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1 Introduction

1.1 Overview

This manual explains how to use the PSI3 suite of ab initio quantum chemical programs.
In this section, we provide an overview of some of the features of PSI3 along with the
prerequisite steps for running calculations. Section 2 provides a brief tutorial to help new
users get started. Section 3 offers further details into the structure of PSI3 input files and a
discussion of some of the most important options. Later sections deal with the different types
of computations which can be done using PSI3 (e.g., Hartree-Fock, MP2, coupled-cluster)
and general procedures such as geometry optimization and vibrational frequency analysis.
The appendix will eventually include a description of the input keywords and command-line
options for each module, as well as numerous examples of PSI3 input and basis set files. For
the latest PSI3 documentation, check www.psicode.org.

The PSI3 package was developed to perform high-accuracy quantum mechanical compu-
tations on challenging chemical species and to provide an infrastructure for the development
of new theoretical techniques. Hence, it has a very flexible input scheme which allows non-
standard computations, and it is easily adapted to enable new capabilities.

The following citation should be used in any publication utilizing the PSI3 program
package:

T. Daniel Crawford, C. David Sherrill, Edward F. Valeev, Justin T. Fermann,
Rollin A. King, Matthew L. Leininger, Shawn T. Brown, Curtis L. Janssen,
Edward T. Seidl, Joseph P. Kenny, and Wesley D. Allen, PSI 3.2, 2003.

1.2 Obtaining and Installing PSI3

The latest version of the PSI3 program package may be obtained at www.psicode.org. The
source code is available as a gzipped tar archive (named, for example, psi3.X.tar.gz),
and binaries may be available for certain architectures. For detailed installation and testing
instructions, please refer to the the PSI3 Installation Manual, available as part of the package
or at the PSI3 website above.

1.3 Supported Architectures

The majority of PSI3 was developed on IBM RS/6000/AIX and x86/GNU Linux worksta-
tions. The complete list of tested architectures to which PSI3 has been ported is shown in
Table 1. If you don’t find your system in the Table, there’s a good chance that you will be
able to install PSI3 on your system if you have the prerequisite tools and math and utility
libraries described in the installation manual.
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Table 1: Platforms on which PSI3 has been installed successfully.

Architecture Notes
Compaq Alpha Tru64 UNIX 64-bit mode
IBM AIX 4.3.3, 5.x on PowerPC 64-bit mode
Linux on Intel/AMD x86, AMD x86-64 32 and 64-bit
Apple OS X (Darwin) on PowerPC
SGI IRIX64 (>6.5.15) 64-bit

Table 2: Summary of theoretical methods available in PSI3.

Method Energy Gradient Hessian
RHF SCF Y Y Y
ROHF SCF Y Y N
UHF SCF Y N N
HF DBOC Y N N
CIS/RPA/TDHF Y N N
TCSCF Y Y N
CASSCF Y Y N
RAS-CI Y N N
RAS-CI DBOC Y N N
RHF MP2 Y N N
RHF MP2-R12 Y N N
RHF CCSD Y Y N
ROHF CCSD Y Y N
UHF CCSD Y Y N
RHF CCSD(T) Y N N
ROHF CCSD(T) N N N
UHF CCSD(T) Y N N
RHF EOM-CCSD Y N N
ROHF EOM-CCSD Y N N

1.4 Capabilities

PSI3 can perform ab initio computations employing basis sets of up to 32768 contracted
Gaussian-type functions of virtually arbitrary orbital quantum number. PSI3 can recognize
and exploit the largest Abelian subgroup of the point group describing the full symmetry of
the molecule. Table 2 displays the range of theoretical methods available in PSI3. Geometry
optimization (currently restricted to true minima on the potential energy surface) can be
performed using either analytic gradients or energy points. Likewise, vibrational frequen-
cies can be computed using analytic second derivatives or by finite differences of analytic
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gradients. PSI3 can also compute an extensive list of one-electron properties.

1.5 Technical Support

The PSI3 package is distributed for free and without any guarantee of reliability, accuracy,
suitability for any particular purpose. No obligation to provide technical support is expressed
or implied. As time allows, the developers will attempt to answer inquiries directed to
crawdad@vt.edu. For bug reports, specific and detailed information, with example inputs,
would be appreciated.

2 A PSI3 Tutorial

Before going into all the details of the PSI3 input format, we will begin with a tutorial on
how to run some very simple computations.

The first thing to point out is that electronic structure programs like PSI3 make significant
use of disk drives. Therefore, for any but the smallest calculations, it is very important to

be sure that PSI3 is writing its temporary files to a disk drive physically attached to the

computer running the computation. If a user’s directory is remotely mounted by NFS, and
if PSI3 tries to write its temporary files to this directory, it will slow the program and the
network down dramatically. To avoid this situation, by default PSI3 will write temporary
files to /tmp. This will work for the small examples in this tutorial, but for real computations
you will want to set up a default scratch file path as described in sections 3.5 and 3.6, since
your /tmp directory may not be large enough.

The PSI3 suite of codes is built around a modular design which allows it great power and
flexibility. Any module can be run independently (provided suitable datafiles, of course).
There also exists a master program, appropriately called psi3, which will parse an input file,
recognize the overall calculation desired, and run all the necessary modules in the correct
order. As we will see later, it is possible to define entirely new calculation types simply by
editing a text file.

By default, the psi3 program reads its input from a text file called input.dat, and
output from PSI3 is written to output.dat. However, it is also possible to specify different
input and output filenames by adding these to the command line, like this:

psi3 input-name output-name

What does a PSI3 input file look like? First of all, due to the modular nature of the
program, the input may be split into different sections, each beginning with a keyword and
enclosed in parentheses. For now, we will ignore this flexibility and simply put all of the
input into a default area called psi:

% This is a sample PSI3 input file.

% Anything after a percent sign is treated as a comment.
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psi: (

label = "cc-pVDZ SCF H2O"

jobtype = sp

wfn = scf

reference = rhf

basis = "cc-pVDZ"

zmat = (

o

h 1 0.957

h 1 0.957 2 104.5

)

)

As you can see, the input is made up of keyword = value pairs. Values can be strings
(like "cc-pVDZ"), booleans (true/false, 1/0, yes/no), integers, or real numbers. One
can also have arrays of data (as in the the zmat entry). Generally speaking, input is not
case-sensitive. Anything following a percent sign is treated as a comment, and white space
of more than a single space is ignored.

The above input is for a Hartree-Fock SCF (wfn = scf) calculation of water using a cc-
pVDZ basis set (basis = "cc-pVDZ"). This is a single-point calculation (jobtype = sp) at
the experimental geometry. Since the ground state of water is closed shell, restricted Hatree-
Fock (RHF) orbitals are used (reference = rhf). The geometry is specified in the zmat ar-
ray using the standard quantum chemistry Z-matrix input format (for beginners, a short tuto-
rial on Z-matrix inputs is available at www-rcf.usc.edu/∼krylov/AbInitioCourse/zmat.html).
Geometries may also be input in Cartesian coordinates, as we will see later.

Why are some strings in quotation marks (e.g., label = "cc-pVDZ SCF H2O"), while
others are not (e.g., wfn = scf)? Any string containing spaces or other special characters
like asterisks must be placed in double quotes. Anything between double quotes is considered
one token; there is no change of case, and special characters and white space are maintained
as part of the token but otherwise ignored. Since basis sets often contain special characters,
it is a good idea to specify the basis in quotes always.

Let’s run this calculation. Assuming the input is given in a file sp.in, we can run PSI3

as:

psi3 sp.in sp.out

This will run the driver program psi3 which will read the input from sp.in and write
the output to sp.out. The driver program will print something like this:

The PSI3 Execution Driver

PSI3 will perform a RHF SCF energy computation.
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The following programs will be executed:

input

cints

cscf

input

cints

cscf

The psi3 program figures out what type of calculation it is (a restricted Hartree-Fock self-
consistent-field energy computation) and it runs the appropriate PSI3 modules, which are
input, cints, and cscf. The input program reads the geometry and basis set information
from the input file and places this information in a “checkpoint file” (with a filename ending
in .32) which is used during the calculation. The cints module computes the one- and
two-electron integrals, and the cscf module computes the SCF energy. Since this is all we
requested, the program stops here.

What does the output of the program look like? There is quite a lot in the output, so
we will focus only on the most pertinent portions. The first part should look something like
this:

******************************************************************************

tstart called on aurelius.chemistry.gatech.edu

Tue Aug 26 17:35:10 2003

--------------

WELCOME TO

PSI 3

--------------

LABEL = cc-pVDZ SCF H2O

SHOWNORM = 0

PUREAM = 1

PRINT_LVL = 1

-Geometry before Center-of-Mass shift (a.u.):

Center X Y Z

------------ ----------------- ----------------- -----------------

OXYGEN 0.000000000000 0.000000000000 0.000000000000

HYDROGEN 0.000000000000 0.000000000000 1.808467771070

HYDROGEN 1.750863805261 0.000000000000 -0.452804167853

...

This first section corresponds to the output from the input program, which translates
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the basis set and geometry information from the user’s input file. At the beginning of each
module, timing information is printed which gives the time and date the module is started
and the name of the computer running the computation. After parsing the geometry, the
program shifts the molecule so that the origin is at the center of mass, and it may also rotate
the molecule so that any spatial symmetry in the molecule may be easier to detect. The
program then prints out the detected point group of the molecule, which in this case is C2v:

-SYMMETRY INFORMATION:

Computational point group is C2v

Number of irr. rep. = 4

Number of atoms = 3

Number of unique atoms = 2

You should double-check that the program correctly identifies the symmetry of your molecule;
the PSI3 program is not tolerant of any rounding errors in the user input of geometry.

