
Francesc Altet • Ivan Vilata • Scott Prater •
Vicent Mas • Tom Hedley • Antonio
Valentino • Jeffrey Whitaker

PyTables User’s Guide

Hierarchical datasets in Python - Release 1.3.2



Altet, Francesc:

PyTables User’s Guide

Hierarchical datasets in Python - Release 1.3.2
All rights reserved.
© 2002, 2003, 2004, 2005, 2006 Francesc Altet

Typeset by Francesc Altet, Scott Prater, Ivan Vilata, Vicent Mas, Tom Hedley, Antonio Valentino and Jeffrey
Whitaker
Day of print: $LastChangedDate: 2006-03-30 14:05:30 +0200 (Thu, 30 Mar 2006) $

Copyright Notice and Statement for PyTables Software Library and Utilities

Redistribution and use in source and binary forms, with or without modification, are permitted provided that
the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ‘‘AS IS’’ AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Copyright Notice and Statement for NCSA Hierarchical Data Format (HDF) Software Library and
Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities Copyright 1998, 1999, 2000, 2001,
2002, 2003, 2004, 2005 by the Board of Trustees of the University of Illinois. All rights reserved.

See more information about the terms of this license at:
http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html

Copyright Notice and Statement for the lrucache.py module

Copyright 2004 Evan Prodromou. Licensed under the Academic Free License 2.1.
See more information about the terms of this license at:
http://opensource.org/licenses/afl-2.1.php

http://hdf.ncsa.uiuc.edu/HDF5/doc/Copyright.html
http://opensource.org/licenses/afl-2.1.php


I

Contents

I The PyTables Core Library 1

1 Introduction 3
1.1 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 The Object Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Installation 9
2.1 Installation from source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 PyTables package installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Binary installation (Windows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Windows prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 PyTables package installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Tutorials 15
3.1 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Importing tables objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Declaring a Column Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Creating a PyTables file from scratch . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.4 Creating a new group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.5 Creating a new table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1.6 Reading (and selecting) data in a table . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.7 Creating new array objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.8 Closing the file and looking at its content . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Browsing the object tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Traversing the object tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Setting and getting user attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.3 Getting object metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Reading data from Array objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Commiting data to tables and arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Appending data to an existing table . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Modifying data in tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.3 Modifying data in arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.4 And finally... how to delete rows from a table . . . . . . . . . . . . . . . . . . . . . 32

3.4 Multidimensional table cells and automatic sanity checks . . . . . . . . . . . . . . . . . . . 32
3.4.1 Shape checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Field name checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.3 Data type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Exercising the Undo/Redo feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5.1 A basic example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.2 A more complete example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Using enumerated types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6.1 Enumerated columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.2 Enumerated arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



II Contents

3.7 Dealing with nested structures in tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7.1 Nested table creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.7.2 Reading nested tables: introducing NestedRecArray objects . . . . . . . . . . . . 47
3.7.3 Using Cols accessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7.4 Accessing meta-information of nested tables . . . . . . . . . . . . . . . . . . . . . 48

3.8 Other examples in PyTables distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Library Reference 53
4.1 tables variables and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Global variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.1.2 Global functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The File class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.1 File instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2 File methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.3 File special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 The Node class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.1 Node instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.2 Node methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 The Group class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.1 Group instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.2 Group methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Group special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 The Leaf class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Leaf instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.2 Leaf methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 The Table class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.1 Table instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.2 Table methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6.3 Table special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.4 The Row class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 The Cols class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.1 Cols instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.7.2 Cols methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 The Description class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8.1 Description instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.8.2 Description methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 The Column class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9.1 Column instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9.2 Column methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.9.3 Column special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 The Array class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10.1 Array instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10.2 Array methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.10.3 Array special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 The CArray class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11.1 CArray instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.11.2 Example of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 The EArray class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12.1 EArray instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.12.2 EArray methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.13 The VLArray class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.13.1 VLArray instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.13.2 VLArray methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.13.3 VLArray special methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



Contents III

4.14 The UnImplemented class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.15 The AttributeSet class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.15.1 AttributeSet instance variables . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.15.2 AttributeSet methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.16 Declarative classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.16.1 The IsDescription class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.16.2 The Col class and its descendants . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.16.3 The Atom class and its descendants. . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.17 Helper classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17.1 The Filters class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.17.2 The IndexProps class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.17.3 The Index class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.17.4 The Enum class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Optimization tips 101
5.1 Informing PyTables about expected number of rows in tables . . . . . . . . . . . . . . . . 101
5.2 Accelerating your searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 In-kernel searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Indexed searches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Compression issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Shuffling (or how to make the compression process more effective) . . . . . . . . . . . . . . 109
5.5 Using Psyco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Getting the most from the node LRU cache . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7 Selecting an User Entry Point (UEP) in your tree . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Compacting your PyTables files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

II Complementary modules 117

6 FileNode - simulating a filesystem with PyTables 119
6.1 What is FileNode? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Finding a FileNode node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 FileNode - simulating files inside PyTables . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.1 Creating a new file node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.2 Using a file node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.3 Opening an existing file node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.4 Adding metadata to a file node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Complementary notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Current limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6 FileNode module reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.6.1 Global constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.2 Global functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.6.3 The FileNode abstract class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.4 The ROFileNode class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.6.5 The RAFileNode class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7 NetCDF - a PyTables NetCDF3 emulation API 127
7.1 What is NetCDF? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.2 Using the tables.NetCDF module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.2.1 Creating/Opening/Closing a tables.NetCDF file . . . . . . . . . . . . . . . . . . 127
7.2.2 Dimensions in a tables.NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.3 Variables in a tables.NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.4 Attributes in a tables.NetCDF file . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2.5 Writing data to and retrieving data from a tables.NetCDF variable . . . . . . . . 129
7.2.6 Efficient compression of tables.NetCDF variables . . . . . . . . . . . . . . . . 131



IV Contents

7.3 tables.NetCDF module reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.1 Global constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.2 The NetCDFFile class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3.3 The NetCDFVariable class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Converting between true netCDF files and tables.NetCDF files . . . . . . . . . . . . . . 134
7.5 tables.NetCDF file structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.6 Sharing data in tables.NetCDF files over the internet with OPeNDAP . . . . . . . . . . 135
7.7 Differences between the Scientific.IO.NetCDF API and the tables.NetCDF API . 135

III Appendixes 137

A Supported data types in PyTables 139

B Using nested record arrays 141
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
B.2 NestedRecArray methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
B.3 NestedRecord objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

C Utilities 145
C.1 ptdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.1.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
C.1.2 A small tutorial on ptdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 ptrepack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
C.2.2 A small tutorial on ptrepack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

C.3 nctoh5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
C.3.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

D PyTables File Format 153
D.1 Mandatory attributes for a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.2 Mandatory attributes for a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.3 Mandatory attributes, storage layout and supported data types for Leaves . . . . . . . . . 154

D.3.1 Table format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
D.3.2 Array format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.3.3 CArray format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.3.4 EArray format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
D.3.5 VLArray format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



1

Part I

The PyTables Core Library





La sabiduría no vale la pena si no es
posible servirse de ella para inventar una
nueva manera de preparar los garbanzos.
(Wisdom isn’t worth anything if you can’t
use it to come up with a new way to cook

garbanzos).

—A wise Catalan
in "Cien años de soledad"

Gabriel García Márquez

3

Chapter 1

Introduction

The goal of PyTables is to enable the end user to manipulate easily data tables and array objects in a
hierarchical structure. The foundation of the underlying hierarchical data organization is the excellent HDF5
library (see NCSA).

It should be noted that this package is not intended to serve as a complete wrapper for the entire HDF5
API, but only to provide a flexible, very pythonic tool to deal with (arbitrarily) large amounts of data (typically
bigger than available memory) in tables and arrays organized in a hierarchical and persistent disk storage
structure.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have
the same structure and all values in each field have the same data type. The terms fixed-length and strict data
types may seem to be a strange requirement for an interpreted language like Python, but they serve a useful
function if the goal is to save very large quantities of data (such as is generated by many data acquisition
systems, Internet services or scientific applications, for example) in an efficient manner that reduces demand
on CPU time and I/O.

In order to emulate in Python records mapped to HDF5 C structs PyTables implements a special class
so as to easily define all its fields and other properties. PyTables also provides a powerful interface to mine
data in tables. Records in tables are also known in the HDF5 naming scheme as compound data types.

For example, you can define arbitrary tables in Python simply by declaring a class with name field and
types information, such as in the following example:

class Particle(IsDescription):
name = StringCol(16) # 16-character String
idnumber = Int64Col() # Signed 64-bit integer
ADCcount = UInt16Col() # Unsigned short integer
TDCcount = UInt8Col() # unsigned byte
grid_i = Int32Col() # integer
grid_j = IntCol() # integer (equivalent to Int32Col)
class Properties(IsDescription): # A sub-structure (nested data-type)

pressure = Float32Col(shape=(2,3)) # 2-D float array (single-precision)
energy = FloatCol(shape=(2,3,4)) # 3-D float array (double-precision)

You then pass this class to the table constructor, fill its rows with your values, and save (arbitrarily large)
collections of them to a file for persistent storage. After that, the data can be retrieved and post-processed
quite easily with PyTables or even with another HDF5 application (in C, Fortran, Java or whatever language
that provides a library to interface with HDF5).

Other important entities in PyTables are the array objects that are analogous to tables with the difference
that all of their components are homogeneous. They come in different flavors, like generic (they provide a
quick and fast way to deal with for numerical arrays), enlargeable (arrays can be extended in any single
dimension) and variable length (each row in the array can have a different number of elements).

The next section describes the most interesting capabilities of PyTables.



4 Chapter 1. Introduction

1.1 Main Features

PyTables takes advantage of the object orientation and introspection capabilities offered by Python, the
HDF5 powerful data management features and numarray flexibility and high-performance manipulation of
large sets of objects organized in grid-like fashion to provide these features:

• Support for table entities: You can tailor your data adding or deleting records in your tables. A large
number of rows (up to 2**62), i.e. much more than will fit into memory is supported as well.

• Multidimensional and nested table cells: You can declare a column to consist of general array cells
as well as scalars, which is the only dimensionality allowed the majority of relational databases. You
can even declare columns that are made of other columns (of different types), which is known as struct
types.

• Indexing support for columns of tables: Very useful if you have large tables and you want to quickly
look up for values in columns satisfying some criteria.

• Support for numerical arrays: NumPy (see Oliphant et al.), Numeric (see Ascher et al.) and
numarray (see Greenfield et al.) arrays can be used as a useful complement of tables to store ho-
mogeneous data.

• Enlargeable arrays: You can add new elements to existing arrays on disk in any dimension you want
(but only one). Besides, you can access to only a slice of your datasets by using the powerful extended
slicing mechanism, without need to load all your complete dataset in-memory.

• Variable length arrays: The number of elements in these arrays can be variable from row to row. This
provides a lot of flexibility when dealing with complex data.

