
Dynamic Parsers and Evolving Grammars

S.Cabasino, P.S.Paolucci, G.M.Todesco.

INFN, Sez. di Roma, Gruppo Ape, Dip. di Fisica, Universita' di Roma “La Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy.

Abstract

We define “evolving grammars” as successions of static grammars and dynamic parsers as parsers able to
follow the evolution of a grammar during the source program parsing. A growing context-free grammar will
progressively incorporate production rules specific for the source program under parsing and will evolve
following the context created by the source program itself toward a program specific context-free grammar.
Dynamic parsers and growing grammars allow a syntactic-only parsing of programs written in powerful and
problem adaptable programming languages. Moreover dynamic parsers easily perform purely syntactic strong
type checking and operator overloading. The language used to specify grammar evolution and residual
semantic actions can be the evolving language itself. The user can introduce new syntactic operators using a
bootstrap procedure supported by the previously defined syntax.
A dynamic parser ("ZZParser") has been developed by us and has been successfully employed by the APE
100 INFN group to develop a programming language (“ApeseLanguage”) and other system software tools
for the 100 GigaFlops SIMD parallel machine under development.

Introduction

This paper reports a theoretical starting framework and some practical results about “evolving grammars”,
i.e., grammars that evolve at parse time. Our approach has several points of contact with the work of Boris
Burshteyn on modifiable grammars ([G1],[G3])
and with that of Henning Christiansen on adaptable grammars ([G2]), and has been independently developed
by us (1989-1992) during the design and implementation of a compilation system based on grammar
evolution at parse time ([Z1],[Z2],[Z3]).

We anticipate that using our evolving grammar approach, the language used to specify grammar evolution
and residual semantic actions can be the evolved language itself. The user can then introduce new syntactic
operators and perform semantic actions using a bootstrap procedure supported by the previously defined
syntax.

Our interest in formal language theory development is mainly connected with the definition of innovative
computer programming languages and the implementation of suitable compilers, in the framework of the
INFN APE100 project ([A1][A2][A3]). The target of the APE100 project is the development of a 100
Gigaflops, 2048 nodes, SIMD parallel computer dedicated to physics numerical simulations. A 6 Gigaflop,
128 nodes APE100 machine has been running numerical simulation from the beginning of the 1992.

In the mid 1950s Noam Chomsky gave a mathematical model of certain classes of grammars in connection
with his study of natural languages [L1].Starting from the 1960s the "formal language theory" has extended
its applications to several areas in mathematics and computer science. In our view the conceptual framework
of evolving grammars (i.e., grammars changing in time, as opposed to conventional static grammars) follows
as a natural extension from the Chomsky grammar definition. Evolving grammars in turn generate evolving
languages and dynamic parsers, i.e., parsers able to follow grammar evolution during the parsing of a source
program.

We found this dynamic approach useful to solve a class of typical problems in programming language
definition and compiler design. Moreover the applications written by the APE100 users using an evolving
language are several times shorter than programs written in conventional programming languages, due to the
easy introduction of new operators, statements and data types. Furthermore an evolving language always
guarantees syntactic type checking on operands. The opinion of the APE100 user community is that these
factors greatly enhance the quality of the resulting application programs.

Let us also spend some words about the classes of typical problem in compiler design that can be faced using
a dynamic parsing approach.

Compilers [C1][C2] are programs whose task is to translate a program written in a source language into some
other destination language (e.g. machine dependent assembler language). To properly execute this translation
a precise definition of the language to be recognised (i.e., the syntactical structure of the source language) and
the semantics of the programming language (that is the meaning of each construct and the way to translate it
in terms of the destination language) must be specified.

One problem of source language syntax specification and recognition is that some statements in a source
program may have the power to create a specific context that affects the syntactical and semantical
acceptability of the following statements in the source program. In some sense the "meaning" of one
statement creates a context in which the other statements of the program must be meaningful and
syntactically acceptable. Examples of statements that create a context are declarations of identifiers (that
associate the declared identifier with a specific data type) and the description of argument list for procedures.
These two examples raise some problems: checking that identifiers are declared before their use in a program
and used only in operations that are legal for that data type; checking that the number and type of formal
parameters in the declaration of a procedure agree with the number and type of actual parameters in a call to
the procedure.

