Programs
	Library Modules
	Doc Comments
	Inline Commands
	Block Commands
	Glyphs

	Built-in Type STRING
	Exceptions
	TRY and RAISE
	Checked vs Unchecked Exceptions
	Implementation Notes

	Parametric Types
	Initialization Functions
	Example Module
	Document History