• Supports a hierarchical data model: Allows the user to clearly structure all the data. PyTables builds
up an object tree in memory that replicates the underlying file data structure. Access to the file objects
is achieved by walking through and manipulating this object tree.

• User defined metadata: Besides supporting system metadata (like the number of rows of a table, shape,
flavor, etc.) the user may specify its own metadata (as for example, room temperature, or protocol for
IP traffic that was collected) that complement the meaning of his actual data.

• Ability to read/modify generic HDF5 files: PyTables can access a wide range of objects in generic
HDF5 files, like compound type datasets (that can be mapped to Table objects), homogeneous
datasets (that can be mapped to Array objects) or variable length record datasets (that can be
mapped to VLArray objects). Besides, if a dataset is not supported, it will be mapped into a spe-
cial UnImplemented class (see 4.14), that will let the user see that the data is there, although it would
be unreachable (still, you will be able to access the attributes and some metadata in the dataset). With
that, PyTables probably can access and modify most of the HDF5 files out there.

• Data compression: Supports data compression (using the Zlib, LZO and bzip2 compression libraries)
out of the box. This is important when you have repetitive data patterns and don’t want to spend time
searching for an optimized way to store them (saving you time spent analyzing your data organization).

• High performance I/O: On modern systems storing large amounts of data, tables and array objects
can be read and written at a speed only limited by the performance of the underlying I/O subsystem.
Moreover, if your data is compressible, even that limit is surmountable!

• Support of files bigger than 2 GB: PyTables automatically inherits this capability from the underlying
HDF5 library (assuming your platform supports the C long long integer, or, on Windows, __int64).

• Architecture-independent: PyTables has been carefully coded (as has HDF5 itself) with little-
endian/big-endian byte orderings issues in mind. So, you can write a file on a big-endian machine (like
a Sparc or MIPS) and read it on other little-endian machine (like an Intel or Alpha) without problems.
In addition, it has been tested successfully with 64 bit platforms (Intel-64, AMD-64, PowerPC-G5,
MIPS, UltraSparc) using code generated with 64 bit aware compilers.



1.2. The Object Tree 5

1.2 The Object Tree

The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in a
tree-like structure. In order to achieve this, an object tree entity is dynamically created imitating the HDF5
structure on disk. The HDF5 objects are read by walking through this object tree. You can get a good picture
of what kind of data is kept in the object by examining the metadata nodes.

The different nodes in the object tree are instances of PyTables classes. There are several types of
classes, but the most important ones are the Node, Group and Leaf classes. All nodes in a PyTables
tree are instances of the Node class. Group and Leaf classes are descendants of Node. Group instances
(referred to as groups from now on) are a grouping structure containing instances of zero or more groups or
leaves, together with supplementary metadata. Leaf instances (referred to as leaves) are containers for actual
data and can not contain further groups or leaves. The Table, Array, CArray, EArray, VLArray and
UnImplemented classes are descendants of Leaf, and inherit all its properties.

Working with groups and leaves is similar in many ways to working with directories and files on a Unix
filesystem, i.e. a node (file or directory) is always a child of one and only one group (directory), its parent
group1. Inside of that group, the node is accessed by its name. As is the case with Unix directories and
files, objects in the object tree are often referenced by giving their full (absolute) path names. In PyTables
this full path can be specified either as string (such as ’/subgroup2/table3’, using / as a parent/child
separator) or as a complete object path written in a format known as the natural name schema (such as
file.root.subgroup2.table3).

Support for natural naming is a key aspect of PyTables. It means that the names of instance variables
of the node objects are the same as the names of the element’s children2. This is very Pythonic and intuitive
in many cases. Check the tutorial section 3.1.6 for usage examples.

You should also be aware that not all the data present in a file is loaded into the object tree. Only the
metadata (i.e. special data that describes the structure of the actual data) is loaded. The actual data is not
read until you request it (by calling a method on a particular node). Using the object tree (the metadata) you
can retrieve information about the objects on disk such as table names, titles, name columns, data types in
columns, numbers of rows, or, in the case of arrays, the shapes, typecodes, etc. of the array. You can also
search through the tree for specific kinds of data then read it and process it. In a certain sense, you can think
of PyTables as a tool that applies the same introspection capabilities of Python objects to large amounts of
data in persistent storage.

It is worth to note that, from version 1.2 on, PyTables sports a node cache system that loads nodes on
demand, and unloads nodes that have not been used for some time (i.e. following a Least Recent Used
schema). This feature allows opening HDF5 files with large hierarchies very quickly and with a low memory
consumption, while retaining all the powerful browsing capabilities of the previous implementation of the
object tree. See Altet and Vilata for more facts about the advantages introduced by this new node cache
system.

To better understand the dynamic nature of this object tree entity, let’s start with a sample PyTables
script (you can find it in examples/objecttree.py) to create a HDF5 file:

from tables import *

class Particle(IsDescription):
identity = StringCol(length=22, dflt=" ", pos = 0) # character String
idnumber = Int16Col(1, pos = 1) # short integer
speed = Float32Col(1, pos = 2) # single-precision

# Open a file in "w"rite mode
fileh = openFile("objecttree.h5", mode = "w")
# Get the HDF5 root group
root = fileh.root

# Create the groups:

1 PyTables does not support hard links – for the moment.
2 I got this simple but powerful idea from the excellent Objectify module by David Mertz (see Mertz)



6 Chapter 1. Introduction

group1 = fileh.createGroup(root, "group1")
group2 = fileh.createGroup(root, "group2")

# Now, create an array in the root group
array1 = fileh.createArray(root, "array1",

["this is", "a string array"], "String array")
# Create 2 new tables in group1 and group2
table1 = fileh.createTable(group1, "table1", Particle)
table2 = fileh.createTable("/group2", "table2", Particle)
# Create one more Array in group1
array2 = fileh.createArray("/group1", "array2", [1,2,3,4])

# Now, fill the tables:
for table in (table1, table2):

# Get the record object associated with the table:
row = table.row
# Fill the table with 10 records
for i in xrange(10):

# First, assign the values to the Particle record
row[’identity’] = ’This is particle: %2d’ % (i)
row[’idnumber’] = i
row[’speed’] = i * 2.
# This injects the Record values
row.append()

# Flush the table buffers
table.flush()

# Finally, close the file (this also will flush all the remaining buffers!)
fileh.close()

This small program creates a simple HDF5 file called objecttree.h5 with the structure that appears
in figure 1.13. When the file is created, the metadata in the object tree is updated in memory while the actual
data is saved to disk. When you close the file the object tree is no longer available. However, when you reopen
this file the object tree will be reconstructed in memory from the metadata on disk, allowing you to work with
it in exactly the same way as when you originally created it.

In figure 1.2 you can see an example of the object tree created when the above objecttree.h5 file is
read (in fact, such an object is always created when reading any supported generic HDF5 file). It’s worthwhile
to take your time to understand it4. It will help you to avoid programming mistakes.

3 We have used ViTables (see Cárabos) in order to create this snapshot.
4 Bear in mind, however, that this diagram is not a standard UML class diagram; it is rather meant to show the connections between

the PyTables objects and some of its most important attributes and methods.



1.2. The Object Tree 7

Figure 1.1: An HDF5 example with 2 subgroups, 2 tables and 1 array.



8 Chapter 1. Introduction

Figure 1.2: A PyTables object tree example.



Make things as simple as possible, but not
any simpler.

—Albert Einstein

9

Chapter 2

Installation

The Python Distutils are used to build and install PyTables, so it is fairly simple to get the appli-
cation up and running. If you want to install the package from sources go to the next section. But if you are
running Windows and want to install precompiled binaries jump to section 2.2). In addition, packages are
available for many different Linux distributions, for instance T2 Project, RockLinux, Debian, or Gentoo,
among others. There also packages for other Unices like FreeBSD or MacOSX

2.1 Installation from source

These instructions are for both Unix/Linux and Windows systems. If you are using Windows, it is assumed
that you have a recent version of MS Visual C++ (>= 6.0) compiler installed. A GCC compiler is assumed
for Unix, but other compilers should work as well.

Extensions in PyTables have been developed in Pyrex (see Ewing) and C language. You can rebuild
everything from scratch if you have Pyrex installed, but this is not necessary, as the Pyrex compiled source is
included in the distribution.

To compile PyTables you will need a recent version of Python, the HDF5 (C flavor) library, and
the numarray (see Greenfield et al.) package. Although you won’t need NumPy (see Oliphant et al.) or
Numeric (see Ascher et al.) in order to compile PyTables, they are supported; you only need a reasonably
recent version of them (>= 0.9.8 for NumPy and >= 24.2 for Numeric) if you plan on using them in your
applications. If you already have NumPy and/or Numeric installed, the test driver module will detect them
and will run the tests for NumPy and/or Numeric automatically.

2.1.1 Prerequisites

First, make sure that you have at least Python 2.3 or 2.4 (Python 2.2 is unsupported), HDF5 1.6.4 and numarray
1.5.0 or higher installed (I’m using HDF5 1.6.5 and numarray 1.5.1 currently). If you don’t, fetch and install
them before proceeding.

Compile and install these packages (but see section 2.2.1 for instructions on how to install precompiled
binaries if you are not willing to compile the prerequisites on Windows systems).

For compression (and possibly improved performance), you will need to install the Zlib (see Gailly and
Adler), which is also required by HDF5 as well. You may also optionally install the excellent LZO compression
library (see Oberhumer and section 5.3). The high-performance bzip2 compression library can also be used
with PyTables (see Seward). The use of the UCL compression library is in process of being deprecated1, so it
is recommended to not use it unless you have to (you still have data files compressed with UCL). Meanwhile,
you can force its support in PyTables by passing the --force-ucl flag to setup.py (see later).

Unix setup.py will detect HDF5, LZO, UCL or bzip2 libraries and include files under /usr or
/usr/local; this will cover most manual installations as well as installations from packages. If

1 This is because of recurrent memory problems in some platforms (perhaps some bad interaction between UCL and something else).
Eventually, UCL support will be dropped in the future, so, please, refrain to create datasets compressed with it.

http://www.t2-project.org
http://www.rocklinux.org/
http://www.debian.org/
http://www.gentoo.org/
http://www.freshports.org/
http://www.opendarwin.org/


10 Chapter 2. Installation

setup.py can not find libhdf5 (or liblzo, libucl or libbz2 that you may wish to use) or if
you have several versions of a library installed and want to use a particular one, then you can set the
path to the resource in the environment, setting the values of the HDF5_DIR, LZO_DIR, UCL_DIR or
BZIP2_DIR environment variables to the path to the particular resource. You may also specify the
locations of the resource root directories on the setup.py command line. For example:

--hdf5=/stuff/hdf5-1.6.5
--lzo=/stuff/lzo-1.08
--bzip2=/stuff/bzip2-1.0.3

You can force the compilation of the deprecated UCL compressor by passing the --force-ucl flag:

--ucl=/stuff/ucl-1.03 --force-ucl

If your HDF5 library was built as a shared library not in the runtime load path, then you can specify the
additional linker flags needed to find the shared library on the command line as well. For example:

--lflags="-Xlinker -rpath -Xlinker /stuff/hdf5-1.6.5/lib"

You may also want to try setting the LD_LIBRARY_PATH environment variable to point to the direc-
tory where the shared libraries can be found. Check your compiler and linker documentation as well as
the Python Distutils documentation for the correct syntax or environment variable names.