One of the fundamental grammar classifications distinguishes context-free grammars from context-sensitive
grammars. The syntax of common programming languages (like FORTRAN, PASCAL or ADA) cannot be
completely described by static context-free grammars as follows from the previous considerations.

Due t o the difficulty of parsing static context -sensitive grammars, the definition of the syntax of a
programming language has been usually given in two parts. The first one is a truly syntactic definition, the
second one is an informal mixing of syntax and semantic.

In practice programming language syntaxes have commonly been described by context-free grammars.
Therefore it has been customary to place some context-sensitive restriction on the context-free grammar.
Such restrictions include data type specific identifier lists, type -matching rules for identifiers and the
requirement that a call of a procedure contains exactly as many arguments as there are parameters in the
definition of the same procedure.

Compilers often check the context-sensitive part of statement syntaxes during translation phase, that is during
semantic processing.

Because semantics and context-sensitive syntax have been so closely associated in both the description and
the translation of a language, it has become customary to apply to both the term "semantics".

Evolving grammars offer a different approach to the semantic challenge.

We don't force a predefined static grammar to recognize all the possible contexts created by individual
programs. Rather we introduce growing grammars that will adapt themselves to the specific context.

The growing context-free grammar will progressively incorporate production rules specific for the source
program under parsing and will evolve following the context created by the source program itself toward a
program specific context-free grammar.

The definition of dynamic parsers allows a truly syntactic-only parsing of common programming language
programs. Moreover dynamic parsers easily perform syntactic only operator overloading and strong type
checking.

By means of dynamic parsers, it is possible to define "evolving" grammars and languages with the aim to
move the context-sensitive part of the grammar from the semantic treatment toward a syntactic one.

A dynamic bottom-up translation parser ("ZZParser") has been developed by us and has been successfully
employed by the APE 100 INFN group to develop an evolving programming language (“Apese Language”)
and other system software tools for the 100 GigaFlops SIMD parallel machine under development.

User programs written in the evolving language Apese (simulating fluidodynamic systems, neural networks,
subatomic particles) are now running on APE100 parallel super computers.

We plan to describe how to design a real life dynamic parser and compiler in a forthcoming document while
the incremental language driving the ZZParser growth is described in the document “ZZLanguage”[Z2]. The
first end-user programming language designed using the ZZ Parser and ZZ Language is covered by the
document “Apese language”[Z1].

 Evolving Grammars

A conventional (static) grammar G is usually defined as a 4-tuple G=(Vn ,Vt , Φ ,S) where:

- V t is a finite non empty set of symbols called the terminal alphabet; the symbols in Vt are called

terminal symbols;
 - V n is a finite non empty set of symbols called non-terminals (they are used in Φ to describe the

syntactic structure);

 - Φ is a finite non-empty set of "production rules", i.e., relations α -> β where:

 α ∈(Vt U Vn)* Vn (Vt U Vn)* and β ∈ (Vt U Vn)*

 - S is a distinguished element of Vn called starting symbol.

A grammar evolution E could intuitively be conceived as a succession of static grammars:

 E = {Gi = (Vni,Vt,Φi,S) , i=0..n}.

In this work we will assume that Vt is fixed, and t hat Vn and Φ evolve by successive accretion of new
elements, i.e., Φk+1 ⊃ Φk, Vnk+1⊃ Vnk, so that we can describe the evolution as a succession of steps:

 Gk+1 = Gk + ∆Gk where ∆G = (∆Vn, ∆Φ)

and therefore

 Gk+1 = (Vnk U ∆Vnk, Vt, Φk U ∆Φk, S).

We could now introduce classes of grammatical evolutions, drawing our inspiration from the Chomsky
grammar classification scheme. The first class could be the “unrestricted evolving grammar class”,
containing all generic evolving grammars, without any restriction on the type of the production rules.
Another class is the context-free grammatical evolution class.

Note that if Gk is a context-free grammar and ∆Φk is a set of context-free production rules, the Gk+1 = Gk
+∆Gk resulting grammar will be also a context-free grammar. From this point on our discussion will be

restricted to context-free grammatical evolutions. We will write ψ
Gi

� σ, ψ
Gi

*�
 σ, ψ

Gi

R*
�

 σ to

specify direct derivations, derivations and rightmost derivations according to Gi (ψ,σ ∈(Vt U Vni)*).