Next, the basis set information is printed out explicitly in a format identical to that used
for customized input of basis sets, as described in section 3.7.2. After this, the program
prints a summary of the basis set information, including the number of basis functions in
atomic orbitals (AO’s) and symmetry-adapted orbitals (SO’s), and the number of SO’s per
irredicible representation (irrep) of the point group:

-BASIS SET INFORMATION:

Total number of shells = 12

Number of primitives = 31

Number of AO = 25

Number of SO = 24

Irrep Number of SO

----- ------------

1 11

2 2

3 4

4 7

The number of SO’s can be very useful to check to verify that the correct type of Gaussian
basis functions are used; for example, using 6 Cartesian d functions or 5 spherical harmonics
d functions will give the same number of AO’s, but a different number of SO’s. In this case,
we are using Dunning and co-workers’ correlation consistent cc-pVDZ basis set, which always
utilize spherical harmonics Gaussians, hence the number of SO’s is smaller than the number
of AO’s.

After some additional geometry information, the input program prints the nuclear re-
pulsion energy and then a list of internuclear distances:

Nuclear Repulsion Energy (a.u.) = 9.196934380445

9



-The Interatomic Distances in angstroms:

1 2 3

1 0.0000000

2 0.9570000 0.0000000

3 0.9570000 1.5133798 0.0000000

The nuclear repulsion energy is another very useful diagnostic; when comparing the
results of two different calculations, if the calculations are really performed at the same
geometry, the nuclear repulsion energies should match.

Once the input program completes, a file ending in .32 should be created. This is the
“checkpoint file” which is used to communicate basic information (the basis set, the geometry,
etc) between modules in PSI3. By default, this file will be placed in the current working
directory when the program is run. The name and location of the file can be modified by
the user as described later in sections 3.5 and 3.6.

Now that PSI3 knows about the molecule and basis set, the next module to execute is
the cints module.

--------------------------------------------

CINTS: An integrals program written in C

Justin T. Fermann and Edward F. Valeev

--------------------------------------------

-OPTIONS:

Print level = 1

Integral tolerance = 1e-15

Max. memory to use = 2500000 double words

Number of threads = 1

LIBINT’s real type length = 64 bit

...

This program computes integrals over symmetry orbitals. By default, these integrals are
written to disk unless the user has specified an integrals-direct computation. The integrals
file can be very large, and its size grows rapidly with the size of the molecule and basis set.
When cints is finished, it prints the number of two-electron integrals:

Wrote 11412 two-electron integrals to IWL file 33

Once the integrals have been written, it is time to perform the Hartree-Fock SCF com-
putation using the cscf module.
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------------------------------------------

CSCF3.0: An SCF program written in C

Written by too many people to mention here

------------------------------------------

I think the multiplicity is 1.

If this is wrong, please specify the MULTP keyword

label = cc-pVDZ SCF H2O

wfn = SCF

reference = RHF

multiplicity = 1

charge = 0

direct = false

dertype = NONE

convergence = 7

maxiter = 40

guess = AUTO

nuclear repulsion energy 9.1969343804448

first run, so defaulting to core-hamiltonian guess

...

The first few lines print out information about the spin multiplicity specified by the user,
the convergence level, maximum number of iterations, etc. After this, the program attempts
to figure out the symmetries of the occupied orbitals using a core Hamiltonian guess. The
cscf program sometimes guesses occupations wrong, especially for highly strained molecules,
radicals, unusual bonding situations, or large basis sets (particularly with diffuse functions).
Unfortunately, this is a common problem with programs which have point-group symmetry
built in throughout the program; however, the user can override the guess by specifying
these occupations explicitly using the docc and socc keywords. In this case, the program
determines these occupations correctly, as below.

Using core guess to determine occupations

Symmetry block: A1 A2 B1 B2

DOCC: 3 0 1 1

SOCC: 0 0 0 0

The DOCC array lists number of doubly-occupied orbitals per irrep, and the SOCC array lists
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the number of singly-occupied orbitals per irrep (unnecessary for closed-shell molecules).
These occupations could have been specified explicitly in user input as:

docc = (3 0 1 1)

socc = (0 0 0 0)

Once the occupations are available, the self-consistent-field procedure begins to solve the
Hatree-Fock equations.

iter total energy delta E delta P diiser

1 -68.8728484552 7.806978e+01 0.000000e+00 0.000000e+00

2 -71.2986301202 2.425782e+00 2.008202e-01 9.307684e-01

3 -73.8237872940 2.525157e+00 1.056816e-01 9.960987e-01

4 -75.8742610925 2.050474e+00 5.205943e-02 7.105479e-01

5 -76.0217491034 1.474880e-01 1.313776e-02 1.898892e-01

6 -76.0263470429 4.597939e-03 1.920732e-03 5.155862e-02

7 -76.0267968846 4.498417e-04 8.594423e-04 1.595832e-02

8 -76.0268077609 1.087637e-05 1.063540e-04 1.111887e-03

9 -76.0268081461 3.851364e-07 1.914348e-05 2.419943e-04

10 -76.0268081747 2.867948e-08 4.819477e-06 6.654983e-05

11 -76.0268081769 2.160775e-09 1.655548e-06 1.348540e-05

12 -76.0268081769 1.818989e-11 1.534696e-07 1.509549e-06

13 -76.0268081769 1.264766e-12 4.735582e-08 4.720895e-07

For each iteration, the program lists the total electronic energy, the change in energy from
the previous iteration, the RMS change in the density matrix, and the maximum element
in the DIIS error array. Once the delta P has dropped below 10−n, where n is the number
specified as the convergence criterion (by default, 7), the self-consistent-field procedure is
considered complete.

At the end of the computation, the orbital energies are reported (in Hartrees), along with
their symmetry labels:

Orbital energies (a.u.):

Doubly occupied orbitals

1A1 -20.550390 2A1 -1.336826 1B2 -0.699406

3A1 -0.566646 1B1 -0.493169

Unoccupied orbitals

4A1 0.185609 2B2 0.256291 3B2 0.789452

5A1 0.854627 6A1 1.163500 2B1 1.200384

4B2 1.253301 7A1 1.444438 1A2 1.476370

3B1 1.674656 8A1 1.867219 5B2 1.935269

6B2 2.453470 9A1 2.491061 4B1 3.285961
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2A2 3.339124 10A1 3.510949 11A1 3.866084

7B2 4.147878

For typical closed-shell molecules, the occupied orbitals should have negative energies, and
the unoccupied orbitals should have positive energies, as in this case. The highest occu-
pied orbital (HOMO) is a 1B1 orbital with an energy of -0.493169 Hartree, and the lowest
unoccupied orbital (LUMO) is the 4A1 orbital with energy 0.185609 Hartree.

Frequently, more specialized input will be required. For example, maybe you wish to
compute the energy of a radical anion using a large, diffuse basis set. It may be difficult to
converge the Hatree-Fock wavefuction for a case like this, and it might require a different ini-
tial guess, more iterations, etc. Special keywords for accomplishing such tasks are described
later in this user’s manual. It is also possible to find this information through the use of the
PSI3 manual pages and the man command. For the man pages to be accessible, the user must
add them to their MANPATH environmental variable (as described in the installation manual).
For C shell, this can be accomplished using

setenv MANPATH $psipath/doc/man:$MANPATH

where psipath is the path to your installed version of PSI3(e.g., /usr/local/psi3). The
manual for the cscf module can then be accessed simply by typing

man cscf

which will display a summary of the module and a list of user options.

3 PSI3 Input Files

3.1 Syntax

PSI3 input files are case-insensitive and free-format, with a grammar designed for maximum
flexibility and relative simplicity. Input values are assigned using the structure:

keyword = value

where keyword is the parameter chosen (e.g., convergence) and value has one of the fol-
lowing data types:

• string: A character sequence surrounded by double-quotes. Example: basis = "cc-pVDZ"

• integer: Any positive or negative number (or zero) with no decimal point. Example:
maxiter = 100

• real: Any floating-point number. Example: omega = 0.077357
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• boolean: true, false, yes, no, 1, 0.

• array: a parenthetical list of values of the above data types. Example: docc = (3 0

1 1).

Note that the input parsing system is general enough to allow multidimensional arrays, with
elements of more than one data type. A good example is the z-matrix keyword:

zmat = (

(O)

(H 1 r)

(H 1 r 2 a)

)

For z-matrices, z-matrix variables, and Cartesian coordinates, it is also possible to discard
the inner parentheses. The following is equivalent in this case:

zmat = (

O

H 1 r

H 1 r 2 a

)

Keywords must grouped together in blocks, based on the module or modules that require
them. The default block is labelled psi:, and most users will require only a psi: block
when using PSI3. For example, the following is a simple input file for a single-point CCSD
energy calculation on H2O:

psi: (

label = "6-31G**/CCSD H2O"

wfn = ccsd

reference = rhf

jobtype = sp

basis = "6-31G**"

zmat = (

O

H 1 r

H 1 r 2 a

)

zvars = (

r 1.0

a 104.5

)

)
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In this example, the psi: identifier collects all the keywords (of varying types) together.
Every PSI3 module will have access to every keyword in the psi: block by default. One
may use other identifiers (e.g., ccenergy:) to separate certain keywords to be used only by
selected modules. For example, consider the keyword convergence, which is used by several
PSI3 modules to determine the convergence criteria for constructing various types of wave
functions. If one wanted to use a high convergence cutoff for the PSI3 SCF module but a
lower cutoff for the coupled cluster module, one could modify the above input:

psi: (

...

convergence = 7

)

scf:convergence = 12

Note that, since we have only one keyword associated with the scf: block, we do not need
to enclose it parentheses.

Some additional aspects of the PSI3 grammar to keep in mind:

• The “%” character denotes a comment line, i.e. any information following the “%” up
to the next linebreak is ignored by the program.

• Anything in between double quotes (i.e. strings) is case-sensitive.

• Multiple spaces are treated as a single space.