It is also possible to link with specific libraries by setting the LIBS environment variable:

LIBS="hdf5-1.6.5"
LIBS="hdf5-1.6.5 nsl"

Windows Once you have installed the prerequisites, setup.py needs to know where the necessary library
stub (.lib) and header (.h) files are installed. Set the following environment variables:

HDF5_DIR Points to the root HDF5 directory (where the include/ and dll/ directories can be found).
Mandatory.

LZO_DIR Points to the root LZO directory (where the include/ and lib/ directories can be found).
Optional.

BZIP2_DIR Points to the root bzip2 directory (where the include/ and lib/ directories can be found).
Optional.

UCL_DIR Points to the root UCL directory (where the include/ and lib/ directories can be found).
Optional, but discouraged.

For example:

set HDF5_DIR=c:\stuff\5-165-win
set LZO_DIR=c:\stuff\lzo-1-08
set BZIP2_DIR=c:\stuff\bzip2-1-0-3

Or, you can pass this information to setup.py by setting the appropriate arguments on the command
line. For example:

--hdf5=c:\stuff\5-165-win
--lzo=c:\stuff\lzo-1-08
--bzip2=c:\stuff\bzip2-1-0-3



2.1. Installation from source 11

You can force the compilation of the deprecated UCL compressor by passing the --force-ucl flag:

--ucl=c:\stuff\ucl-1-02 --force-ucl

You can get ready-to-use Windows binaries and other development files for most of those libraries from
the GnuWin32 project (see Wilke et al.).

2.1.2 PyTables package installation

Once you have installed the HDF5 library and the numarray package, you can proceed with the PyTables
package itself:

1. Run this command from the main PyTables distribution directory, including any extra command line
arguments as discussed above:

python setup.py build_ext --inplace

Depending on the compiler flags used when compiling your Python executable, there may appear many
warnings. Don’t worry, almost all of them are caused by variables declared but never used. That’s
normal in Pyrex extensions.

2. To run the test suite, change into the tables/tests directory and execute this command:

Unix In the shell sh and its variants:

PYTHONPATH=../.. python test_all.py

Windows Open a DOS terminal and type:

set PYTHONPATH=..\..
python test_all.py

If you would like to see verbose output from the tests simply add the flag -v and/or the word verbose
to the command line. You can also run only the tests in a particular test module. For example, to execute
just the types test:

python test_types.py -v

If a test fails, please enable verbose output (the -v flag and verbose option), run the failing test
module again, and, very important, get your PyTables version information by running the command:

python test_all.py --show-versions

and send back the output to developers so that we may continue improving PyTables.

If you run into problems because Python can not load the HDF5 library or other shared libraries:

Unix Try setting the LD_LIBRARY_PATH environment variable to point to the directory where the
missing libraries can be found.

Windows Put the DLL libraries (hdf5dll.dll and, optionally, lzo1.dll and
bzip2.dll) in a directory listed in your PATH environment variable or in
python_installation_path\Lib\site-packages\tables (the last directory may
have not exist yet, so if you want to install the DLLs there, you should do so after installing the
PyTables package). The setup.py installation program will print out a warning to that effect if
the libraries can not be found.



12 Chapter 2. Installation

3. To install the entire PyTables Python package, change back to the root distribution directory and run
the following command (make sure you have sufficient permissions to write to the directories where
the PyTables files will be installed):

python setup.py install

Of course, you will need super-user privileges if you want to install PyTables on a system-protected
area. You can select, though, a different place to install the package using the --prefix flag:

python setup.py install --prefix="/home/myuser/mystuff"

Have in mind, however, that if you use the --prefix flag to install in a non-standard place, you should
properly setup your PYTHONPATH environment variable, so that the Python interpreter would be able
to find your new PyTables installation.

You have more installation options available in the Distutils package. Issue a:

python setup.py install --help

for more information on that subject.

That’s it! Now you can skip to the next chapter to learn how to use PyTables.

2.2 Binary installation (Windows)

This section is intended for installing precompiled binaries on Windows platforms. You may also find it
useful for instructions on how to install binary prerequisites even if you want to compile PyTables itself on
Windows.

2.2.1 Windows prerequisites

First, make sure that you have Python 2.3, 2.4 or higher (Python 2.2 is unsupported), HDF5 1.6.5 or higher
and numarray 1.5.0 or higher installed (I have built the PyTables binaries using HDF5 1.6.5 and numarray
1.5.1).

For the HDF5 library it should be enough to manually copy the hdf5dll.dll, zlib1.dll
and szipdll.dll files to a directory in your PATH environment variable (for example
C:\WINDOWS\SYSTEM32) or

python_installation_path\Lib\site-packages\tables (the last directory may have not ex-
ist yet, so if you want to install the DLLs there, you should do so after installing the PyTables package).

Caveat: When downloading the binary distribution for HDF5 libraries, select one compiled with MSVC
6.0 if you are using Python 2.3.x, such as the package 5-165-win.zip. The file 5-165-win-net.zip
was compiled with the MSVC 7.1 (aka ".NET 2003") and you must choose if you want to run PyTables
with Python 2.4.x series. You have been warned!

To enable compression with optional LZO or bzip2 libraries (see the section 5.3 for hints about how they
may be used to improve performance), fetch and install the LZO (choose v1.x, LZO v2.x is not supported in
precompiled Windows builds) and bzip2 binaries from Wilke et al.2. Normally, you will only need to fetch
and install the
<package>-<version>-bin.zip file and copy the lzo1.dll or bzip2.dll files in a directory in the
PATH environment variable, or in python_installation_path\Lib\site-packages\tables (the
last directory may have not exist yet, so if you want to install the DLLs there, you should do so after installing
the PyTables package), so that they can be found by the PyTables extensions.

Please, note that PyTables has internal machinery for dealing with uninstalled optional compression li-
braries, so, you don’t need to install any of LZO or bzip2 dynamic libraries if you don’t want to.

2 Note that support for the UCL compressor has been declared deprecated and has not been added in the binary build of PyTables for
Windows.



2.2. Binary installation (Windows) 13

2.2.2 PyTables package installation

Download the tables-<version>.win32-py<version>.exe file and execute it.
You can (you should) test your installation by unpacking the source tar-ball, changing to the

tables/tests/ subdirectory and executing the test_all.py script. If all the tests pass (possibly with
a few warnings, related to the potential unavailability of LZO or bzip2 libs) you already have a working,
well-tested copy of PyTables installed! If any test fails, please try to locate which test module is failing and
execute:

python test_<module>.py -v verbose

and also:

python test_all.py --show-versions

and mail the output to the developers so that the problem can be fixed in future releases.

You can proceed now to the next chapter to see how to use PyTables.





Seràs la clau que obre tots els panys,
seràs la llum, la llum il.limitada,
seràs confí on l’aurora comença,

seràs forment, escala il.luminada!

—M’aclame a tu
Lyrics: Vicent Andrés i Estellés

Music: Ovidi Montllor

15

Chapter 3

Tutorials

This chapter consists of a series of simple yet comprehensive tutorials that will enable you to understand
PyTables’ main features. If you would like more information about some particular instance variable, global
function, or method, look at the doc strings or go to the library reference in chapter 4. If you are reading this
in PDF or HTML formats, follow the corresponding hyperlink near each newly introduced entity.

Please, note that throughout this document the terms column and field will be used interchangeably, as
will the terms row and record.

3.1 Getting started

In this section, we will see how to define our own records in Python and save collections of them (i.e. a table)
into a file. Then we will select some of the data in the table using Python cuts and create numarray arrays
to store this selection as separate objects in a tree.

In examples/tutorial1-1.py you will find the working version of all the code in this section. Nonetheless,
this tutorial series has been written to allow you reproduce it in a Python interactive console. I encourage you
to do parallel testing and inspect the created objects (variables, docs, children objects, etc.) during the course
of the tutorial!

3.1.1 Importing tables objects

Before starting you need to import the public objects in the tables package. You normally do that by
executing:

>>> import tables

This is the recommended way to import tables if you don’t want to pollute your namespace. However,
PyTables has a very reduced set of first-level primitives, so you may consider using the alternative:

>>> from tables import *

which will export in your caller application namespace the following functions: openFile(),
copyFile(), isHDF5File(), isPyTablesFile() and whichLibVersion(). This is a rather re-
duced set of functions, and for convenience, we will use this technique to access them.

If you are going to work with numarray (or NumPy or Numeric) arrays (and normally, you will) you
will also need to import functions from them. So most PyTables programs begin with:

>>> import tables # but in this tutorial we use "from tables import *"
>>> import numarray # or "import numpy" or "import Numeric"



16 Chapter 3. Tutorials

3.1.2 Declaring a Column Descriptor

Now, imagine that we have a particle detector and we want to create a table object in order to save data
retrieved from it. You need first to define the table, the number of columns it has, what kind of object is
contained in each column, and so on.

Our particle detector has a TDC (Time to Digital Converter) counter with a dynamic range of 8 bits and
an ADC (Analogical to Digital Converter) with a range of 16 bits. For these values, we will define 2 fields
in our record object called TDCcount and ADCcount. We also want to save the grid position in which the
particle has been detected, so we will add two new fields called grid_i and grid_j. Our instrumentation
also can obtain the pressure and energy of the particle. The resolution of the pressure-gauge allows us to use
a simple-precision float to store pressure readings, while the energy value will need a double-precision
float. Finally, to track the particle we want to assign it a name to identify the kind of the particle it is and a
unique numeric identifier. So we will add two more fields: name will be a string of up to 16 characters, and
idnumber will be an integer of 64 bits (to allow us to store records for extremely large numbers of particles).

Having determined our columns and their types, we can now declare a new Particle class that will
contain all this information:

>>> class Particle(IsDescription):
... name = StringCol(16) # 16-character String
... idnumber = Int64Col() # Signed 64-bit integer
... ADCcount = UInt16Col() # Unsigned short integer
... TDCcount = UInt8Col() # unsigned byte
... grid_i = Int32Col() # integer
... grid_j = IntCol() # integer (equivalent to Int32Col)
... pressure = Float32Col() # float (single-precision)
... energy = FloatCol() # double (double-precision)
...
>>>

This definition class is self-explanatory. Basically, you declare a class variable for each field you need. As
its value you assign an instance of the appropriate Col subclass, according to the kind of column defined (the
data type, the length, the shape, etc). See the section 4.16.2 for a complete description of these subclasses.
See also appendix A for a list of data types supported by the Col constructor.

From now on, we can use Particle instances as a descriptor for our detector data table. We will see
later on how to pass this object to construct the table. But first, we must create a file where all the actual data
pushed into our table will be saved.