We would like now to specify a mechanism able to generate grammar evolutions. Therefore we will associate
to some of the production rules of Φi the desired ∆G’s writing:

 ∆Gi(Φµi) = (∆Vni(Φµi), ∆Φi(Φµi)).

Informally speaking ∆Gi(Φµi) specifies the new non-terminals and production rules to be added to the Gi

grammar to generate Gi+1 when the rule Φµi of Gi is reduced. We will write
∆Gn

R� to specify a rightmost

direct derivation in Gn using a single production rule of Gn associated with ∆Gn.

Definition. An evolving grammar Za is a grammar Ga0 having at least one the production rules Φµ0

associated to a non-empty ∆G0 (Φµ0).

Definition. We introduce the definition of grammatical evolution starting from Gak as a succession of
grammars connected by evolution steps:

 E (Gak) = {Gi | Gi+1 = Gi + ∆Gi (Φµi) , i ≥ k; Gk = Gak}.

where ∆Gi (Φµi) is the grammatical change associated with the production Φµi of the grammar Gi.

Definition. The rightmost evolved derivation ψ
Gn.. Gk

R*
� σ from ψ to σ along a grammatical evolution path

from Gk to Gn is defined as ψ
Gn

R*
� α

∆Gn-1

R� β
Gn-1

R*
�

....
∆Gk

R� ω
Gk

R*
� σ .

Note that grammar grows from right to left (i.e., Gk ∏ Gn).

Definition. We define the evolving language ZZLanguage generated by an evolving grammar ZZ the set of

strings x:

 ZZLanguage = { x | x ∈ Vt* ; S
n

G .. o
G

R*
�

 x, n ≥ 0; G0 = Gz0}.

Note that an evolving grammar is generally more powerful than a context-free grammar. In the following
example we will generate using an evolving grammar a language which is impossible to describe by means of

a context-free grammar. The language we want to describe is the set of all xyx where x ∈(a|b)* . This
language is not context-free and abstracts the problem of checking the declaration of the identifiers before
their use in a program. That is the first x in xyx represents the declaration of an identifier and the second one
represents its use. An evolving grammar able to generate this language could be:

 Ga0 = (Vn0 , Vt , Φ0, S) where

 Vn0 = {S,D,I,U0}

 Vt 0 = { a,b,y}

 Φ0 = {S → D U0

 D → y ∆Gi = ({}, { Ui → ε })
 D → I D
 I → a ∆Gi = ({U i+1}, { Ui → a Ui+1 })
 I → b ∆Gi = ({U i+1}, { Ui → b Ui+1 }) }

The non-terminal D can generate any sequence of a’s and b’s terminated by y, while the non-terminal U0
will generate only the same sequence generated by D. During the generation of the string a b b y a b b the
grammar changes four times:

 G4 = Ga0 + ∆G0:4

 ∆V0:4 = {U0,U1,U2,U3}

 ∆Φ0:4 = {U 0 → a U1
 U1 → b U2
 U2 → b U3
 U3 → ε}

Dynamic Parsers

Suppose that s is a string generated by an evolving grammar with at least one grammar growth. The last step
in the evolved derivation might be written as:

 β w
∆Go

R� α tbw
Go

R*
�

 tatbw = s0w = s

Where ta, tb,w, so ∈Vt* and α,β∈(Vt ≈ Vno) * . The parser will reduce the substring s0 using the rules of the

grammar G0 only. Therefore the substring s0 could be reduced by a conventional LR parser (P 0)

implementing G0. After doing the last reduction the parser has β on the stack and w (the string to be read) in
the buffer . At that moment the grammar changes. Note that the grammar never changes on terminal shifting.
The parser should then follow the derivation

 δ u
∆G1

R� γ tdu
G1

R*
�

 β tctdu = β s1u =β w

doing reductions in G1 and scanning the substring s1 and so forth for G2,G3... and s2,s3.... An evolving
parser may be build by a conventional LR parser able to change its parsing tables at parsing time preserving
the items on the stack. The input string may be split in several substrings si each one reduced using the
grammar Gi only.