3.2 Specifying the Type of Computation

The most important keywords in a PSI3 input file are those which tell the program what type
of computation are to be performed. They jobtype keyword tells the psi3 program whether
this is a single-point computation, a geometry optimization, a vibrational frequency calcu-
lation, etc. The reference keyword specifies whether an RHF, ROHF, UHF, etc., reference
is to be used for the SCF wavefunction. The wfn specifies what theoretical method is to be
used, either SCF, determinant-based CI, coupled-cluster, etc. Also of critical importance are
the charge and multiplicity of the molecule, the molecular geometry, and the basis set to be
used. The latter two topics are discussed below in sections 3.3 and 3.7. General keywords
determining the general type of computation to be performed are described below.

LABEL = string
This is a character string to be included in the output to help keep track of what
computation has been run. It is not otherwise used by the program. There is no
default.

JOBTYPE = string
This tells the program whether to run a single-point energy calculation (SP), a ge-
ometry optimization (OPT), a series of calculations at different displaced geometries
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(DISP), a frequency calculation (FREQ), frequencies only for symmetric vibrational
modes (SYMM FREQ), a Diagonal Born-Oppenheimer Correction (DBOC) energy
computation, or certain response properties (RESPONSE). The default is SP.

WFN = string
This specifies the wavefunction type. Possible values are:
SCF, MP2, MP2R12, CIS, DETCI, DETCAS, CCSD, CCSD T, BCCD, BCCD T,
EOM CCSD.

REFERENCE = string
This specifies the type of SCF calculation one wants to do. It can be one of RHF
(for a closed shell singlet), ROHF (for a restricted open shell calculation), UHF (for
an unrestricted open shell calculation), or TWOCON (for a two configuration singlet).
The default is RHF.

MULTP = integer
Specifies the multiplicity of the molecule, i.e., 2S+1. Default is 1 (singlet).

CHARGE = integer
Specifies the charge of the molecule. Default is 0.

DERTYPE = string
This specifies the order of the derivative that is to be obtained. The default is NONE
(energy only).

DOCC = integer vector
This gives the number of doubly occupied orbitals in each irreducible representation.
There is no default. If this is not given, cscf will attempt to guess at the occupations.

SOCC = integer vector
This gives the number of singly occupied orbitals in each irreducible representation.
There is no default. If this is not given, cscf will attempt to guess at the occupations.

FREEZE CORE = string
PSI3 can automatically freeze core orbitals. Core orbitals are defined as follows:

H-Be no core

B-Ne 1s

Na-Ar small: 1s2s

large: 1s2s2p

YES or TRUE will freeze the core orbitals, SMALL or LARGE are for elements Na-
Ar. The default is NO or FALSE. Always check to make sure that the occupations are
correct!
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3.3 Geometry Specification

The molecular geometry may be specified using either Cartesian a Z-matrix coordinates.
Cartesian coordinates are specified via the keyword geometry:

geometry = (

atomname1 x1 y1 z1

atomname2 x2 y2 z2

atomname3 x3 y3 z3

...

atomnameN xN yN zN

)

where atomnamei can take the following values:

• The element symbol: H, He, Li, Be, B, etc.

• The full element name: hydrogen, helium, lithium, etc.

• As a ghost atom with the symbol, G, or name, ghost. A ghost atom has a formal charge
0.0, and can be useful to specify the location of the off-nucleus basis functions.

• As a dummy atom with the symbol, X. Dummy atoms can be useful only to specify
Z-matrix coordinates of proper symmetry or which contain linear fragments.

Hence the following two examples are equivalent to one another:

geometry = (

H 0.0 0.0 0.0

f 1.0 0.0 0.0

Li 3.0 0.0 0.0

BE 6.0 0.0 0.0

)

geometry = (

hydrogen 0.0 0.0 0.0

FLUORINE 1.0 0.0 0.0

Lithium 3.0 0.0 0.0

beryllium 6.0 0.0 0.0

)

It is also possible to include an inner set of parentheses around each line containing atomname1
x1 y1 z1.

The keyword units specifies the units for the coordinates:

• units = angstrom – angstroms (Å), default;
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• units = bohr – atomic units (Bohr);

Z-matrix coordinates are specified using the keyword zmat:

zmat = (

atomname1

atomname2 ref21 bond_dist2

atomname3 ref31 bond_dist3 ref32 bond_angle3

atomname4 ref41 bond_dist4 ref42 bond_angle4 ref43 tors_angle4

atomname5 ref51 bond_dist5 ref52 bond_angle5 ref53 tors_angle5

...

atomnameN refN1 bond_distN refN2 bond_angleN refN3 tors_angleN

)

where

• bond disti is the distance (in units specified by keyword units) from nucleus number
i to nucleus number refi1. The units

• bond anglei is the angle formed by nuclei i, refi1, and refi2;

• tors anglei is the torsion angle formed by nuclei i, refi1, refi2, and refi3;

3.4 Molecular Symmetry

PSI3 can determine automatically the largest Abelian point group for a valid framework
of centers (including ghost atoms, but dummy atoms are ignored). It will then use the
symmetry porperties of the system in computing the energy, forces, and other properties.
However, in certain instances it is desirable to use less than the full symmetry of the molecule.
The keyword subgroup is used to specify a subgroup of the full molecular point group.
The allowed values are c2v, c2h, d2, c2, cs, ci, and c1. For certain combinations of a
group and its subgroup there is no unique way to determine which subgroup is implied.
For example, D2h has 3 non-equivalent C2v subgroups, e.g. C2v(X) consists of symmetry
operations Ê, Ĉ2(x), σ̂xy, and σ̂xz. To specify such subgroups precisely one has to use the
keyword unique axis. For example, the following input will specify the C2v(X) subgroup
of D2h to be the computational point group:

psi: (

...

geometry = (

...

)

units = angstrom

subgroup = c2v

unique_axis = x

)
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Point Group Cotton Ordering of Irreps
C1 A
Ci Ag Au

C2 A B
Cs A’ A”
C2h Ag Bg Au Bu

C2v A1 A2 B1 B2

D2 A B1 B2 B3

D2h Ag B1g B2g B3g Au B1u B2u B3u

3.5 Specifying Scratch Disk Usage in PSI3

Depending on the calculation, the PSI3 package often requires substantial temporary disk
storage for integrals, wave function ampltiudes, etc. By default, PSI3 will write all such
datafiles to /tmp (except for the checkpoint file, which is written to ./ by default). However,
to allow for various customized arrangements of scratch disks, the PSI3 files: block gives
the user considerable control over how temporary files are organized, including file names,
scratch directories, and the ability to “stripe” files over several disks (much like RAID0
systems). This section of keywords is normally placed within the psi: section of input, but
may be used for specific PSI3 modules, just like other keywords.

For example, if the user is working with PSI3 on a computer system with only one scratch
disk (mounted at, e.g., /scr), one could identify the disk in the input file as follows:

psi: (

...

files: (

default: (

nvolume = 1

volume1 = "/scr/"

)

)

)

The nvolume keyword indicates the number of scratch directories/disks to be used to stripe
files, and each of these is specified by a corresponding volumen keyword. (NB: the trailing
slash “/” is essential in the directoy name.) Thus, in the above example, all temporary
storage files generated by the various PSI3 modules would automatically be placed in the
/scr directory.

By default, the scratch files are given the prefix “psi”, and named “psi.nnn”, where nnn
is a number used by the PSI3 modules. The user can select a different prefix by specifying
it in the input file with the name keyword:

psi: (
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...

files: (

default: (

name = "H2O"

nvolume = 1

volume1 = "/scr/"

)

)

)

The name keyword allows the user to store data associated with multiple calculations in the
same scratch area. Alternatively, one may specify the filename prefix on the command-line
of the psi3 driver program (or any PSI3 module) with the -p argument:

psi3 -p H2O

If the user has multiple scratch areas available, PSI3 files may be automatically split
(evenly) across them:

psi: (

...

files: (

default: (

nvolume = 3

volume1 = "/scr1/"

volume2 = "/scr2/"

volume3 = "/scr3/"

)

)

)

In this case, each PSI3 datafile will be written in chunks (65 kB each) to three separate files,
e.g., /scr1/psi.72, /scr2/psi.72, and /scr3/psi.72. The maximum number of volumes
allowed for striping files is eight (8), though this may be easily extended in the PSI3 I/O
code, if necessary.

The format of the files section of input also allows the user to place selected files in alter-
native directories, such as the current working directory. This feature is especially important
if some of the data need to be retained between calculations. For example, the following
files: section will put file32 (the PSI3 checkpoint file) into the working directory, but
all scratch files into the temporary areas:

psi: (

...

files: (

default: (
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nvolume = 3

volume1 = "/scr1/"

volume2 = "/scr2/"

volume3 = "/scr3/"

)

file32: ( nvolume = 1 volume1 = "./" )

)

)

3.6 The .psirc File

Users of PSI3 often find that they wish to use certain keywords or input sections in every
calculation they run, especially those keywords associated with the files: section. The
.psirc file, which is kept in the user’s $HOME directory, helps to avoid repetition of keywords
whose defaults are essentially user- or system-specific. A typical .psirc file would look like:

psi: (

files: (

default: (

nvolume=3

volume1 = "/tmp1/mylogin/"

volume2 = "/tmp2/mylogin/"

volume3 = "/tmp3/mylogin/"

)

file32: (nvolume=1 volume1 = "./")

)

)

3.7 Specifying Basis Sets

PSI3 uses basis sets comprised of Cartesian or spherical harmonic Gaussian functions. A
basis set is identified by a string, enclosed in double quotes. Currently, there exist three
ways to specify which basis sets to use for which atoms:

• basis = string – all atoms use basis set type.

• basis = (string1 string2 string3 ... stringN) – string i specifies the basis
set for atom i. Thus, the number of strings in the basis vector has to be the same as
the number of atoms (including ghost atoms but excluding dummy atoms). Another
restriction is that symmetry equivalent atoms should have same basis sets, otherwise
input will use the string provided for the so-called unique atom out of the set of
symmetry equivalent ones.