3.1.3 Creating a PyTables file from scratch

Use the first-level openFile (see 4.1.2) function to create a PyTables file:

>>> h5file = openFile("tutorial1.h5", mode = "w", title = "Test file")

openFile (see 4.1.2) is one of the objects imported by the "from tables import *" state-
ment. Here, we are saying that we want to create a new file in the current working directory called
"tutorial1.h5" in "w"rite mode and with an descriptive title string ("Test file"). This function at-
tempts to open the file, and if successful, returns the File (see 4.2) object instance h5file. The root of the
object tree is specified in the instance’s root attribute.

3.1.4 Creating a new group

Now, to better organize our data, we will create a group called detector that branches from the root node. We
will save our particle data table in this group.



3.1. Getting started 17

>>> group = h5file.createGroup("/", ’detector’, ’Detector information’)

Here, we have taken the File instance h5file and invoked its createGroup method (see 4.2.2) to
create a new group called detector branching from "/" (another way to refer to the h5file.root object we
mentioned above). This will create a new Group (see 4.4) object instance that will be assigned to the variable
group.

3.1.5 Creating a new table

Let’s now create a Table (see 4.6) object as a branch off the newly-created group. We do that by calling the
createTable (see 4.2.2) method of the h5file object:

>>> table = h5file.createTable(group, ’readout’, Particle, "Readout example")

We create the Table instance under group. We assign this table the node name "readout". The
Particle class declared before is the description parameter (to define the columns of the table) and finally
we set "Readout example" as the Table title. With all this information, a new Table instance is created and
assigned to the variable table.

If you are curious about how the object tree looks right now, simply print the File instance variable
h5file, and examine the output:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

As you can see, a dump of the object tree is displayed. It’s easy to see the Group and Table objects we
have just created. If you want more information, just type the variable containing the File instance:

>>> h5file
File(filename=’tutorial1.h5’, title=’Test file’, mode=’w’, trMap={}, rootUEP=’/’)
/ (Group) ’Test file’
/detector (Group) ’Detector information’
/detector/readout (Table(0,)) ’Readout example’

description := {
"ADCcount": Col(’UInt16’, shape=1, itemsize=2, dflt=0),
"TDCcount": Col(’UInt8’, shape=1, itemsize= 1, dflt=0),
"energy": Col(’Float64’, shape=1, itemsize=8, dflt=0.0),
"grid_i": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"grid_j": Col(’Int32’, shape=1, itemsize=4, dflt=0),
"idnumber": Col(’Int64’, shape=1, itemsize=8, dflt=0),
"name": Col(’CharType’, shape=1, itemsize=16, dflt=None),
"pressure": Col(’Float32’, shape=1, itemsize=4, dflt=0.0) }

byteorder := little

More detailed information is displayed about each object in the tree. Note how Particle, our table de-
scriptor class, is printed as part of the readout table description information. In general, you can obtain much
more information about the objects and their children by just printing them. That introspection capability is
very useful, and I recommend that you use it extensively.

The time has come to fill this table with some values. First we will get a pointer to the Row (see 4.6.4)
instance of this table instance:



18 Chapter 3. Tutorials

>>> particle = table.row

The row attribute of table points to the Row instance that will be used to write data rows into the table.
We write data simply by assigning the Row instance the values for each row as if it were a dictionary (although
it is actually an extension class), using the column names as keys.

Below is an example of how to write rows:

>>> for i in xrange(10):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>>

This code should be easy to understand. The lines inside the loop just assign values to the different
columns in the Row instance particle (see 4.6.4). A call to its append() method writes this information
to the table I/O buffer.

After we have processed all our data, we should flush the table’s I/O buffer if we want to write all this
data to disk. We achieve that by calling the table.flush() method.

>>> table.flush()

3.1.6 Reading (and selecting) data in a table

Ok. We have our data on disk, and now we need to access it and select from specific columns the values we
are interested in. See the example below:

>>> table = h5file.root.detector.readout
>>> pressure = [ x[’pressure’] for x in table.iterrows()
... if x[’TDCcount’]>3 and 20<=x[’pressure’]<50 ]
>>> pressure
[25.0, 36.0, 49.0]

The first line creates a "shortcut" to the readout table deeper on the object tree. As you can see, we use
the natural naming schema to access it. We also could have used the h5file.getNode() method, as we
will do later on.

You will recognize the last two lines as a Python list comprehension. It loops over the rows in table as
they are provided by the table.iterrows() iterator (see 4.6.2). The iterator returns values until all the
data in table is exhausted. These rows are filtered using the expression:

x[’TDCcount’] > 3 and x[’pressure’] <50

We select the value of the pressure column from filtered records to create the final list and assign it to
pressure variable.

We could have used a normal for loop to accomplish the same purpose, but I find comprehension syntax
to be more compact and elegant.

Let’s select the name column for the same set of cuts:



3.1. Getting started 19

>>> names=[ x[’name’] for x in table if x[’TDCcount’]>3 and 20<=x[’pressure’]<50 ]
>>> names
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]

Note how we have omitted the iterrows() call in the list comprehension. The Table class has an
implementation of the special method __iter__() that iterates over all the rows in the table. In fact,
iterrows() internally calls this special __iter__() method. Accessing all the rows in a table using this
method is very convenient, especially when working with the data interactively.

That’s enough about selections. The next section will show you how to save these selected results to a
file.

3.1.7 Creating new array objects

In order to separate the selected data from the mass of detector data, we will create a new group columns
branching off the root group. Afterwards, under this group, we will create two arrays that will contain the
selected data. First, we create the group:

>>> gcolumns = h5file.createGroup(h5file.root, "columns", "Pressure and Name")

Note that this time we have specified the first parameter using natural naming (h5file.root) instead
of with an absolute path string ("/").

Now, create the first of the two Array objects we’ve just mentioned:

>>> h5file.createArray(gcolumns, ’pressure’, array(pressure),
... "Pressure column selection")
/columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’numarray’
byteorder = ’little’

We already know the first two parameters of the createArray (see 4.2.2) methods (these are the same
as the first two in createTable): they are the parent group where Array will be created and the Array
instance name. The third parameter is the object we want to save to disk. In this case, it is a numarray array
that is built from the selection list we created before. The fourth parameter is the title.

Now, we will save the second array. It contains the list of strings we selected before: we save this object
as-is, with no further conversion.

>>> h5file.createArray(gcolumns, ’name’, names, "Name column selection")
/columns/name Array(4,) ’Name column selection’

type = ’CharType’
itemsize = 16
flavor = ’List’
byteorder = ’little’

As you can see, createArray() accepts names (which is a regular Python list) as an object parameter.
Actually, it accepts a variety of different regular objects (see 4.2.2) as parameters. The flavor attribute (see
the output above) saves the original kind of object that was saved. Based on this flavor, PyTables will be
able to retrieve exactly the same object from disk later on.

Note that in these examples, the createArray method returns an Array instance that is not assigned
to any variable. Don’t worry, this is intentional to show the kind of object we have created by displaying its
representation. The Array objects have been attached to the object tree and saved to disk, as you can see if
you print the complete object tree:



20 Chapter 3. Tutorials

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:00:13 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

3.1.8 Closing the file and looking at its content

To finish this first tutorial, we use the close method of the h5file File object to close the file before exiting
Python:

>>> h5file.close()
>>> ^D

You have now created your first PyTables file with a table and two arrays. You can examine it with any
generic HDF5 tool, such as h5dump or h5ls. Here is what the tutorial1.h5 looks like when read with
the h5ls program:

$ h5ls -rd tutorial1.h5
/columns Group
/columns/name Dataset {3}

Data:
(0) "Particle: 5", "Particle: 6", "Particle: 7"

/columns/pressure Dataset {3}
Data:

(0) 25, 36, 49
/detector Group
/detector/readout Dataset {10/Inf}

Data:
(0) {0, 0, 0, 0, 10, 0, "Particle: 0", 0},
(1) {256, 1, 1, 1, 9, 17179869184, "Particle: 1", 1},
(2) {512, 2, 256, 2, 8, 34359738368, "Particle: 2", 4},
(3) {768, 3, 6561, 3, 7, 51539607552, "Particle: 3", 9},
(4) {1024, 4, 65536, 4, 6, 68719476736, "Particle: 4", 16},
(5) {1280, 5, 390625, 5, 5, 85899345920, "Particle: 5", 25},
(6) {1536, 6, 1679616, 6, 4, 103079215104, "Particle: 6", 36},
(7) {1792, 7, 5764801, 7, 3, 120259084288, "Particle: 7", 49},
(8) {2048, 8, 16777216, 8, 2, 137438953472, "Particle: 8", 64},
(9) {2304, 9, 43046721, 9, 1, 154618822656, "Particle: 9", 81}

Here’s the outputs as displayed by the "ptdump" PyTables utility (located in utils/ directory):

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’



3.2. Browsing the object tree 21

Figure 3.1: The initial version of the data file for tutorial 1, with a view of the data objects.

/detector/readout (Table(10,)) ’Readout example’

You can pass the -v or -d options to ptdump if you want more verbosity. Try them out!
Also, in figure 3.1, you can admire how the tutorial1.h5 looks like using the ViTables graphical

interface .

3.2 Browsing the object tree

In this section, we will learn how to browse the tree and retrieve data and also meta-information about the
actual data.

In examples/tutorial1-2.py you will find the working version of all the code in this section. As before, you
are encouraged to use a python shell and inspect the object tree during the course of the tutorial.

3.2.1 Traversing the object tree

Let’s start by opening the file we created in last tutorial section.

>>> h5file = openFile("tutorial1.h5", "a")

This time, we have opened the file in "a"ppend mode. We use this mode to add more information to the
file.

http://www.carabos.com/products/vitables.html


22 Chapter 3. Tutorials

PyTables, following the Python tradition, offers powerful introspection capabilities, i.e. you can easily
ask information about any component of the object tree as well as search the tree.

To start with, you can get a preliminary overview of the object tree by simply printing the existing File
instance:

>>> print h5file
Filename: ’tutorial1.h5’ Title: ’Test file’ Last modif.: ’Sun Jul 27 14:40:51 2003’
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10,)) ’Readout example’

It looks like all of our objects are there. Now let’s make use of the File iterator to see to list all the nodes
in the object tree:

>>> for node in h5file:
... print node
...
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector/readout (Table(10,)) ’Readout example’

We can use the walkGroups method (see 4.2.2) of the File class to list only the groups on tree:

>>> for group in h5file.walkGroups("/"):
... print group
...
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/detector (Group) ’Detector information’

Note that walkGroups() actually returns an iterator, not a list of objects. Using this iterator with the
listNodes() method is a powerful combination. Let’s see an example listing of all the arrays in the tree:

>>> for group in h5file.walkGroups("/"):
... for array in h5file.listNodes(group, classname = ’Array’):
... print array
...
/columns/name Array(3,) ’Name column selection’
/columns/pressure Array(3,) ’Pressure column selection’

listNodes() (see 4.2.2) returns a list containing all the nodes hanging off a specific Group. If the
classname keyword is specified, the method will filter out all instances which are not descendants of the class.
We have asked for only Array instances. There exist also an iterator counterpart called iterNodes() (see
4.2.2) that might be handy is some situations, like for example when dealing with groups with a large number
of nodes behind it.