Note that the growth of grammars will usually produce a number of non active non -terminals and
unreachable symbols that could be converted into active non-terminals and reachable terminals by subsequent
evolutionary steps. Parsers designed to follow the growth of a growing grammar mustn't eliminate from their
parsing tables non active non-terminals and unreachable symbols.

Towards real life evolving programming languages

We are going to introduce, in the following sections, a number of Z k evolving grammars that will be

progressively enhanced to create a starting grammar Gk0,“good enough” for real life programming languages.

We will call this ideal “target evolving grammar” Zz, and the intermediate steps toward our target starting

grammar Ga0, Gb0,

Let us introduce an evolving language ZaLanguage similar (in the beginning) to the metalanguage usually

used to describe context-free production rules. The starting grammar of this language is Ga0.

Suppose that the language L(Ga0) ge nerated by the starting grammar Ga0 allows the generation of
sequences of ‘statements’ terminated by ‘;’ and the only good ‘statement’ is a production rule.

A good string s0 � L(Ga0) could be s0 = statement - >"mickey"; where the -> symbol would separate the
two sides of a production rule, statement is a non-terminal symbol and “mickey” is terminal.

After parsing, the parser Pa0 will change its tables according to the grammar G1, where

 G1 = Ga0 + ∆G0

and
 ∆G0= (∆Vn0, ∆Φ0) = (statement, statement -> mickey).

Then the string s0 = statement - >"mickey"; itself is able to drive one step of grammar evolution. The more

complex string u = s 0s1 where s1 = mickey; is therefore a good string in the evolving language
ZaLanguage.

Actions on Production Rule Reduction

Let us now introduce an evolving language ZbLanguage similar to the previous one plus some extension
useful to define “actions” to be performed by the growing parser on application of production rules during the
parsing phase. We will temporarilyrestrict the class of possible actions to additional growth steps to be
performed on reduction of the rule to which the action is attached.

In other words ZbLanguage admits, after a production rule, another production rule, enclosed by braces “{“ ,
“ }”.

Now a good string s0 ∈ L(Gb0) could be:

 s0 = statement - >"define""mickey"{statement - >"mickey";};

As in the previous example, when the parser reduces the last rule, it changes its tables according to the
grammar G1, where

 G1 = Gb0 + ∆G0 ; ∆G0= (statement, statement -> define mickey)

the parser with the new tables is able to continue the parse reading

 s1 = define mickey;

because s0s1 is a good string of ZbLanguage.

After reading s1 the P1 parser generates a new evolutionary step

 G2 = G1 + ∆G1 ; ∆G1= (statement, statement -> mickey)

This happens because the “meaning” of the braces “{“ , “}” in the language ZbLanguage is to attach a ∆G to
a rule. The string u = s0s1s2

 s0 = statement - >"define""mickey"{statement - >"mickey";};
 s1 = define mickey;
 s2 = mickey;

would be accepted by the parser ZbParser. Informally speaking, in this example we add a new statement
“define mickey” which in turn is able to cause a further syntax change.

Up to now we stated that, on production rule reduction, a dynamic parser should be able to produce the
grammar growth steps described inside the braces “{“ and “}”. It is useful now to introduce some more
conventional classes of actions that should be performed by a dynamic parser on rule reduction and that could
also be placed inside the braces.

A second class of actions will be the class of conventional semantic actions (i.e., the conventional semantic
actions of the translation grammars). The dynamic parser should be able to call a number of “semantic
routines”, for example on the purpose of “code generation”. To make realistic examples let us assume to have
a predefined semantic action named “print” (and a related syntactical interface) capable of printing integer
numbers and identifiers.
We suppose also that the syntactic rules for parsing identifiers (which we will identify by the non-terminal
“ident”) and integer numbers (non-terminal “num”) are predefined in each ZiParser, as well as some lexical
analysis capability needed to separate the token of the parsed string (the token separators will be the blank
and all the non alphanumerical characters).

Let us introduce now a third possible class of actions to be performed on rule reduction: the “return” actions
(whose task is similar to the synthesis of the attributes of attributed translation grammars[C1]). Suppose now

to parse the first statement of a program written in a new evolving language ZcLanguage that admits, after a
production rule, simple actions of the three types just now described (∆G actions, semantic actions, return of
synthetized attributes actions) enclosed by braces “{“ , “}”.