• basis = (
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(element1 string1)

(element2 string2)

...

(elementN stringN)

)

string i specifies the basis set for chemical element element i.

3.7.1 Default Basis Sets

PSI3 default basis sets are located in pbasis.dat which may be found by default in $psipath/share.
Tables 3, 4, 5, and 6 list basis sets pre-defined in pbasis.dat.

The predefined basis sets use either spherical harmonics or Cartesian Gaussians, which
is determined by the authors of the basis. Currently PSI3 cannot handle basis sets that
consist of a mix of Cartesian and spherical harmonics Gaussians. Therefore there may be
combinations of basis sets that are forbidden, e.g. cc-pVTZ and 6-31G**. In such case
one can override the predetermined choice of the type of the Gaussians by specifying the
puream keyword. It takes two values, true or false, for spherical harmonics and Cartesian
Gaussians, respectively.

3.7.2 Custom Basis Sets

If the basis set you desire is not already defined in PSI3, a custom set may be used by
specifying its exponents and contraction coefficients (either in the input file or another file
named basis.dat.) A contracted Cartesian Gaussian-type orbital

φCGTO = xlymzn
N∑

i

Ci exp(−αi[x
2 + y2 + z2]) (1)

where
L = l + m + n (2)

is written as

basis: (

ATOM_NAME: "BASIS_SET_LABEL" = (

(L (C1 alpha1)

(C2 alpha2)

(C3 alpha3)

...

(CN alpha4))

)

)

One must further specify whether Cartesian or spherical harmonics Gaussians are to be
used. One can specify that in two ways:
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Table 3: Pople-type basis sets available in PSI3

Basis Set Atoms Aliases
STO-3G H-Ar
3-21G H-Ar
6-31G H-Ar, K, Ca, Cu
6-31G* H-Ar, K, Ca, Cu 6-31G(d)
6-31+G* H-Ar 6-31+G(d)
6-31G** H-Ar, K, Ca, Cu 6-31G(d,p)
6-311G H-Ar
6-311G* H-Ar 6-311G(d)
6-311+G* H-Ne 6-311+G(d)
6-311G** H-Ar 6-311G(d,p)
6-311G(2df,2pd) H-Ne
6-311++G** H, B-Ar 6-311++G(d,p)
6-311G(2d,2p) H-Ar
6-311++G(2d,2p) H-Ar
6-311++G(3df,3pd) H-Ar

Table 4: Huzinaga-Dunning basis sets available in PSI3

Basis Set Atoms
(4S/2S) H
(9S5P/4S2P) B-F
(11S7P/6S4P) Al-Cl
DZ H, Li, B-F, Al-Cl
DZP H, Li, Be, B-F, Na, Al-Cl
DZ-DIF H, B-F, Al-Cl
DZP-DIF H, B-F, Al-Cl
TZ2P H, B-F, Al-Cl
TZ2PD H
TZ2PF H, B-F, Al-Cl
TZ-DIF H, B-F, Al-Cl
TZ2P-DIF H, B-F, Al-Cl
TZ2PD-DIF H
TZ2PF-DIF H, B-F, Al-Cl
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Table 5: Wachters basis sets available in PSI3

Basis Set Atoms
WACHTERS K, Sc-Cu
WACHTERS-F Sc-Cu

Table 6: Correlation-consistent basis sets available in PSI3

Basis Set Atoms Aliases
(N = D,T,Q,5,6)

cc-pVNZ H-Ar CC-PVNZ
cc-pV(N+D)Z Al-Ar CC-PV(N+D)Z
cc-pCVNZ B-Ne CC-PCVNZ
aug-cc-pVNZ H-He, B-Ne, Al-Ar AUG-CC-PVNZ
aug-cc-pV(N+D)Z Al-Ar AUG-CC-PCV(N+d)Z
aug-cc-pCVNZ B-F (N<6) AUG-CC-PCVNZ
d-aug-cc-pVNZ H
pV7Z1 H, C, N, O, F, S PV7Z
cc-pV7Z2 H, C, N, O, F, S CC-PV7Z
aug-pV7Z3 H, C, N, O, F, S AUG-PV7Z
aug-cc-pV7Z4 H, N, O, F AUG-CC-PV7Z
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• It can be done on a basis by basis case, such as

basis: (

"BASIS_SET_LABEL1":puream = true

"BASIS_SET_LABEL2":puream = false

"BASIS_SET_LABEL3":puream = true

....

)

By default, if puream is not given for a basis, then Cartesian Gaussians will be used.

• The choice between Cartesian or spherical harmonics Gaussian can be made globally
by specifying puream keyword in the standard input section, e.g.

psi: (

...

puream = true

...

)

Note that currently PSI3 cannot handle basis sets that consist of a mix of Cartesian and
spherical harmonics Gaussians.

Note that the basis set must be given in a separate basis: section of input, outside all
other sections (including psi:). For example, the PSI3 DZP basis set for carbon could be
specified as:

basis: (

carbon: "DZP" = (

(S ( 4232.6100 0.002029)

( 634.8820 0.015535)

( 146.0970 0.075411)

( 42.4974 0.257121)

( 14.1892 0.596555)

( 1.9666 0.242517))

(S ( 5.1477 1.0))

(S ( 0.4962 1.0))

(S ( 0.1533 1.0))

(P ( 18.1557 0.018534)

( 3.9864 0.115442)

( 1.1429 0.386206)

( 0.3594 0.640089))

(P ( 0.1146 1.0))

(D ( 0.75 1.0))

)

)
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Here are a couple of additional points that may be useful when specifying customized
basis sets:

• Normally the basis.dat file is placed in the same directory as the main input file, but
it may also be placed in a global location specified by the keyword basisfile:

basisfile = "/home/users/tool/chem/h2o/mybasis.in"

• To scale a basis set, a scale factor may be added as the last item in the specification of
each contracted Gaussian function. For example, to scale the S functions in a 6-31G**
basis for hydrogen, one would use the following

hydrogen: "6-31G**" =

( (S ( 18.73113696 0.03349460)

( 2.82539437 0.23472695)

( 0.64012169 0.81375733) 1.2 )

(S ( 0.16127776 1.00000000) 1.2 )

(P ( 1.10000000 1.00000000))

)

In this example, both contracted S functions have their exponents scaled by a factor
of (1.2)2 = 1.44. The output file should show the exponents after scaling.

3.7.3 Automated Conversion of Basis Sets

The PSI3 package is distributed with a Perl-based utility, named g94 2 PSI3, which will
convert basis sets from the Gaussian (’94 or later) format to PSI3 format automatically.
This utility is especially useful for basis sets downloaded from the EMSL database at
http://www.emsl.pnl.gov/forms/basisform.html. To use this utility, save the desired
basis set to a file (e.g., g94 basis.dat) in the Gaussian format. Then execute:

g94_2_PSI3 < g94_basis.dat > basis.dat

You may either incorporate the results from the basis.dat file into your input file as de-
scribed above, or place the results into a global basis.dat file. Be sure to surround the
basis-set definition with the basis:() keyword (as shown in the above examples) or input
parsing errors will result.

3.8 Specification of Ghost Atoms

To specify ghost atoms, use atom symbol G in zmat or geometry keywords:
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zmat = (

he

g 1 r

)

basis = "aug-cc-pVTZ"

Basis sets for ghost atoms must be defined explicitly using GHOST as the element name:

basis:GHOST:"aug-cc-pVTZ": (

....

)

This method leads to replication of existing basis set definitions. It is usually more convenient
to specify ghost atoms as regular atoms with zero charge:

zmat = (

he

he 1 r

)

charges = (2.0 0.0)

basis = "aug-cc-pVTZ"

In this example, the second helium atom is a “ghost” atom which carries helium’s aug-cc-
pVTZ basis set.

4 Theoretical Methods Available in PSI3

Several electronic structure methods are available in the PSI3 package, from Hatree-Fock
molecular orbital theory to coupled-cluster theory to full configuration interaction. This
section introduces the methods available and some of their most common input parameters.
Less commonly used keywords are described in the man pages for each module.

4.1 Hartree-Fock Self-Consistent-Field

Hartree-Fock molecular orbital theory forms the cornerstone of ab initio quantum chemistry.
Until the advances in the accuracy of Kohn-Sham density functional theory in the 1990’s,
Hartree-Fock theory was the method of choice for obtaining results for large molecules with-
out resorting to standard empirical or semiempirical approaches. Molecular properties ob-
tained by Hatree-Fock theory are generally at least qualitatively correct, although they can
be quantitatively poor in many instances.

PSI3 solves the Hatree-Fock equations in a basis of Gaussian functions using an iterative,
self-consistent-field (SCF) procedure. The final molecular orbitals are those which minimize
the energy, subject to the electron configuration specified by the user (or guessed by the
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program). The process is continued until the largest change in an element of the density
matrix drops below 10−n, where n is an integer specified by the convergence keyword.

Of course the efficiency of the iterative procedure depends on the choice of initial guess.
The cscf module will attempt to use previously obtained orbitals as a guess if they are
available. This can be particularly advantageous when diffuse functions are present; in
that case, it may be easiest to run the computation with a smaller basis and project those
orbitals onto the larger basis by specifying the --chkptmos command-line argument or the
chkpt mos=true keyword in input when running the input program for the larger basis. If
old MO’s are not available, cscf uses a core Hamiltonian guess by default. The convergence
of the SCF procedure is accelerated by Pulay’s direct inversion of the iterative subspace
(DIIS) approach, and it is possible to modify the behavior of the DIIS through various
keywords, although this is seldom necessary.