We can combine both calls by using the walkNodes(where, classname) special method of the
File object (see 4.2.2). For example:



3.2. Browsing the object tree 23

>>> for array in h5file.walkNodes("/", "Array"):
... print array
...
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

This is a nice shortcut when working interactively.
Finally, we will list all the Leaf, i.e. Table and Array instances (see 4.5 for detailed information on

Leaf class), in the /detector group. Note that only one instance of the Table class (i.e. readout) will
be selected in this group (as should be the case):

>>> for leaf in h5file.root.detector._f_walkNodes(’Leaf’):
... print leaf
...
/detector/readout (Table(10,)) ’Readout example’

We have used a call to the Group._f_walkNodes(classname, recursive) method ( 4.4.2), using
the natural naming path specification.

Of course you can do more sophisticated node selections using these powerful methods. But first, let’s
take a look at some important PyTables object instance variables.

3.2.2 Setting and getting user attributes

PyTables provides an easy and concise way to complement the meaning of your node objects on the tree by
using the AttributeSet class (see section 4.15). You can access this object through the standard attribute
attrs in Leaf nodes and _v_attrs in Group nodes.

For example, let’s imagine that we want to save the date indicating when the data in
/detector/readout table has been acquired, as well as the temperature during the gathering process:

>>> table = h5file.root.detector.readout
>>> table.attrs.gath_date = "Wed, 06/12/2003 18:33"
>>> table.attrs.temperature = 18.4
>>> table.attrs.temp_scale = "Celsius"

Now, let’s set a somewhat more complex attribute in the /detector group:

>>> detector = h5file.root.detector
>>> detector._v_attrs.stuff = [5, (2.3, 4.5), "Integer and tuple"]

Note how the AttributeSet instance is accessed with the _v_attrs attribute because detector is a Group
node. In general, you can save any standard Python data structure as an attribute node. See section 4.15 for a
more detailed explanation of how they are serialized for export to disk.

Retrieving the attributes is equally simple:

>>> table.attrs.gath_date
’Wed, 06/12/2003 18:33’
>>> table.attrs.temperature
18.399999999999999
>>> table.attrs.temp_scale
’Celsius’
>>> detector._v_attrs.stuff
[5, (2.2999999999999998, 4.5), ’Integer and tuple’]



24 Chapter 3. Tutorials

You can probably guess how to delete attributes:

>>> del table.attrs.gath_date

If you want to examine the current user attribute set of /detector/table, you can print its represen-
tation (try hitting the TAB key twice if you are on a Unix Python console with the rlcompleter module
active):

>>> table.attrs
/detector/readout (AttributeSet), 2 attributes:

[temp_scale := ’Celsius’,
temperature := 18.399999999999999]

You can get a list of all attributes or only the user or system attributes with the _f_list() method.

>>> print table.attrs._f_list("all")
[’CLASS’, ’FIELD_0_NAME’, ’FIELD_1_NAME’, ’FIELD_2_NAME’, ’FIELD_3_NAME’,
’FIELD_4_NAME’, ’FIELD_5_NAME’, ’FIELD_6_NAME’, ’FIELD_7_NAME’, ’NROWS’,
’TITLE’, ’VERSION’, ’temp_scale’, ’temperature’]

>>> print table.attrs._f_list("user")
[’temp_scale’, ’temperature’]
>>> print table.attrs._f_list("sys")
[’CLASS’, ’FIELD_0_NAME’, ’FIELD_1_NAME’, ’FIELD_2_NAME’, ’FIELD_3_NAME’,
’FIELD_4_NAME’, ’FIELD_5_NAME’, ’FIELD_6_NAME’, ’FIELD_7_NAME’, ’NROWS’,
’TITLE’, ’VERSION’]

You can also rename attributes:

>>> table.attrs._f_rename("temp_scale","tempScale")
>>> print table.attrs._f_list()
[’tempScale’, ’temperature’]

However, you can not set, delete or rename read-only attributes:

>>> table.attrs._f_rename("VERSION", "version")
Traceback (most recent call last):

File ">stdin>", line 1, in ?
File "/home/falted/PyTables/pytables-0.7/tables/AttributeSet.py",
line 249, in _f_rename

raise AttributeError, \
AttributeError: Read-only attribute (’VERSION’) cannot be renamed

If you would terminate your session now, you would be able to use the h5ls command to read the
/detector/readout attributes from the file written to disk:

$ h5ls -vr tutorial1.h5/detector/readout
Opened "tutorial1.h5" with sec2 driver.
/detector/readout Dataset {10/Inf}

Attribute: CLASS scalar
Type: 6-byte null-terminated ASCII string
Data: "TABLE"

Attribute: VERSION scalar
Type: 4-byte null-terminated ASCII string



3.2. Browsing the object tree 25

Data: "2.0"
Attribute: TITLE scalar

Type: 16-byte null-terminated ASCII string
Data: "Readout example"

Attribute: FIELD_0_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "ADCcount"

Attribute: FIELD_1_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "TDCcount"

Attribute: FIELD_2_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "energy"

Attribute: FIELD_3_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_i"

Attribute: FIELD_4_NAME scalar
Type: 7-byte null-terminated ASCII string
Data: "grid_j"

Attribute: FIELD_5_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "idnumber"

Attribute: FIELD_6_NAME scalar
Type: 5-byte null-terminated ASCII string
Data: "name"

Attribute: FIELD_7_NAME scalar
Type: 9-byte null-terminated ASCII string
Data: "pressure"

Attribute: tempScale scalar
Type: 8-byte null-terminated ASCII string
Data: "Celsius"

Attribute: temperature {1}
Type: native double
Data: 18.4

Attribute: NROWS {1}
Type: native int
Data: 10

Location: 0:1:0:1952
Links: 1
Modified: 2003-07-24 13:59:19 CEST
Chunks: {2048} 96256 bytes
Storage: 470 logical bytes, 96256 allocated bytes, 0.49% utilization
Type: struct {

"ADCcount" +0 native unsigned short
"TDCcount" +2 native unsigned char
"energy" +3 native double
"grid_i" +11 native int
"grid_j" +15 native int
"idnumber" +19 native long long
"name" +27 16-byte null-terminated ASCII string
"pressure" +43 native float

} 47 bytes



26 Chapter 3. Tutorials

Attributes are a useful mechanism to add persistent (meta) information to your data.

3.2.3 Getting object metadata

Each object in PyTables has metadata information about the data in the file. Normally this meta-information
is accessible through the node instance variables. Let’s take a look at some examples:

>>> print "Object:", table
Object: /detector/readout Table(10,) ’Readout example’
>>> print "Table name:", table.name
Table name: readout
>>> print "Table title:", table.title
Table title: Readout example
>>> print "Number of rows in table:", table.nrows
Number of rows in table: 10
>>> print "Table variable names with their type and shape:"
Table variable names with their type and shape:
>>> for name in table.colnames:
... print name, ’:= %s, %s’ % (table.coltypes[name], table.colshapes[name])
...
ADCcount := UInt16, 1
TDCcount := UInt8, 1
energy := Float64, 1
grid_i := Int32, 1
grid_j := Int32, 1
idnumber := Int64, 1
name := CharType, 1
pressure := Float32, 1

Here, the name, title, nrows, colnames, coltypes and colshapes attributes (see 4.6.1 for a
complete attribute list) of the Table object gives us quite a bit of information about the table data.

You can interactively retrieve general information about the public objects in PyTables by printing their
internal doc strings:

>>> print table.__doc__
Represent a table in the object tree.

It provides methods to create new tables or open existing ones, as
well as to write/read data to/from table objects over the
file. A method is also provided to iterate over the rows without
loading the entire table or column in memory.

Data can be written or read both as Row instances or numarray
(NumArray or RecArray) objects or NestedRecArray objects.

Methods:

__getitem__(key)
__iter__()
__setitem__(key, value)
append(rows)
flushRowsToIndex()
iterrows(start, stop, step)
itersequence(sequence)



3.2. Browsing the object tree 27

modifyRows(start, rows)
modifyColumn(columns, names, [start] [, stop] [, step])
modifyColumns(columns, names, [start] [, stop] [, step])
read([start] [, stop] [, step] [, field [, flavor]])
reIndex()
reIndexDirty()
removeRows(start [, stop])
removeIndex(column)
where(condition [, start] [, stop] [, step])
whereAppend(dstTable, condition [, start] [, stop] [, step])
getWhereList(condition [, flavor])

Instance variables:

description -- the metaobject describing this table
row -- a reference to the Row object associated with this table
nrows -- the number of rows in this table
rowsize -- the size, in bytes, of each row
cols -- accessor to the columns using a natural name schema
colnames -- the field names for the table (tuple)
coltypes -- the type class for the table fields (dictionary)
colshapes -- the shapes for the table fields (dictionary)
colindexed -- whether the table fields are indexed (dictionary)
indexed -- whether or not some field in Table is indexed
indexprops -- properties of an indexed Table

The help function is also a handy way to see PyTables reference documentation online. Try it yourself
with other object docs:

>>> help(table.__class__)
>>> help(table.removeRows)

To examine metadata in the /columns/pressure Array object:

>>> pressureObject = h5file.getNode("/columns", "pressure")
>>> print "Info on the object:", repr(pressureObject)
Info on the object: /columns/pressure (Array(3,)) ’Pressure column selection’

type = Float64
itemsize = 8
flavor = ’numarray’
byteorder = ’little’

>>> print " shape: ==>", pressureObject.shape
shape: ==> (3,)

>>> print " title: ==>", pressureObject.title
title: ==> Pressure column selection

>>> print " type: ==>", pressureObject.type
type: ==> Float64

Observe that we have used the getNode() method of the File class to access a node in the tree, instead
of the natural naming method. Both are useful, and depending on the context you will prefer one or the other.
getNode() has the advantage that it can get a node from the pathname string (as in this example) and can
also act as a filter to show only nodes in a particular location that are instances of class classname. In general,



28 Chapter 3. Tutorials

however, I consider natural naming to be more elegant and easier to use, especially if you are using the name
completion capability present in interactive console. Try this powerful combination of natural naming and
completion capabilities present in most Python consoles, and see how pleasant it is to browse the object tree
(well, as pleasant as such an activity can be).

If you look at the type attribute of the pressureObject object, you can verify that it is a "Float64"
array. By looking at its shape attribute, you can deduce that the array on disk is unidimensional and has 3
elements. See 4.10.1 or the internal doc strings for the complete Array attribute list.