 A good ‘statement’ of ZcLanguage is

 s0 = color - >"red"{return 800 as num;};

The desired “meaning” of this statement is: introduce a new grammar rule

 ∆G0 = (color, color -> red)

and synthetize, on reduction of “color -> red“ an object of syntactic class “num” and of semantic value
“800”.

If the dynamic parser is able to do this job, then the meaning of the source statement s 1 (s0s1
� ZcLanguage):

 s1=statement - >"wavelength of"color^wl"?"{print wl;print nanometer;};

is: perform a grammar growth

 ∆G1=({statement, color},statement->wavelength of color ?),

but remember that, on reduction of the rule ‘statement->wavelength of color ?’ , two “print” semantic action
should be executed. The first print uses for “wl” the semantic value of the synthesised attribute made
available by the action “return” performed after reduction of the rule pertaining to the non-terminal “color”.
The second print is for the “nanometer” string. Now the last statement

 s2 = wavelength of red ?;

is parsed following the grammar G2 = G0 +∆G0 + ∆G1 (a complete parse tree may be constructed), and two
actions are performed: the first one will be the return of a synthetized attribute of syntactic class “num” and
semantic value 800 after reduction of the “color -> red” rule and the second one will be the printing of the
answer “800 nanometer”. The execution of the semantic actions corresponding to the “print wl” and “print
nanometer” actions can be executed using the semantic values “800” and “nanometer”. Note that seemingly
the “print wl” would be a print identifier statement, because at first sight wl is not a good “num”. But as we
have said the first action performed was to return an object whose syntactic class is “num” and whose
semantic value is 800. To clarify how this mechanism can be effectively treated we are going to introduce
some “volatile grammar changes”.

Volatile Grammar Changes

The problem of correctly parsing the “action” can be formalized introducing “volatile grammar changes”.
Suppose that on parsing a segment of the form name1^name2 (in our example color^wl in statement -

>"wave length of" color^wl"?" {print wl; print nanometer;}), the dynamic parser was able to
save the following directive:

Before parsing the action print wl; print nanometer;

to be performed on reduction of statement -> wavelength of color^wl ?
execute a volatile grammar change δG=(<type>, <type> -> wl)
where <type> is the type of the returned wl.

using wl as a temporary new terminal wl, and postponing the choice of the non-terminal to be used as <type>
to the moment of reduction of the rule pertaining to the non-terminal “color” .

For example the parsing of the statement wavelenght of red?
would force the execution of the attribute synthesis action {return 800 as num}
attached to the rule color -> red
and before parsing the semantic action {print wl; print nanometer;}
attached to the rule statement -> wavelength of color ?
the dynamic parser will activate a volatile grammar change δG = (num, num->wl)
and will use a synthetized attribute of syntactic class “num” and semantic value “800” on each occurrence of
the volatile terminal wl within the action parsed with the volatile grammar.

Therefore the grammar used to parse the action will be

 Gc0+(∆+δ)G where

 (∆+δ)G = {(∆+δ)Vn, (∆+δ) Φ} with
 (∆+δ)Vn = {statement, color, num}
 (∆+δ) Φ = {statement -> wave length of color ?, color -> red, num -> wl}

In the next two sections we will outline an example of grammar growth driven by a simple source program.
The example shows a growing grammar that dynamically incorporates new data types, declarations of
variables, and overloaded operators.

An Example

This example shows a simple evolving language program using ty pe identifier association, operator
overloading and data type checking. The source program is :

 statement - > integer ident^name {int_name - > name;};
 statement - > real ident^name {real_name - > name;};
 statement - > int_name^a “=“ int_name^b “+“ int_name^ c;
 statement - > real_name^a “=“ real_name^b “+“ real_name^c;

 integer mickey;
 integer donald;
 real tom;
 real jerry;

 mickey = mickey + donald;
 tom = tom + jerry;

The total grammar growth G8=Gc0+∆G0:8 will be summarized by

 ∆Vn0:8 = {statement, ident, int_name, real_name}

 ∆Φ0:8= {statement -> integer ident, statement -> real ident,
 int_name -> mickey, int_name -> donald,
 real_name -> tom, real_name -> jerry ,
 statement -> int_name = int_name + int_name,
 statement -> real_name = real_name + real_name}

Note that the "=" and "+" operators are now syntactically overloaded and that the syntactic coherence of the
data types employed in the assignment and addition operations is strongly checked by the context-free
grammar G8.