It is important to point out that the SCF approach does not rigorously guarantee that
the final orbitals actually correspond to a minimum in orbital space; at convergence, the
only guarantee is that the gradient of the energy with respect to orbital rotations is zero:
this could be a global minimum, a local minimum, or a saddle point in orbital rotation
space. While this is not usually an issue (typically the lowest minimum consistent with the
electron configuration is found), it can be a problem sometimes for radicals, diradicals, bond
breaking, or unusual bonding situations. The stable module can be used to test for the
stability of Hartree-Fock wave functions.

The most commonly used keywords are found below. More specialized keywords are
available in the man pages.

MAXITER = integer
This gives the maximum number of iterations. The default is 40.

CONVERGENCE = integer
This specifies how tightly the wavefunction will be converged. Convergence is deter-
mined by comparing the RMS change in the density matrix (”delta P”) to the given
value. The convergence criterion is 10**(-integer). The default is 7 if both DERTYPE
= NONE and WFN = SCF are given and 10 otherwise.

LEVELSHIFT = real
This specifies the level shift. The default is 1.

DIRECT = boolean
Specifies whether to do the SCF calculation with an integral-direct technique. The
default is false.

NUM THREADS = integer
Specified the number of threads to be used in the integral-direct computation (only
valid if DIRECT is set to true). Default is 1.

PRINT MOS = boolean
Specifies whether to print the molecular orbitals or not. The default is false.
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4.2 Second-order Møller-Plesset Theory: MP2 and MP2-R12 meth-
ods

Second-order Møller-Plesset theory is one of the most basic wave function approaches which
includes electron correlation directly. Due to its simplicity, the MP2 method is often the
best level one can afford for a larger molecular system. At the other end of the spectrum,
the MP2-R12 method of Kutzelnigg, Klopper, and co-workers is a promising approach to
computing MP2 energies in the complete basis set limit for smaller systems. PSI3 is one of
the very few publicly available programs to feature a robust implementation of the MP2-R12
method.

PSI3 is capable of computing closed-shell MP2 and MP2-R12/A energies. Both MP2 and
MP2-R12 energies can be computed using integral-direct techniques using multithreaded
algorithm, which lends itself perfectly for execution on symmetric multiprocessor (SMP)
machines. Table 7 summarizes these capabilities. This section describes how to carry out
MP2 and MP2-R12 calculations within PSI3.

Reference Method Energy (conv) Energy (integral-direct) Gradient
RHF MP2 Y Y N
RHF MP2-R12/A N Y N

Table 7: Current MP2 and MP2-R12 capabilities of PSI3.

4.2.1 Basic Keywords

To compute a ground-state MP2 or MP2-R12 energy at a fixed geometry, the following
keywords are common:

WFN = string
Acceptable values are mp2 for MP2, mp2r12 [for MP2-R12/A] There is no default.

REFERENCE = string
The only acceptable value is rhf. There is no default.

JOBTYPE = string
Acceptable values are sp and opt. There is no default.

MEMORY = (real MB)
Specified the amount of core memory to be used, in MB. Defaults to 256. Other units
(e.g., KB or GB) are also allowed.

DIRECT = boolean
Specifies whether to use the conventional (false) or integral-direct (true) algorithm.
Default is false.
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NUM THREADS = integer
Specified the number of threads to be used in the integral-direct computation (only
valid if DIRECT is set to true). Default is 1.

FREEZE CORE = boolean
Specifies whether core orbitals (which are determined automatically) are to be excluded
from the correlated calculations. Default is false.

PRINT = integer
The desired print level for detailed output. Setting this to 2 is a good idea for larger
calculations so that the progress of the calculation may be easily followed. Defaults to
0.

4.2.2 Using the MP2-R12 method

Although this manual is not a how-to on running quantum chemistry applications, the MP2-
R12 method is a rather non-standard tool, hence a few comments on its use are appropriate.

1. The version of the MP2-R12 method implemented in PSI3 is a so-called single-basis
MP2-R12 method in standard approximation A. This means that a basis set rather
complete in Hartree-Fock (or one-particle) sense is absolutely mandatory for mean-
ingful computations with the MP2-R12 method. The user is strongly urged to read
literature on linear R12 methods before using PSI3 to compute MP2-R12 energies.

2. More robust, two-basis versions of the MP2-R12 method, also known as the auxil-
iary basis MP2-R12 method, have been implemented in a publicly available Massively
Parallel Quantum Chemistry (MPQC) package (see http://www.mpqc.org/). The two-
basis version of the MP2-R12 method is a theoretically more sound approach, and thus
should be preferred to the single-basis method. In some situations, however, it may
make sense to use the single-basis method.

4.2.3 Larger Calculations

Here are a few recommendations for carrying out extended integral-direct MP2 and MP2-R12
calculations with PSI3:

1. While the integral-direct MP2 algorithm doesn’t need any significant disk storage, the
integral-direct algorithm for the MP2-R12 energy stores the transformed integrals to
disk, hence very large computations will require a lot of disk space. In general the
storage requirement is 16o2N2 bytes, where o is the number of occupied orbitals, and
N is the size of the basis.

2. If there is not enough memory to perform the computation in one pass, the program
will do multiple passes through the entire set of integrals, hence your computation will
run that many times longer. In such case, find the machine with the most memory
and processors available.
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3. On SMP machines, set the NUM THREADS to the number of processors available for the
job, or, if all processors are allocated for your job, set NUM THREADS to twice the number
of processors you have. Modern operating systems schedulers are usually very efficient
at handling multithreaded programs, so the overhead of thread context switching is
not significant, but using more threads may lead to better load balancing, and lower
execution times. For example, on a 32-processor IBM eServer p690 we found that
the optimal number of threads was 128. For the optimal performance, do a few runs
with different number of threads and see which number works best. Avoid excessively
large number of threads, as this descreases the net amount of memory available to the
computation and thus may increase the number of passes.

4. Set the MEMORY keyword to the 90% of the available physical memory, at most. There
is a small amount of overhead associated with the integral-direct algorithms that is
not accounted for by the internal memory handling routines.

5. The implementation of the integral-direct MP2-R12 (and MP2) method in PSI3 can run
efficiently on SMP, or shared-memory, machines, by utilizing multiple processors via
multithreaded approach. However, it cannot utilize distributed memory machines, such
as commodity (PC) clusters and massively parallel machines, to their full potential,
since one computation can only take advantage of one node of such machine at a
time. In such environments, the aformentioned MPQC implementation of the MP2-
R12 method should be preferred (see http://www.mpqc.org/).

4.3 Coupled Cluster Methods

The coupled cluster approach is one of the most accurate and reliable quantum chemical
techniques for including the effects of electron correlation. PSI3 is capable of computing
energies, analytic gradients, and linear response properties using a number of coupled cluster
models. Table 8 summarizes these capabilities. This section describes how to carry out
coupled cluster calculations within PSI3.

Reference Method Energy Gradient Exc. Energies LR Props
RHF CCSD Y Y Y Y
RHF CCSD(T) Y N – –

ROHF CCSD Y Y Y N
ROHF CCSD(T) N N – –
UHF CCSD Y Y Y N
UHF CCSD(T) Y N – –

Brueckner CCD Y N N N
Brueckner CCD(T) Y N – –

Table 8: Current coupled cluster capabilities of PSI3.
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4.3.1 Basic Keywords

To compute a ground-state CCSD or CCSD(T) energy at a fixed geometry, the following
keywords are common:

WFN = string
Acceptable values are ccsd, ccsd t [for CCSD(T)], bccd (for Brueckner-orbital-based
CCD), or bccd t [for Brueckner-orbital-based CCSD(T)] There is no default.

REFERENCE = string
Acceptable values are reference = rhf, rohf, or uhf. There is no default.

JOBTYPE = string
Acceptable values are sp, opt, freq, or response (for coupled cluster linear response
calculations). There is no default.

CONVERGENCE = integer
Sets the order of magnitude on the convergence of the CC wave function, perturbed
wave function, and/or lambda parameters. The root-mean-square of the difference in
amplitude vectors from consecutive iterations is used to determine the convergence.
The default is 7.

MAXITER = integer
The maximum number of iterations allowed for solving the CC amplitude or lambda
amplitude equations. Defaults to 50.

MEMORY = (real MB)
Specified the amount of core memory to be used, in MB. Defaults to 256. Other units
(e.g., KB or GB) are also allowed.

BRUECKNER CONV = integer
Specifies the order of magnitude convergence required for the Brueckner orbitals. The
convergence is determined based on the largest T1 amplitude.

AO BASIS = string
Specifies the algorithm to be used in computing the contribution of the four-virtual-
index integrals (〈ab||cd〉) to the CC amplitude equations. If AO BASIS=NONE, the MO-
basis integrals will be used; if AO BASIS=DISK, the AO-basis integrals, stored on disk,
will be used; if AO BASIS=DIRECT, the AO-basis integrals will be computed on the fly as
necessary. NB: The AO BASIS=DIRECT option is not fully implemented and should only
be used by experts. Default is NONE. New algorithms are in progress for significantly
speeding up this portion of the computation.

FREEZE CORE = boolean
Specifies whether core orbitals (which are determined automatically) are to be excluded
from the correlated calculations. Default is FALSE.
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RESTART = boolean
Determine whether previous amplitude vectors may be used as guesses in a given CC
calculation. Defaults to TRUE. For geometry optimizations, Brueckner calculations,
etc. the iterative solution of the CC amplitude equations may benefit considerably by
reusing old vectors as initial guesses. Assuming that the MO phases remain the same
between updates, the CC codes will, by default, re-use old vectors, unless the user sets
RESTART = false.

PRINT = integer
The desired print level for detailed output. Setting this to 2 is a good idea for larger
calculations so that the progress of the calculation may be easily followed. Defaults to
0.