3.2.4 Reading data from Array objects

Once you have found the desired Array, use the read() method of the Array object to retrieve its data:

>>> pressureArray = pressureObject.read()
>>> pressureArray
array([ 25., 36., 49.])
>>> print "pressureArray is an object of type:", type(pressureArray)
pressureArray is an object of type: <class ’numarray.numarraycore.NumArray’>
>>> nameArray = h5file.root.columns.name.read()
>>> nameArray
[’Particle: 5’, ’Particle: 6’, ’Particle: 7’]
>>> print "nameArray is an object of type:", type(nameArray)
nameArray is an object of type: <type ’list’>
>>>
>>> print "Data on arrays nameArray and pressureArray:"
Data on arrays nameArray and pressureArray:
>>> for i in range(pressureObject.shape[0]):
... print nameArray[i], "-->", pressureArray[i]
...
Particle: 5 --> 25.0
Particle: 6 --> 36.0
Particle: 7 --> 49.0
>>> pressureObject.name
’pressure’

You can see that the read() method (see section 4.10.2) returns an authentic numarray object for the
pressureObject instance by looking at the output of the type() call. A read() of the nameObject
object instance returns a native Python list (of strings). The type of the object saved is stored as an HDF5
attribute (named FLAVOR) for objects on disk. This attribute is then read as Array meta-information (ac-
cessible through in the Array.attrs.FLAVOR variable), enabling the read array to be converted into the
original object. This provides a means to save a large variety of objects as arrays with the guarantee that you
will be able to later recover them in their original form. See section 4.2.2 for a complete list of supported
objects for the Array object class.

3.3 Commiting data to tables and arrays

We have seen how to create tables and arrays and how to browse both data and metadata in the object tree.
Let’s examine more closely now one of the most powerful capabilities of PyTables, namely, how to modify
already created tables and arrays1.

3.3.1 Appending data to an existing table

Now, let’s have a look at how we can add records to an existing table on disk. Let’s use our well-known
readout Table object and append some new values to it:

1 Appending data to arrays is also supported, but you need to create special objects called EArray (see 4.12 for more info).



3.3. Commiting data to tables and arrays 29

>>> table = h5file.root.detector.readout
>>> particle = table.row
>>> for i in xrange(10, 15):
... particle[’name’] = ’Particle: %6d’ % (i)
... particle[’TDCcount’] = i % 256
... particle[’ADCcount’] = (i * 256) % (1 << 16)
... particle[’grid_i’] = i
... particle[’grid_j’] = 10 - i
... particle[’pressure’] = float(i*i)
... particle[’energy’] = float(particle[’pressure’] ** 4)
... particle[’idnumber’] = i * (2 ** 34)
... particle.append()
...
>>> table.flush()

It’s the same method we used to fill a new table. PyTables knows that this table is on disk, and when
you add new records, they are appended to the end of the table2.

If you look carefully at the code you will see that we have used the table.row attribute to create a table
row and fill it with the new values. Each time that its append() method is called, the actual row is committed
to the output buffer and the row pointer is incremented to point to the next table record. When the buffer is
full, the data is saved on disk, and the buffer is reused again for the next cycle.

Caveat emptor: Do not forget to always call the .flush() method after a write operation, or else your
tables will not be updated!

Let’s have a look at some rows in the modified table and verify that our new data has been appended:

>>> for r in table.iterrows():
... print "%-16s | %11.1f | %11.4g | %6d | %6d | %8d |" % \
... (r[’name’], r[’pressure’], r[’energy’], r[’grid_i’], r[’grid_j’],
... r[’TDCcount’])
...
...
Particle: 0 | 0.0 | 0 | 0 | 10 | 0 |
Particle: 1 | 1.0 | 1 | 1 | 9 | 1 |
Particle: 2 | 4.0 | 256 | 2 | 8 | 2 |
Particle: 3 | 9.0 | 6561 | 3 | 7 | 3 |
Particle: 4 | 16.0 | 6.554e+04 | 4 | 6 | 4 |
Particle: 5 | 25.0 | 3.906e+05 | 5 | 5 | 5 |
Particle: 6 | 36.0 | 1.68e+06 | 6 | 4 | 6 |
Particle: 7 | 49.0 | 5.765e+06 | 7 | 3 | 7 |
Particle: 8 | 64.0 | 1.678e+07 | 8 | 2 | 8 |
Particle: 9 | 81.0 | 4.305e+07 | 9 | 1 | 9 |
Particle: 10 | 100.0 | 1e+08 | 10 | 0 | 10 |
Particle: 11 | 121.0 | 2.144e+08 | 11 | -1 | 11 |
Particle: 12 | 144.0 | 4.3e+08 | 12 | -2 | 12 |
Particle: 13 | 169.0 | 8.157e+08 | 13 | -3 | 13 |
Particle: 14 | 196.0 | 1.476e+09 | 14 | -4 | 14 |

3.3.2 Modifying data in tables

Ok, until now, we’ve been only reading and writing (appending) values to our tables. But there are times that
you need to modify your data once you have saved it on disk (this is specially true when you need to modify

2 Note that you can append not only scalar values to tables, but also fully multidimensional array objects.



30 Chapter 3. Tutorials

the real world data to adapt your goals ;). Let’s see how we can modify the values that were saved in our
existing tables. We will start modifying single cells in the first row of the Particle table:

>>> print "Before modif-->", table[0]
Before modif--> (0, 0, 0.0, 0, 10, 0L, ’Particle: 0’, 0.0)
>>> table.cols.TDCcount[0] = 1
>>> print "After modif first row of ADCcount-->", table[0]
After modif first row of ADCcount--> (0, 1, 0.0, 0, 10, 0L, ’Particle: 0’, 0.0)
>>> table.cols.energy[0] = 2
>>> print "After modif first row of energy-->", table[0]
After modif first row of energy--> (0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0)

We can modify complete ranges of columns as well:

>>> table.cols.TDCcount[2:5] = [2,3,4]
>>> print "After modifying slice [2:5] of ADCcount-->", table[0:5]
After modifying slice [2:5] of ADCcount--> RecArray[
(0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0),
(256, 1, 1.0, 1, 9, 17179869184L, ’Particle: 1’, 1.0),
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 2’, 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 3’, 9.0),
(1024, 4, 65536.0, 4, 6, 68719476736L, ’Particle: 4’, 16.0)
]
>>> table.cols.energy[1:9:3] = [2,3,4]
>>> print "After modifying slice [1:9:3] of energy-->", table[0:9]
After modifying slice [1:9:3] of energy--> RecArray[
(0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0),
(256, 1, 2.0, 1, 9, 17179869184L, ’Particle: 1’, 1.0),
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 2’, 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 3’, 9.0),
(1024, 4, 3.0, 4, 6, 68719476736L, ’Particle: 4’, 16.0),
(2560, 10, 100000000.0, 10, 0, 171798691840L, ’Particle: 10’, 100.0),
(2816, 11, 214358881.0, 11, -1, 188978561024L, ’Particle: 11’, 121.0),
(3072, 12, 4.0, 12, -2, 206158430208L, ’Particle: 12’, 144.0),
(3328, 13, 815730721.0, 13, -3, 223338299392L, ’Particle: 13’, 169.0)
]

Check that the values has been correctly modified!. Hint: remember that column TDCcount is the first
one, and that energy is the third. Look for more info on modifying columns in section 4.9.3.

PyTables also let’s you modify complete sets of rows at the same time. As a demonstration of these
capability, see the next example:

>>> table.modifyRows(start=1, step=3,
... rows=[(1, 2, 3.0, 4, 5, 6L, ’Particle: None’, 8.0),
... (2, 4, 6.0, 8, 10, 12L, ’Particle: None*2’, 16.0)])
2
>>> print "After modifying the complete third row-->", table[0:5]
After modifying the complete third row--> RecArray[
(0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0),
(1, 2, 3.0, 4, 5, 6L, ’Particle: None’, 8.0),
(512, 2, 256.0, 2, 8, 34359738368L, ’Particle: 2’, 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 3’, 9.0),
(2, 4, 6.0, 8, 10, 12L, ’Particle: None*2’, 16.0)



3.3. Commiting data to tables and arrays 31

]

As you can see, the modifyRows call has modified the rows second and fifth, and it returned the number
of modified rows.

Apart of modifyRows, there exists another method, called modifyColumn to modify specific columns
as well. Please, check sections 4.6.2 and 4.6.2 for a more in-depth description of them.

Finally, it exists another way of modifying tables that is generally more handy than the described above.
This new way uses the method update() (see section 4.6.4) of the Row instance that is attached to every
table, so it is meant to be used in table iterators. Look at the next example:

>>> for row in table.where(table.cols.TDCcount <= 2):
... row[’energy’] = row[’TDCcount’]*2
... row.update()
...
>>> print "After modifying energy column (where TDCcount <=2)-->", table[0:4]
After modifying energy column (where TDCcount <=2)--> NestedRecArray[
(0, 1, 2.0, 0, 10, 0L, ’Particle: 0’, 0.0),
(1, 2, 4.0, 4, 5, 6L, ’Particle: None’, 8.0),
(512, 2, 4.0, 2, 8, 34359738368L, ’Particle: 2’, 4.0),
(768, 3, 6561.0, 3, 7, 51539607552L, ’Particle: 3’, 9.0)
]

Note:The authors find this way of updating tables (i.e. using Row.update()) to be both convenient and
efficient. Please, make sure to use it extensively.

3.3.3 Modifying data in arrays

We are going now to see how to modify data in array objects. The basic way to do this is through the use of
__setitem__ special method (see 4.10.3). Let’s see at how modify data on the pressureObject array:

>>> print "Before modif-->", pressureObject[:]
Before modif--> [ 25. 36. 49.]
>>> pressureObject[0] = 2
>>> print "First modif-->", pressureObject[:]
First modif--> [ 2. 36. 49.]
>>> pressureObject[1:3] = [2.1, 3.5]
>>> print "Second modif-->", pressureObject[:]
Second modif--> [ 2. 2.1 3.5]
>>> pressureObject[::2] = [1,2]
>>> print "Third modif-->", pressureObject[:]
Third modif--> [ 1. 2.1 2. ]

So, in general, you can use any combination of (multidimensional) extended slicing3 to refer to indexes
that you want to modify. See section 4.10.3 for more examples on how to use extended slicing in PyTables
objects.

Similarly, with and array of strings:

>>> print "Before modif-->", nameObject[:]
Before modif--> [’Particle: 5’, ’Particle: 6’, ’Particle: 7’]
>>> nameObject[0] = ’Particle: None’

3 With the sole exception that you cannot use negative values for step.



32 Chapter 3. Tutorials

>>> print "First modif-->", nameObject[:]
First modif--> [’Particle: None’, ’Particle: 6’, ’Particle: 7’]
>>> nameObject[1:3] = [’Particle: 0’, ’Particle: 1’]
>>> print "Second modif-->", nameObject[:]
Second modif--> [’Particle: None’, ’Particle: 0’, ’Particle: 1’]
>>> nameObject[::2] = [’Particle: -3’, ’Particle: -5’]
>>> print "Third modif-->", nameObject[:]
Third modif--> [’Particle: -3’, ’Particle: 0’, ’Particle: -5’]

3.3.4 And finally... how to delete rows from a table

We’ll finish this tutorial by deleting some rows from the table we have. Suppose that we want to delete the
the 5th to 9th rows (inclusive):

>>> table.removeRows(5,10)
5

removeRows(start, stop) (see 4.6.2) deletes the rows in the range (start, stop). It returns the num-
ber of rows effectively removed.