In fact after the ∆G0:8 evolution the string tom=mickey+jerry will not be accepted.

Conclusions and Future Works

The dynamic parser "Z ZParser" has been successfully employed to develop the evolving “APESE”
programming language and other system software tools (e.g. the debugger) for the 100 GigaFlops SIMD
parallel machine under development. The actual Gz0 grammar is a bit more complex than that used in the
examples, to make the resulting "ZZLanguage" a friendly programming environment.

User programs written in the evolving Apese language are now running on APE100 parallel super computers.
These programs, written using the evolving language, benefit of strong syntactic coherence checks and are
several times shorter than programs written in conventional programming languages. These factors enhance
the quality of the resulting application programs and shorten application development time. On the other
hand dynamic compilations are quite slow. The compilation time of a program written in Apese language,
generating 100,000 assembler lines, is 100 seconds on a Sun Sparc Station 2.

We got acquainted with the approaches of Burshteyn and Christiansen in 1992, at the end of the preparation
of this article. We note, however, that using our evolving grammar approach, the language used to specify
grammar evolution and residual semantic actions can be the evolved language itself. The user can then
introduce new syntactic operators and perform semantic actions using a bootstrap procedure supported by the
previously defined syntax.

The current conceptual framework shows several limitations in the area of “negative grammar changes”.
Therefore we hardly face problems connected with syntactic scope. We are working to extend the current
scheme to catch negative changes too. We are also working to improve parser performances. For instance we
are trying to balance the time spent by the ZZParser in parsing table changes and in conventional parsing
phases.

Acknowledgements

Without the environment created by the INFN Ape100 group our work would never have come to existence.
We owe a special debt to Walter Tross who helped us with comments and criticism and to Carlo Rovelli who
took part in several preliminary discussions about this subject.

Bibliography

[G1] Burshteyn, B., “On the modification of the formal grammar at parse time”, SIGPLAN Notices, Vol. 25,
No. 5, pp.117-123, (1990)

[G2] Christiansen, H., “A survey of adaptable grammars”,SIGPLAN Notices, Vol. 25, No. 11, pp.35-44,
(1990)

[G3] Burshteyn, B., “Generation and recognition of formal languages by modifiable grammars”, SIGPLAN
Notices, Vol. 25, No. 12 pp.45-52, (1990)

[G4] Heering, J., Kint, P., Rekers, J., “Incremental Generation of Parsers”, SIGPLAN Notices, Vol. 24, No.
7, pp. 179-191, (1989)

[L1] Hopcroft, J.E. and Ullman, J.D.: “Formal Languages and their relation to automata”, Mass., Addison-
Wesley (1969)

[C1] Tremblay, J.P. and Sorenson, P.G.: “The theory and practice of compiler writing” Mc-Graw Hill (1987)

[C2] Aho, A.V., Sethi, R. and Ullman, J.D.: “Compilers Principles, Techniques, and Tools” Addison-
Wesley (1986)

[Z1]“Apese Language” Ape100 Group Documentation A100/APESE/S-03 (1990), Phys. Dep. Univ. Roma
“La Sapienza” Roma, Italy

[Z2] Cabasino, S., Paolucci, P.S. and Todesco, G.M., “Z Z Language” Ape100 Group Documentation
A100/ZZ/S-04 (1991), Phys. Dep. Univ. Roma “La Sapienza” Roma, Italy

[Z3] Cabasino, S., Paolucci, P.S., Todesco, G.M. “Dynamic Parsers, Evolving Grammars and Incremental
Languages”, Report N.863, Phys. Dep. Univ. Roma “La Sapienza” Roma, Italy,(1992)

[A1] Avico, N. et al., the Ape100 Collaboration: “From Ape to Ape100: From 1 to 100 Gigaflops in lattice
gauge theory simulations”, Computer Phys. Comm. 57 (1989), pp. 285-289

[A2] The Ape100 Collaboration: “A 100 Gigaflops parallel computer” Internal Note 733 Phys. Dep. Univ.
Roma “La Sapienza” (1990) Roma, Italy