CACHELEV = integer
Sets the level of automated cacheing of four-index quantities in the CC modules. These
modules are capable of keeping in core as much as possible, various four-index quan-
tities categorized by the number of virtual/unoccupied-orbital indices they contain.
Setting CACHELEV=0 will cache nothing (wise and sometimes necessary for very large
CC calculations), CACHELEV=1 will keep quantities with up to one virtual index in core
(e.g., integrals of the form 〈ij||ka〉), CACHELEV=2 will keep quantities with up two two
virtual indices in core (e.g., integrals of the form 〈ij||ab〉 or T̂2 amplitudes), CACHELEV=3
will keep three-virtual-index quantities in core, and CACHELEV=4 will keep everything in
core. Note that the cache behavior is tempered by the MEMORY keyword, and items will
be deleted from the cache (in an order determined based on the CACHETYEP keyword)
as additional memory is required in a given calculation.

CACHETYPE = string
Specifies the type of cache to be used, either LOW or LRU. If CACHETYPE=LOW, then ele-
ments are deleted from the cache based on a predefined order of priority. If CACHETYPE=LRU,
then elements are deleted from the cache based on a “least recently used” criterion: the
least recently used item is the first to be deleted. The LOW criterion has been developed
only ccenergy codes. The default is LRU for all CC modules except ccenergy.

NUM AMPS = integer
Specifies the number wave function amplitudes to print at the end of the energy cal-
culation. Defaults to 10.

PRINT MP2 AMPS = boolean
Specifies if the initial guess (MP2) amplitudes should be printed in the output file.
Defaults to FALSE.

4.3.2 Larger Calculations

Here are a few recommendations for carrying out large-basis-set coupled cluster calculations
with PSI3:
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1. Set the MEMORY keyword to 90% of the available physical memory, at most. There is
a small amount of overhead associated with the coupled cluster modules that is not
accounted for by the internal CC memory handling routines. Thus, the user should
not sepcify the entire physical memory of the system, or swapping is likely.

2. Set the CACHELEV keyword to 0. This will turn off cacheing, which, for very large
calculations, can lead to heap fragmentation and memory faults, even when sufficient
physical memory exists.

3. Set the PRINT keyword to 2. This will help narrow where memory bottlenecks or other
errors exist in the event of a crash.

4. Set the AO BASIS keyword to DISK. This will save significantly on disk space.

4.3.3 Excited State (EOM-CCSD) Calculations

The most important keywords associated with EOM-CC calculations are:

STATES PER IRREP = (integer array)
Specifies the desired number of excited states per irreducible representation for both
EOM-CC and CC-LR calculations. Note that the irreps in this keyword denote the
final state symmetry, not the symmetry of the transition.

PRINT SINGLES = boolean
Specifies whether information regarding the iterative solution to the single-excitation
EOM-CC problem (normally used to obtain guesses for a ful EOM-CCSD calculation)
will be printed.

RESIDUAL TOL = integer
Specifies the order of magnitude cutoff used to determine the convergence of the David-
son algorithm residuals in the EOM-CC iterative procedure.

EVAL TOL = integer
Specifies the order of magnitude cutoff used to determine the convergence of the final
eigenvalues in the EOM-CC iterative procedure.

EOM GUESS = (mixed array)
Specifies a set of single-excitation guess vectors for the EOM-CC procedure. This is
especially useful for converging to difficult states. The EOM GUESS keyword is an array,
each element of which includes an occupied orbital index (in coupled cluster ordering),
a virtual orbital index, a weighting factor, and a spin (0 for α and 1 for β). The guess
vector will be normalized after it is read, so only the relative magnitudes of the weight
factors are important.
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4.3.4 Linear Response (CCLR) Calculations

The most important keywords associated with CC-LR calculations are:

PROPERTY = string
For linear-response calculations, this specifies the type or response property desired.
Acceptable values are POLARIZABILITY (default) for dipole-polarizabilities and ROTATION

for specific rotations. For PROPERTY=ROTATION, both types of property are actually
computed.

OMEGA = real or (real UNITS) Specifies the desired frequency of the incident radia-
tion field in CCLR calculations. Acceptable units are HZ, NM, and EV. If given without
units, atomic units (Hartrees) are assumed.

MU IRREPS = (integer array)
Specifies the irreducible representations associated with the x-, y-, and z-axes. This
may be determined from the standard Cotton tables. Eventually this will be deter-
mined automatically by the program, so this keyword will go away.

4.4 Configuration Interaction

Configuration interaction (CI) is one of the most general ways to improve upon Hartree-Fock
theory by adding a description of the correlations between electron motions. Simply put, a CI
wavefunction is a linear combination of Slater determinants (or spin-adapted configuration
state functions), with the linear coefficients being determined variationally via diagonaliza-
tion of the Hamiltonian in the given subspace of determinants. The simplest standard CI
method which improves upon Hartree-Fock is a CI which adds all singly and doubly substi-
tuted determinants (CISD). The CISD wavefunction has fallen out of favor because truncated
CI wavefunctions short of full configuration interaction are not size-extensive, meaning that
their quality degrades for larger molecules. MP2 offers a less expensive alternative whose
quality does not degrade for larger molecules and which gives similar results to CISD for
well-behaved molecules. CCSD is usually a more accurate alternative, at only slightly higher
cost.

For the reasons stated above, the CI code in PSI3 is not optimized for CISD computations.
Instead, emphasis has been placed on developing a very efficient program to handle more
general CI wavefunctions which may be helpful in more challenging cases such as highly
strained molecules or bond breaking reactions. The detci program is a fast, determinant-
based CI program based upon the string formalism of Handy. It can solve for restricted
active space configuration interaction (RAS CI) wavefunctions as described by Olsen, Roos,
Jorgensen, and Aa. Jensen. Excitation-class selected multi-reference CI wavefunctions, such
as second-order CI, can be formulated as RAS CI’s. A RAS CI selects determinants for the
model space as those which have no more than n holes in the lowest set of orbitals (called
RAS I) and no more than m electrons in the highest set of orbitals (called RAS III). An
intermediate set of orbitals, if present (RAS II), has no restrictions placed upon it. All
determinants satisfying these rules are included in the CI.
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The detci program is also very efficient at full configuration interaction wavefunctions,
and is used in this capacity in the complete-active-space self-consistent-field (CASSCF) code.
Use of detci for CASSCF wavefunctions is described in the following section of this manual.

As just mentioned, the PSI3 program is designed for challenging chemical systems for
which simple CISD is not suitable. Because CI wavefunctions which go beyond CISD (such
as RAS CI) are fairly complex, typically the detci program will be used in cases where the
tradeoffs between computational expense and completeness of the model space are nontrivial.
Hence, the user is advised to develop a good working knowledge of multi-reference and RAS
CI methods before attempting to use the program for a production-level project. This
user’s manual will provide only an elementary introduction to the most important keywords.
Additional information is available in the man pages for detci.

4.4.1 Basic Keywords

WFN = string
Acceptable values for determinant-based CI computations in PSI3 are detci and, for
CASSCF, detcas.

REFERENCE = string
Most reference types allowed by PSI3 are allowed by detci, except that uhf is not
supported.

DERTYPE = string
Only single-point calculations are allowed for wfn = detci. For wfn = detcas, first
derivatives are also available.

CONVERGENCE = integer
Convergence desired on the CI vector. Convergence is achieved when the RMS of the
error in the CI vector is less than 10**(-n). The default is 4 for energies and 7 for
gradients.

EX LVL = integer
Excitation level for excitations into virtual orbitals (default 2, i.e. CISD). In a RAS
CI, this is the number of electrons allowed in RAS III.

VAL EX LVL = integer
In a RAS CI, this is the additional excitation level for allowing electrons out of
RAS I into RAS II. The maximum number of holes in RAS I is therefore EX LVL

+ VAL EX LVL. Defaults to zero.

FROZEN DOCC = integer array
The number of lowest energy doubly occupied orbitals in each irreducible representa-
tion from which there will be no excitations. The Cotton ordering of the irredicible
representations is used. The default is the zero vector.
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FROZEN UOCC = integer array
The number of highest energy unoccupied orbitals in each irreducible representation
into which there will be no excitations. The default is the zero vector.

RAS1 = integer array
The number of orbitals for each irrep making up the RAS I space, from which a
maximum of EX LVL + VAL EX LVL excitations are allowed. This does not include
frozen core orbitals. For a normal CI truncated at an excitation level such as CISD,
CISDT, etc., it is not necessary to specify this or RAS2 or RAS3. Note: this keyword
must be visible to the transqt program also so that orbitals are ordered correctly
(placing it in default or psi should be adequate).

RAS2 = integer array
As above for RAS1, but for the RAS II subspace. No restrictions are placed on the
occupancy of RAS II orbitals. Typically this will correspond to the conventional idea
of an “active space” in multi-reference CI.

RAS 3 = integer array
As above for RAS3, but for the RAS III subspace. A maximum of EX LVL electrons are
allowed in RAS III.

MAXITER = integer
Maximum number of iterations to diagonalize the Hamiltonian. Defaults to 12.

NUM ROOTS = integer
This value gives the number of roots which are to be obtained from the secular equa-
tions. The default is one. If more than one root is required, set DIAG METHOD to SEM

(or, for very small cases, RSP or SEMTEST). Note that only roots of the same irrep as
the reference will be computed. To compute roots of a different irrep, one can use the
REF SYM keyword (for full CI only).

REF SYM = integer
This option allows the user to look for CI vectors of a different irrep than the reference.
This probably only makes sense for Full CI, and it is not supported for unit vector
guesses.

For larger computations, additional keywords may be required, as described in the detci
man pages.

4.5 Complete-Active-Space Self-Consistent-Field (CASSCF)

CASSCF is a general method for obtaining a qualitatively correct wavefunction for highly
strained molecules, diradicals, or bond breaking reactions. The detcasman module performs
CASSCF optimization of molecular orbitals via a two-step procedure in which the CI wave-
function is computed using detci and the orbital rotation step is computed using detcas.