We have reached the end of this first tutorial. Don’t forget to close the file when you finish:

>>> h5file.close()
>>> ^D
$

In figure 3.2 you can see a graphical view of the PyTables file with the datasets we have just created. In
figure 3.3 are displayed the general properties of the table /detector/readout.

3.4 Multidimensional table cells and automatic sanity checks

Now it’s time for a more real-life example (i.e. with errors in the code). We will create two groups that
branch directly from the root node, Particles and Events. Then, we will put three tables in each group.
In Particles we will put tables based on the Particle descriptor and in Events, the tables based the
Event descriptor.

Afterwards, we will provision the tables with a number of records. Finally, we will read the newly-created
table /Events/TEvent3 and select some values from it, using a comprehension list.

Look at the next script (you can find it in examples/tutorial2.py). It appears to do all of the above,
but it contains some small bugs. Note that this Particle class is not directly related to the one defined
in last tutorial; this class is simpler (note, however, the multidimensional columns called pressure and
temperature).

We also introduce a new manner to describe a Table as a dictionary, as you can see in the Event
description. See section 4.2.2 about the different kinds of descriptor objects that can be passed to the
createTable() method.

from numarray import *
from tables import *

# Describe a particle record
class Particle(IsDescription):

name = StringCol(length=16) # 16-character String
lati = IntCol() # integer
longi = IntCol() # integer



3.4. Multidimensional table cells and automatic sanity checks 33

Figure 3.2: The final version of the data file for tutorial 1.

Figure 3.3: General properties of the /detector/readout table.



34 Chapter 3. Tutorials

pressure = Float32Col(shape=(2,3)) # array of floats (single-precision)
temperature = FloatCol(shape=(2,3)) # array of doubles (double-precision)

# Another way to describe the columns of a table
Event = {

"name" : StringCol(length=16),
"lati" : IntCol(),
"longi" : IntCol(),
"pressure" : Float32Col(shape=(2,3)),
"temperature" : FloatCol(shape=(2,3)),
}

# Open a file in "w"rite mode
fileh = openFile("tutorial2.h5", mode = "w")
# Get the HDF5 root group
root = fileh.root
# Create the groups:
for groupname in ("Particles", "Events"):

group = fileh.createGroup(root, groupname)
# Now, create and fill the tables in the Particles group
gparticles = root.Particles
# Create 3 new tables
for tablename in ("TParticle1", "TParticle2", "TParticle3"):

# Create a table
table = fileh.createTable("/Particles", tablename, Particle,

"Particles: "+tablename)
# Get the record object associated with the table:
particle = table.row
# Fill the table with data for 257 particles
for i in xrange(257):

# First, assign the values to the Particle record
particle[’name’] = ’Particle: %6d’ % (i)
particle[’lati’] = i
particle[’longi’] = 10 - i
########### Detectable errors start here. Play with them!
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect
#particle[’pressure’] = array(i*arange(2*3), shape=(2,3)) # Correct
########### End of errors
particle[’temperature’] = (i**2) # Broadcasting
# This injects the Record values
particle.append()

# Flush the table buffers
table.flush()

# Now Events:
for tablename in ("TEvent1", "TEvent2", "TEvent3"):

# Create a table in the Events group
table = fileh.createTable(root.Events, tablename, Event,

"Events: "+tablename)
# Get the record object associated with the table:
event = table.row
# Fill the table with data on 257 events
for i in xrange(257):

# First, assign the values to the Event record



3.4. Multidimensional table cells and automatic sanity checks 35

event[’name’] = ’Event: %6d’ % (i)
event[’TDCcount’] = i % (1<<8) # Correct range
########### Detectable errors start here. Play with them!
#event[’xcoord’] = float(i**2) # Correct spelling
event[’xcoor’] = float(i**2) # Wrong spelling
event[’ADCcount’] = i * 2 # Correct type
#event[’ADCcount’] = "sss" # Wrong type
########### End of errors
event[’ycoord’] = float(i)**4
# This injects the Record values
event.append()

# Flush the buffers
table.flush()

# Read the records from table "/Events/TEvent3" and select some
table = root.Events.TEvent3
e = [ p[’TDCcount’] for p in table

if p[’ADCcount’] < 20 and 4 <= p[’TDCcount’] < 15 ]
print "Last record ==>", p
print "Selected values ==>", e
print "Total selected records ==> ", len(e)
# Finally, close the file (this also will flush all the remaining buffers)
fileh.close()

3.4.1 Shape checking

If you look at the code carefully, you’ll see that it won’t work. You will get the following error:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 53, in ?
particle[’pressure’] = array(i*arange(2*3), shape=(2,4)) # Incorrect

File "/usr/local/lib/python2.2/site-packages/numarray/numarraycore.py",
line 281, in array
a.setshape(shape)
File "/usr/local/lib/python2.2/site-packages/numarray/generic.py",

line 530, in setshape
raise ValueError("New shape is not consistent with the old shape")

ValueError: New shape is not consistent with the old shape

This error indicates that you are trying to assign an array with an incompatible shape to a table cell.
Looking at the source, we see that we were trying to assign an array of shape (2,4) to a pressure element,
which was defined with the shape (2,3).

In general, these kinds of operations are forbidden, with one valid exception: when you assign a scalar
value to a multidimensional column cell, all the cell elements are populated with the value of the scalar. For
example:

particle[’temperature’] = (i**2) # Broadcasting

The value i**2 is assigned to all the elements of the temperature table cell. This capability is provided
by the numarray package and is known as broadcasting.

3.4.2 Field name checking

After fixing the previous error and rerunning the program, we encounter another error:



36 Chapter 3. Tutorials

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 74, in ?
event[’xcoor’] = float(i**2) # Wrong spelling

File "src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "xcoor" field.
Error was: "exceptions.KeyError: xcoor"

This error indicates that we are attempting to assign a value to a non-existent field in the event table object.
By looking carefully at the Event class attributes, we see that we misspelled the xcoord field (we wrote
xcoor instead). This is unusual behavior for Python, as normally when you assign a value to a non-existent
instance variable, Python creates a new variable with that name. Such a feature can be dangerous when
dealing with an object that contains a fixed list of field names. PyTables checks that the field exists and raises
a KeyError if the check fails.

3.4.3 Data type checking

Finally, in order to test type checking, we will change the next line:

event.ADCcount = i * 2 # Correct type

to read:

event.ADCcount = "sss" # Wrong type

This modification will cause the following TypeError exception to be raised when the script is executed:

$ python tutorial2.py
Traceback (most recent call last):

File "tutorial2.py", line 76, in ?
event[’ADCcount’] = "sss" # Wrong type

File "src/hdf5Extension.pyx",
line 1812, in hdf5Extension.Row.__setitem__

raise KeyError, "Error setting \"%s\" field.\n %s" % \
KeyError: Error setting "ADCcount" field.
Error was: "exceptions.TypeError: NA_setFromPythonScalar: bad value type."

You can see the structure created with this (corrected) script in figure 3.4. In particular, note the multidi-
mensional column cells in table /Particles/TParticle2.

3.5 Exercising the Undo/Redo feature

PyTables has integrated support for undoing and/or redoing actions. This functionality lets you put marks
in specific places of your hierarchy manipulation operations, so that you can make your HDF5 file pop back
(undo) to a specific mark (for example for inspecting how your hierarchy looked at that point). You can also
go forward to a more recent marker (redo). You can even do jumps to the marker you want using just one
instruction as we will see shortly.

You can undo/redo all the operations that are related to object tree management, like creating, delet-
ing, moving or renaming nodes (or complete sub-hierarchies) inside a given object tree. You can also
undo/redo operations (i.e. creation, deletion or modification) of persistent node attributes. However, when



3.5. Exercising the Undo/Redo feature 37

Figure 3.4: Table hierarchy for tutorial 2.



38 Chapter 3. Tutorials

actions include internal modifications of datasets (that includes Table.append, Table.modifyRows or
Table.removeRows among others), they cannot be undone/redone currently.

This capability can be useful in many situations, like for example when doing simulations with multiple
branches. When you have to choose a path to follow in such a situation, you can put a mark there and, if the
simulation is not going well, you can go back to that mark and start another path. Other possible application
is defining coarse-grained operations which operate in a transactional-like way, i.e. which return the database
to its previous state if the operation finds some kind of problem while running. You can probably devise many
other scenarios where the Undo/Redo feature can be useful to you 4.

3.5.1 A basic example

In this section, we are going to show the basic behavior of the Undo/Redo feature. You can find the code used
in this example in examples/tutorial3-1.py. A somewhat more complex example will be explained in
the next section.

First, let’s create a file:

>>> import tables
>>> fileh = tables.openFile("tutorial3-1.h5", "w", title="Undo/Redo demo 1")

And now, activate the Undo/Redo feature with the method enableUndo (see page 61) of File:

>>> fileh.enableUndo()

From now on, all our actions will be logged internally by PyTables. Now, we are going to create a node
(in this case an Array object):

>>> one = fileh.createArray(’/’, ’anarray’, [3,4], "An array")

Now, mark this point:

>>> fileh.mark()
1
>>>

We have marked the current point in the sequence of actions. In addition, the mark()method has returned
the identifier assigned to this new mark, that is 1 (mark #0 is reserved for the implicit mark at the beginning
of the action log). In the next section we will see that you can also assign a name to a mark (see page 61 for
more info on mark()). Now, we are going to create another array:

>>> another = fileh.createArray(’/’, ’anotherarray’, [4,5], "Another array")

Right. Now, we can start doing funny things. Let’s say that we want to pop back to the previous mark
(that whose value was 1, do you remember?). Let’s introduce the undo() method (see page 62):

>>> fileh.undo()
>>>

Fine, what do you think it happened? Well, let’s have a look at the object tree:

4 You can even hide nodes temporarily. Will you be able to find out how?



3.5. Exercising the Undo/Redo feature 39

>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

>>>

What happened with the /anotherarray node we’ve just created? You guess it, it has disappeared
because it was created after the mark 1. If you are curious enough you may well ask where it has gone.
Well, it has not been deleted completely; it has been just moved into a special, hidden, group of PyTables that
renders it invisible and waiting for a chance to be reborn.