[A3] Tross, W. for the Ape100 Collaboration: “Status of the Ape100 project” Nuclear physics B (Proc.
Suppl.) 20 (1991) pp. 138-140

Appendix A. GC0 starting grammar

 GC0 = (Vn 0,Vt , Φ0,root) where

Vn 0 = {root, statement, thread, bead, action, name, number, string}

Vt 0 = { -> , { , }, ε ε ε ε , ^ ,
 identifier_token, numerical_token, quotedstring_token}

Φ0 = {root -> root statement, root -> statement,

 statement -> ident -> thread {action},
 thread -> thread bead, thread -> εεεε,

 bead -> namê name,
 bead -> name, bead -> number, bead -> string,

 action -> action any, action -> {action}, action -> εεεε,

 statement -> return name as name
 statement -> return number as name,
 statement -> return string as name,

 statement -> print name,
 statement -> print number,
 statement -> print string,

 name -> identifier_token,
 number -> numerical_token,
 string -> quotedstring_token,

 Rules enforced by the lexical analysis parsing phase

 identifier_token -> any sequence of alphanumerical characters
 beginning with an alphabetic character,
 numerical_token -> any sequence of numerical characters,
 quotedstring_token -> any sequence of characters enclosed by
 quotes,
 any -> any sequence of characters followed by a ‘}‘

 }

 Appendix B: Notation.

Closure Set V*

Given a set V the closure set of V, denoted as V* , is defined as

 V* = { ε} U V U V2 U V3 U ...

where Vm designates all strings of length m composed by symbols in V and ε is the null string.

Metalanguage

A system or a language that describes the structure of another language is called a metalanguage.

Grammars G=(Vn,Vt,Φ,S)

Grammars are metalanguages. A grammar is a 4-tuple G=(Vn,Vt,Φ,S) where:
 - Vt is a finite non empty set of symbols called the terminal alphabet; the symbols in Vt are called terminal
symbols;
 - Vn is a finite non empty set of symbols called non-terminals (they are used in Φ to describe the syntactic
structure);
 - Φ is the finite non-empty set of "production rules", i.e., relations α -> β where

 α∈(Vt U Vn)* Vn (Vt U Vn)* and β ∈(Vt U Vn)*

 - S is a distinguished element of Vn called starting symbol.

Direct Derivative ψ � σ

 For σ ∈(Vt U Vn)* , ψ ∈Vn* σ is said to be a direct derivation of ψ, written as ψ 	 σ, if there are

strings ϕ0 and ϕ1 (including possibly empty strings) such that:

- α -> β is one of the production rules of Φ
- ψ = ϕ0 α ϕ1
- σ = ϕ0 β ϕ1.

Reductions and Productions ψ
*
 σ

The string σ reduces to ψ (or ψ produces σ or ψ
*
 σ) if there are strings φ0,...φn

(n >= 0) such that ψ = φ0 => φ1 , ... , φn-1 => φn = σ.

Languages L(G)

The language generated by a grammar G is the set of strings σ such that

L(G) = { σ | S
*
 σ and σ ∈ Vt* }

Rightmost Derivation and Ambiguous Grammars

Given a grammar G whose starting symbol is S and an input string x the rightmost derivation for x is given
by

 S => α1 => ... => αm-1 => αm = x

where the rightmost non-terminal in each ai, is the one selected to be rewritten. A grammar is ambiguous if

there is some string σ in the language that can be produced through different rightmost derivations.

Context-Free and Context Sensitive Grammars

A context-free grammar contains only production rules of the form

α -> β, where α ∈Vn and |α| <= |β| , and |α| denotes the length of α.
A context-sensitive grammar contains only production rules of the form
α -> β, where |α| <= |β|.

LR(k) Grammars and Parsers

The LR class of grammars is essentially the set of all unambiguous context-free grammars. LR(k) parsers
base their decisions using a parse stack and looking ahead the next k symbols in the input string. An LR(k)
parser scans the input string form left to right constructing the reverse of the appropriate rightmost derivation.

Active Non-terminals

If a non-terminal symbol generates at least one terminal string of the language L(G), such a symbol is said
active non-terminal.

Reachable Symbols

A symbol A ∈(Vt U Vn) which belongs to the set {A | S
*� ϕ0 Α ϕ1}.