37



The detcas program is fairly simple and uses an approximate orbital Hessian and a Newton-
Raphson update, accelerated by Pulay’s DIIS procedure. Future versions of the program will
allow RASSCF type wavefunctions.

At present, CASSCF’s work most efficiently if the inactive orbitals are treated as “frozen”
in the FROZEN DOCC and FROZEN UOCC arrays. These orbitals are still optimized by the
CASSCF. This procedure is being simplified for the next release of PSI3. See the casscf-sp
example in the tests directory for an example of the current input.

4.5.1 Basic Keywords

WFN = string
This should be detcas for determinant-based CASSCF.

REFERENCE = string
Any of the references allowed by detci should work (i.e., not uhf), but there should
be no reason not to use rhf.

DERTYPE = string
Energies (none) and gradients (first) are supported.

CONVERGENCE = integer
Convergence desired on the orbital gradient. Convergence is achieved when the RMS
of the error in the orbital gradient is less than 10**(-n). The default is 4 for energy
calculations and 7 for gradients. Note that this is a different convergence criterion than
for the detci program itself. These can be differentiated, if changed by the user, by
placing the CONVERGENCE keywords within separate sections of input, such as detcas:
( convergence = x ).

ENERGY CONVERGENCE = integer
Convergence desired on the total MCSCF energy. The default is 7.

FROZEN DOCC = integer array
The number of lowest energy doubly occupied orbitals in each irreducible representa-
tion from which there will be no excitations. The Cotton ordering of the irredicible
representations is used. The default is the zero vector.

FROZEN UOCC = integer array
The number of highest energy unoccupied orbitals in each irreducible representation
into which there will be no excitations. The default is the zero vector.

NCASITER = integer
Maximum number of iterations to optimize the orbitals. This option should be specified
in the DEFAULT section of input, because it needs to be visible to the control program
PSI. Defaults to 20.

PRINT = integer
This option determines the verbosity of the output. A value of 1 or 2 specifies minimal
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printing, a value of 3 specifies verbose printing. Values of 4 or 5 are used for debugging.
Do not use level 5 unless the test case is very small (e.g. STO H2O CISD).

5 Geometry Optimization and Vibrational Frequency

Analysis

PSI3 is capable of carrying out geometry optimizations (minimization only, at present) for
a variety of molecular structures using either analytic and numerical energy gradients.

When analytic gradients are available (see Table 2), PSI3 will automatically generate
and use so-called redundant internal coordinates for carrying out the optimization. These
simple stretch, bend, torsion, and linear bend coordinates may be read from the intco.dat
file or determined completely by distance criteria using the input geometry, and written by
to the intco.dat file. By default, optimization is performed in redundant internal coordinates
regardless of whether cartesian or z-matrix coordinates were given in the input. However,
optimizations cannot be perfomed if any dummy atoms are used in the specification of the
input geometry.

For methods for which only energies are available, PSI3 will use symmetry-adapted de-
localized internal coordinates to generate geometrical displacements for computing finite-
difference gradients. The simple coordinates can be linearly combined by hand or automat-
ically. The goal is to form 3N-6(5) symmetry-adapted internal coordinates. The automated
delocalized coordinates may work for low-symmetry molecules without linear angles, but has
not been extensively tested. For both analytic- and finite-difference-gradient optimizaiton
methods, Hessian updates are performed using the BFGS method.

In addition, simple internal coordinates may be generated from the z-matrix given in
the input. The user may denote (using a dollar sign) which coordinates should not be
optimized. However, this release of PSI3 does not have a general mechanism to rigorously
enforce geometrical constraints, so the results should be examined carefully.

PSI3 is also capable of computing harmonic vibrational frequencies for a number of
different methods using either analytic energy first or second derivatives. (At present, only
RHF-SCF analytic second derivatives are available.) For those methods for which analytic
gradients have been coded (see Table 2), PSI3 will generate displaced geometries along
symmetrized, delocalized internal coordinates, compute the appropriate first derivatives,
and use finite-difference methods to compute the Hessian.

For finite-difference procedures for vibrational frequency calculations, the user should
keep in mind that, for geometric displacements along non-totally-symmetric coordinates,
by definition, the molecular point group symmetry will decrease. As a result, any PSI3

keywords in the input file which depend on the number of irreducible representations will
be incorrect. For example, if the user must specify the DOCC keyword in order to obtain the
correct MO occupations for their system, computation of non-symmetric vibrational modes
via finite-differences will necessarily fail. The developers are working to further automate the
computation of vibrational frequencies such that the correlation of irreducible representations
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between point groups can be handled correctly. This feature will be available in a future
release of the package.

The following keywords are pertinent for geometry optimizations and vibrational fre-
quency analyses:

JOBTYPE = string
This keyword (described earlier in this manual) must be set to OPT for geometry opti-
mizations and FREQ for frequency analyses.

DERTYPE = string
This keyword (also described earlier) must be set to NONE is only energies are available
for the chosen method and FIRST if analytic gradients are available.

BFGS USE LAST = integer
This keyword is used to specify the number of gradient step for the BFGS update of
the Hessian. The default is six.

6 Evaluation of one-electron properties

PSI3 is capable of computing a number of one-electron properties Table 9 summarizes these
capabilities. This section describes details of how to have PSI3 compute desired one-electron
properties

6.1 Basic Keywords

To compute one-electron properties at a fixed geometry, the following keywords are common:

JOBTYPE = string
This keyword must be set to oeprop for PSI3 to compute electron properties. There
is no default.

WFN = string
Acceptable values are scf for HF, mp2 for MP2, detci for CI, detcas for CASSCF,
and ccsd for CCSD. There is no default.

REFERENCE = string
Acceptable value are rhf and rohf. There is no default.

FREEZE CORE = boolean
Specifies whether core orbitals (which are determined automatically) are to be excluded
from the correlated calculations. Default is false.

PRINT = integer
The desired print level for detailed output. Defaults to 1.
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Feature On by default? Notes
Electric dipole moment Y
Electric quadrupole moment N Set MPMAX to 2 or 3.
Electric octupole moment N Set MPMAX to 3.
Electrostatic potential Y At the nuclei; on 2-D grid set GRID=2.
Electric field Y At the nuclei.
Electric field gradient Y At the nuclei.
Hyperfine coupling constant N Set SPIN PROP=true.
Relativistic (MVD) corrections N Set MPMAX to 2.
Electron density Y At the nuclei; on 2-D grid set GRID=2;

on 3-D grid set GRID=6.
Spin density N Set SPIN PROP=true; at the nuclei;

on 3-D grid set GRID=6.
Electron density gradient N on 2-D grid set GRID=3.
Spin density gradient N on 2-D grid set GRID=3 and SPIN PROP=true.
Electron density Laplacian N on 2-D grid set GRID=4.
Spin density Laplacian N on 2-D grid set GRID=4 and SPIN PROP=true.
Molecular Orbitals (MO) N on 3-D grid set GRID=5.
Natural Orbitals (NO) N Set WRTNOS to true; written to file32.
MO/NO spatial extents N Set MPMAX to 2 or 3;

MOs are used if WFN=SCF, otherwise NOs.

Table 9: Current one-electron property capabilities of PSI3.

MPMAX = integer
This integer specifies the highest-order electric multipole moment to be computed.
Valid values are 1 (dipole), 2 (up to quadrupole), or 3 (up to octupole). Default is 1.

MP REF = integer
This integer specifies the reference point for the evaluation of electric multipole mo-
ments. Valid values are 1 (center of mass), 2 (origin), 3 (center of electronic change)
and 4 (center of the nuclear charge). For charge-neutral systems the choice of MP REF

is irrelevant. Default is 1.

GRID = integer
This integer specifies the type of one-electron property and the type of grid on which
to evaluate it. The valid choices are

• 0 – compute nothing

• 1 – electrostatic potential on a 2-D grid

• 2 – electron density on a 2-D grid (spin density, if SPIN PROP=true)

• 3 – projection of electron density gradient on a 2-D grid (spin density gradient,
if SPIN PROP=true)

41



• 4 – Laplacian of electron density on a 2-D grid (Laplacian of spin density, if
SPIN PROP=true)

• 5 – values of molecular orbitals on a 3-D grid

• 6 – electron density on a 3-D grid (spin density if SPIN PROP=true)

Default is 0.

NIX = integer
The number of grid points along the x direction. This parameter has be greater than
1. Default is 20.

NIY = integer
The number of grid points along the y direction. This parameter has be greater than
1. Default is 20.

NIZ = integer
The number of grid points along the z direction (if a 3-D grid is chosen). This parameter
has be greater than 1. Default is 20.

GRID FORMAT = string
This keyword specifies in which format to produce grid data. The only valid choice for
2-D grids is plotmtv (format of plotting software program PlotMTV). For 3-D grids,
valid choices are gausscube (Gaussian 94 cube format) and megapovplus (format of
3D rendering software MegaPOV+). The defaults are plotmtv and gausscube for 2-d
and 3-d grids, respectively.

MO TO PLOT = vector
Specifies indices of the molecular orbitals to be computed on the 3-d grid. Indices can
be specified as:

• unsigned integer - index in Pitzer ordering (ordered accoring to irreps, not eigen-
values). Ranges from 1 to the number of MOs.

• signed integer - index with respect to Fermi level. +1 means LUMO, +2 means
second lowest virtual orbital, -1 means HOMO, etc.

All indices have to be either unsigned or signed, you can’t mix and match, or you will
get unpredictable results. Default is to compute HOMO and LUMO.

SPIN PROP = boolean
Whether to compute spin-dependent properties. Default is false.

WRTNOS = boolean
If set to true, natural orbitals will be written to the checkpoint file. Default is false.
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6.2 Evaluation of properties on rectalinear grids

PSI3 can evaluate a number of one-electron properties on rectalinear 2-D and 3-D grids. In
most cases, 3-D grids are utilized. In such cases you only need to specify the appropriate
value for GRID and PSI3 will automatically construct a rectalinear 3-D grid that covers the
entire molecular system. However, there’s no default way to construct a useful 2-D grid
in general. Even in the 3-D case you may want to “zoom in” on a particular part of the
molecule. Hence one needs to be able to specify general 2-D and 3-D grids. In the absence of
graphical user interface, PSI3 has a very flexible system for specifying arbitrary rectalinear
grids.

The following keywords may be used in construction of the grid:

GRID ORIGIN = real vector
A vector of 3 real numbers, this keyword specifies the origin of the grid coordinate
system. A rectangular grid box which envelops the entire molecule will be computed
automatically if GRID ORIGIN is missing, however, there is no default for 2-D grids.

GRID UNIT X = real vector
A vector of 3 real numbers, this keyword specifies the direction of the first (x) side of
the grid. It doesn’t have have to be of unit length. There is no default for 2-D grids.

GRID UNIT Y = real vector
A vector of 3 real numbers, this keyword specifies the direction of the second (y) side.
It doesn’t have to be of unit length or even orthogonal to GRID UNIT X. There is no
default for 2-D grids.

GRID UNIT XY0 = real vector
A vector of 2 real numbers, this keyword specifies the coordinates of the lower left corner
of a 2-D grid in the 2-D coordinate system defined by GRID ORIGIN, GRID UNIT X, and
GRID UNIT Y. This keyword is only used to specify a 2-D grid. There is no default.

GRID UNIT XY1 = real vector
A vector of 2 real numbers, this keyword specifies the coordinates of the upper right
corner of a 2-D grid in the 2-D coordinate system defined by GRID ORIGIN, GRID UNIT X,
and GRID UNIT Y. This keyword is only used to specify a 2-D grid. There is no default.

GRID UNIT XYZ0 = real vector
A vector of 3 real numbers, this keyword specifies the coordinates of the far lower left
corner of a 3-D grid in the 3-D coordinate system defined by GRID ORIGIN, GRID UNIT X,
and GRID UNIT Y. This keyword is only used to specify a 3-D grid. There is no default.

GRID UNIT XYZ1 = real vector
A vector of 3 real numbers, this keyword specifies the coordinates of the near up-
per right corner of a 3-D grid in the 3-D coordinate system defined by GRID ORIGIN,
GRID UNIT X, and GRID UNIT Y. This keyword is only used to specify a 3-D grid. There
is no default.
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In addition, the following keywords are useful for evaluation of certain properties on 2-D
grids:

GRID ZMIN = real
This keyword specifies the lower limit on displayed z-values for contour plots of electron
density and its Laplacian. Only useful when GRID=2 or GRID=4. Default is 0.0

GRID ZMAX = real
This keyword specifies the upper limit on displayed z-values for contour plots of electron
density and its Laplacian. Only useful when GRID=2 or GRID=4. Default is 3.0

EDGRAD LOGSCALE = integer
This keyword controls the logarithmic scaling of the produced electron density gradient
plot. Turns the scaling off if set to zero, otherwise the higher value - the stronger the
gradient field will be scaled. Recommended value (default) is 5. This keyword is only
useful when GRID=3.

6.3 Grid specification mini-tutorial

Let’s look at how to set up input for spin density evaluation on a two-dimensional grid. The
relevant input section of PSI3 might look like this:

jobtype = oeprop

grid = 2

spin_prop = true

grid_origin = (0.0 -5.0 -5.0)

grid_unit_x = (0.0 1.0 0.0)

grid_unit_y = (0.0 0.0 1.0)

grid_xy0 = (0.0 0.0)

grid_xy1 = (10.0 10.0)

nix = 30

niy = 30

grid specifies the type of a property and the type of a grid oeprop needs to compute. Since
spin prop is set and grid=2, the spin density will be evaluated on a grid.

Grid specification is a little bit tricky but very flexible. grid origin specifies the ori-
gin of the rectangular coordinate system associated with the grid in the reference frame.
grid unit x specifies a reference frame vector which designates the direction of the x-axis
of the grid coordinate system. grid unit y is analogously a reference frame vector which,
along with the grid unit x, completely specifies the grid coordinate system. grid unit x

and grid unit y do not have to be normalized, neither they need to be orthogonal to ei-
ther other - orthogonalization is done automatically to ensure that unit vectors of the grid
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coordinate system are normalized in the reference frame too. grid xy0 is a vector in the
grid coordinate system that specifies a vertex of the grid rectangle with the most negative
coordinates. Similarly, grid xy1 specifies a vertex of the the grid rectangle diagonally op-
posite to grid xy0. Finally, nix and niy specify the number of intervals into which the x

and y sides of the grid rectangle are subdivided. To summarize, the above input specifies a
rectangular (in fact, square) 30 by 30 grid of dimensions 10.0 by 10.0 lying in the yz plane
and centered at origin of molecular frame.

Running PSI3 on such input will create a file called sdens.dat (for file names refer to
man page on oeprop), which can be fed directly to PlotMTV to plot the 2-D data.

Specification of a three-dimensional grid for plotting MOs (grid = 5) or densities (grid
= 6) is just slightly more complicated. For example, let’s look at producing data for plotting
a HOMO and a LUMO. The indices of the MOs which needs to be plotted will be spec-
ified by keyword mo to plot. The reference frame is specified by keywords grid origin,
grid unit x and grid origin y (the third axis of the grid coordinate system is specified by
by the vector product of grid unit x and grid unit y). Since in this case we are dealing
with the three-dimensional grid coordinate system, one needs to specify two diagonally op-
posite vertices of the grid box via grid xyz0 and grid xyz1. The number of intervals along
z is specified via niz. The relevant section of input file may look like this:

jobtype = oeprop

grid = 5

mo_to_plot = (-1 +1)

grid_origin = (-5.0 -5.0 -5.0)

grid_unit_x = (1.0 0.0 0.0)

grid_unit_y = (0.0 1.0 0.0)

grid_xyz0 = (0.0 0.0 0.0)

grid_xyz1 = (10.0 10.0 10.0)

nix = 30

niy = 30

niz = 30

Running PSI3 on input like this will produce a Gaussian Cube file called mo.cube, which
can be used to render images of HOMO and LUMO using an external visualization software.

6.4 Plotting grid data

2-D grids should be plotted by an interactive visualization code PlotMTV. PlotMTV is a
freeware code developed by Kenny Toh. It can be downloaded off many web sites in source
or binary form.

3-D grids can be produced in two formats: megapovplus and gausscube (see GRID FORMAT).
First is used to render high-quality images with a program MegaPov (version 0.5). MegaPov is
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an unofficial patch for a ray-tracing code POV-Ray. Information on MegaPov can be found at
http://nathan.kopp.com/patched.htm. Gaussian Cube files can be processed by a number
of programs. We cannot recommend any particular program for that purpose here.

7 PSI3 Driver

The PSI3 suite of programs is built around a modular design. Any module can be run
independently or the driver module, psi3, can parse the input file, recognize the calculation
desired, and run all the necessary modules in the correct order. psi3 reads the file psi.dat

by default. psi.dat contains macros for several standard calculations, however, anything in
psi.dat can be overriden by the user.

7.1 Environment Variables

PSIDATADIR
This flag is used to specify an alternate location for platform-independent read-only
files such as psi.dat and pbasis.dat. By default, PSI3 will look for these files under
$psipath/share.

7.2 Command-Line Options

-i or -f
This flag is used to specify the input file name, e.g. psi3 -i h2o.in where h2o.in

is the name of the input file. By default, psi3 and the other PSI3 modules look for
input.dat.

-o
This flag is used to specify the output file name, e.g. psi3 -o h2o.out where h2o.out
is the name of the output file. By default, psi3 and the other PSI3 modules look for
output.dat.

-p
This flag is used to specify the PSI3 file prefix, e.g. psi3 -p h2o.dzp where h2o.dzp

is the prefix that will be used for all PSI3 files. By default, psi3 and the other PSI3

modules use psi for the file prefix. Hence, the checkpoint file is by default called
psi.32.

-n
This flag tells psi3 not to run the input module. This flag is useful for scripting and
debugging.

-c
This flag tells psi3 to check the input and print out the list of programs which would
be executed to STDOUT. Equivalent to check = true in the input file.
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-m
This flag tells psi3 not to run the cleanup module psiclean. Usually, psiclean is
invoked by the $done macro in psi.dat. This flag is useful for scripting and debugging.

7.3 Input Format

The psi3 module searches through the default keyword path (first PSI then DEFAULT) for
the following keywords:

JOBTYPE = string
This keyword specifies what kind of calculation to run.

WFN = string
This keyword specifies the type of wave function.

REFERENCE = string
This keyword specifies the spin-reference.

DERTYPE = string
This keyword specifies the order of the derivative to be used. The default is none.

OPT = boolean
Set equal to true if performing a geometry optimization. The default is false.

CHECK = boolean
If true, psi3 will parse your input file and print the sequence of programs to be
executed to STDOUT. The default is false.

EXEC = string vector
The EXEC vector contains a list of commands to be executed by psi3. Explicit com-
mands can be entered in double quotes, or preset variables can be entered using the
convention $variable, e.g.

psi: (

exec = ("ints")

)

or

psi: (

ints = "ints"

exec = ($ints)

)
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7.4 Loop Control

Loop control is handled with the repeat and end commands. The syntax is:

repeat n [commands to be executed] end

where n is the number of times to repeat the loop. An inspection of the psi.dat file will
show that this is how geometry optimizations and finite displacements are performed.

8 Additional Documentation

Additional information and the most recent version of this manual may be found at the PSI3
website www.psicode.org. More complete information on the installation of the PSI3 pack-
age is available in the PSI3 Installation Manual. For programmers, the PSI3 Programmer’s
Manual is available online along with complete library documentation.

A PSI3 Reference
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