Now, unwind once more, and look at the object tree:

>>> fileh.undo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’

>>>

Oops, /anarray has disappeared as well!. Don’t worry, it will revisit us very shortly. So, you might be
somewhat lost right now; in which mark are we?. Let’s ask the getCurrentMark() method (see page 62)
in the file handler:

>>> print fileh.getCurrentMark()
0

So we are at mark #0, remember? Mark #0 is an implicit mark that is created when you start the log of
actions when calling File.enableUndo(). Fine, but you are missing your too-young-to-die arrays. What
can we do about that? File.redo() (see page 62) to the rescue:

>>> fileh.redo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’

>>>

Great! The /anarray array has come into life again. Just check that it is alive and well:

>>> fileh.root.anarray.read()
[3, 4]
>>> fileh.root.anarray.title
’An array’
>>>



40 Chapter 3. Tutorials

Well, it looks pretty similar than in its previous life; what’s more, it is exactly the same object!:

>>> fileh.root.anarray is one
True

It just was moved to the the hidden group and back again, but that’s all! That’s kind of fun, so we are
going to do the same with /anotherarray:

>>> fileh.redo()
>>> print fileh
do-undo1.h5 (File) ’Undo/Redo demo 1’
Last modif.: ’Fri Mar 4 20:22:28 2005’
Object Tree:
/ (RootGroup) ’Undo/Redo demo 1’
/anarray (Array(2,)) ’An array’
/anotherarray (Array(2,)) ’Another array’

>>>

Welcome back, /anotherarray! Just a couple of sanity checks:

>>> assert fileh.root.anotherarray.read() == [4,5]
>>> assert fileh.root.anotherarray.title == "Another array"
>>> fileh.root.anotherarray is another
True

Nice, you managed to turn your data back into life. Congratulations! But wait, do not forget to close your
action log when you don’t need this feature anymore:

>>> fileh.disableUndo()

That will allow you to continue working with your data without actually requiring PyTables to keep
track of all your actions, and more importantly, allowing your objects to die completely if they have to, not
requiring to keep them anywhere, and hence saving process time and space in your database file.

3.5.2 A more complete example

Now, time for a somewhat more sophisticated demonstration of the Undo/Redo feature. In it, several marks
will be set in different parts of the code flow and we will see how to jump between these marks with just one
method call. You can find the code used in this example in examples/tutorial3-2.py

Let’s introduce the first part of the code:

import tables

# Create an HDF5 file
fileh = tables.openFile(’tutorial3-2.h5’, ’w’, title=’Undo/Redo demo 2’)

#’-**-**-**-**-**-**- enable undo/redo log -**-**-**-**-**-**-**-’
fileh.enableUndo()

# Start undoable operations
fileh.createArray(’/’, ’otherarray1’, [3,4], ’Another array 1’)
fileh.createGroup(’/’, ’agroup’, ’Group 1’)
# Create a ’first’ mark



3.5. Exercising the Undo/Redo feature 41

fileh.mark(’first’)
fileh.createArray(’/agroup’, ’otherarray2’, [4,5], ’Another array 2’)
fileh.createGroup(’/agroup’, ’agroup2’, ’Group 2’)
# Create a ’second’ mark
fileh.mark(’second’)
fileh.createArray(’/agroup/agroup2’, ’otherarray3’, [5,6], ’Another array 3’)
# Create a ’third’ mark
fileh.mark(’third’)
fileh.createArray(’/’, ’otherarray4’, [6,7], ’Another array 4’)
fileh.createArray(’/agroup’, ’otherarray5’, [7,8], ’Another array 5’)

You can see how we have set several marks interspersed in the code flow, representing different states
of the database. Also, note that we have assigned names to these marks, namely ’first’, ’second’ and
’third’.

Now, start doing some jumps back and forth in the states of the database:

# Now go to mark ’first’
fileh.goto(’first’)
assert ’/otherarray1’ in fileh
assert ’/agroup’ in fileh
assert ’/agroup/agroup2’ not in fileh
assert ’/agroup/otherarray2’ not in fileh
assert ’/agroup/agroup2/otherarray3’ not in fileh
assert ’/otherarray4’ not in fileh
assert ’/agroup/otherarray5’ not in fileh
# Go to mark ’third’
fileh.goto(’third’)
assert ’/otherarray1’ in fileh
assert ’/agroup’ in fileh
assert ’/agroup/agroup2’ in fileh
assert ’/agroup/otherarray2’ in fileh
assert ’/agroup/agroup2/otherarray3’ in fileh
assert ’/otherarray4’ not in fileh
assert ’/agroup/otherarray5’ not in fileh
# Now go to mark ’second’
fileh.goto(’second’)
assert ’/otherarray1’ in fileh
assert ’/agroup’ in fileh
assert ’/agroup/agroup2’ in fileh
assert ’/agroup/otherarray2’ in fileh
assert ’/agroup/agroup2/otherarray3’ not in fileh
assert ’/otherarray4’ not in fileh
assert ’/agroup/otherarray5’ not in fileh

Well, the code above shows how easy is to jump to a certain mark in the database by using the goto()
method (see page 62).

There are also a couple of implicit marks for going to the beginning or the end of the saved states:
0 and -1. Going to mark #0 means go to the beginning of the saved actions, that is, when method
fileh.enableUndo() was called. Going to mark #-1 means go to the last recorded action, that is the
last action in the code flow.

Let’s see what happens when going to the end of the action log:

# Go to the end
fileh.goto(-1)



42 Chapter 3. Tutorials

assert ’/otherarray1’ in fileh
assert ’/agroup’ in fileh
assert ’/agroup/agroup2’ in fileh
assert ’/agroup/otherarray2’ in fileh
assert ’/agroup/agroup2/otherarray3’ in fileh
assert ’/otherarray4’ in fileh
assert ’/agroup/otherarray5’ in fileh
# Check that objects have come back to life in a sane state
assert fileh.root.otherarray1.read() == [3,4]
assert fileh.root.agroup.otherarray2.read() == [4,5]
assert fileh.root.agroup.agroup2.otherarray3.read() == [5,6]
assert fileh.root.otherarray4.read() == [6,7]
assert fileh.root.agroup.otherarray5.read() == [7,8]

Try yourself going to the beginning of the action log (remember, the mark #0) and check the contents of
the object tree.

We have nearly finished this demonstration. As always, do not forget to close the action log as well as the
database:

#’-**-**-**-**-**-**- disable undo/redo log -**-**-**-**-**-**-**-’
fileh.disableUndo()

# Close the file
fileh.close()

You might want to check other examples on Undo/Redo feature that appear in
examples/undo-redo.py.

3.6 Using enumerated types

Beginning from version 1.1, PyTables supports the handling of enumerated types. Those types are defined by
providing an exhaustive set or list of possible, named values for a variable of that type. Enumerated variables
of the same type are usually compared between them for equality and sometimes for order, but are not usually
operated upon.

Enumerated values have an associated name and concrete value. Every name is unique and so are concrete
values. An enumerated variable always takes the concrete value, not its name. Usually, the concrete value is
not used directly, and frequently it is entirely irrelevant. For the same reason, an enumerated variable is not
usually compared with concrete values out of its enumerated type. For that kind of use, standard variables
and constants are more adequate.

PyTables provides the Enum (see 4.17.4) class to provide support for enumerated types. Each instance of
Enum is an enumerated type (or enumeration). For example, let us create an enumeration of colors5:

>>> import tables
>>> colorList = [’red’, ’green’, ’blue’, ’white’, ’black’]
>>> colors = tables.Enum(colorList)
>>>

Here we used a simple list giving the names of enumerated values, but we left the choice of concrete
values up to the Enum class. Let us see the enumerated pairs to check those values:

>>> print "Colors:", [v for v in colors]
Colors: [(’blue’, 2), (’black’, 4), (’white’, 3), (’green’, 1), (’red’, 0)]
>>>

5 All these examples can be found in examples/enum.py.



3.6. Using enumerated types 43

Names have been given automatic integer concrete values. We can iterate over the values in an enu-
meration, but we will usually be more interested in accessing single values. We can get the concrete value
associated with a name by accessing it as an attribute or as an item (the later can be useful for names not
resembling Python identifiers):

>>> print "Value of ’red’ and ’white’:", (colors.red, colors.white)
Value of ’red’ and ’white’: (0, 3)
>>> print "Value of ’yellow’:", colors.yellow
Value of ’yellow’:
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "enum.py", line 222, in __getattr__

AttributeError: no enumerated value with that name: ’yellow’
>>>
>>> print "Value of ’red’ and ’white’:", (colors[’red’], colors[’white’])
Value of ’red’ and ’white’: (0, 3)
>>> print "Value of ’yellow’:", colors[’yellow’]
Value of ’yellow’:
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "enum.py", line 181, in __getitem__

KeyError: "no enumerated value with that name: ’yellow’"
>>>

See how accessing a value that is not in the enumeration raises the appropriate exception. We can also
do the opposite action and get the name that matches a concrete value by using the __call__() method of
Enum:

>>> print "Name of value %s:" % colors.red, colors(colors.red)
Name of value 0: red
>>> print "Name of value 1234:", colors(1234)
Name of value 1234:
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "enum.py", line 311, in __call__

ValueError: no enumerated value with that concrete value: 1234
>>>

You can see what we made as using the enumerated type to convert a concrete value into a name in the
enumeration. Of course, values out of the enumeration can not be converted.

3.6.1 Enumerated columns

Columns of an enumerated type can be declared by using the EnumCol (see 4.16.2) class. To see how this
works, let us open a new PyTables file and create a table to collect the simulated results of a probabilistic
experiment. In it, we have a bag full of colored balls; we take a ball out and annotate the time of extraction
and the color of the ball.

>>> h5f = tables.openFile(’enum.h5’, ’w’)
>>>
>>> class BallExt(tables.IsDescription):
... ballTime = tables.Time32Col()
... ballColor = tables.EnumCol(colors, ’black’, dtype=’UInt8’)
...
>>> tbl = h5f.createTable(
... ’/’, ’extractions’, BallExt, title="Random ball extractions")
>>>



44 Chapter 3. Tutorials

We declared the ballColor column to be of the enumerated type colors, with a default value of
black. We also stated that we are going to store concrete values as unsigned 8-bit integer values6.

Let us use some random values to fill the table:

>>> import time
>>> import random
>>> now = time.time()
>>> row = tbl.row
>>> for i in range(10):
... row[’ballTime’] = now + i
... row[’ballColor’] = colors[random.choice(colorList)] # notice this
... row.append()
...
>>>

Notice how we used the __getitem()__ call of colors to get the concrete value to store in
ballColor. You should know that this way of appending values to a table does automatically check for
the validity on enumerated values. For instance:

>>> row[’ballTime’] = now + 42
>>> row[’ballColor’] = 1234
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "hdf5Extension.pyx", line 2936, in hdf5Extension.Row.__setitem__
File "enum.py", line 311, in __call__

ValueError: no enumerated value with that concrete value: 1234
>>>

But take care that this check is only performed here and not in other methods such as tbl.append() or
tbl.modifyRows(). Now, after flushing the table we can see the results of the insertions:

>>> tbl.flush()
>>>
>>> COMMENT("Now print them!")
>>> for r in tbl:
... ballTime = r[’ballTime’]
... ballColor = colors(r[’ballColor’]) # notice this
... print "Ball extracted on %d is of color %s." % (ballTime, ballColor)
...
Ball extracted on 1116501220 is of color white.
Ball extracted on 1116501221 is of color red.
Ball extracted on 1116501222 is of color blue.
Ball extracted on 1116501223 is of color white.
Ball extracted on 1116501224 is of color white.
Ball extracted on 1116501225 is of color green.
Ball extracted on 1116501226 is of color black.
Ball extracted on 1116501227 is of color red.
Ball extracted on 1116501228 is of color white.
Ball extracted on 1116501229 is of color white.
>>>

As a last note, you may be wondering how to have access to the enumeration associated with ballColor
once the file is closed and reopened. You can call tbl.getEnum(’ballColor’) (see 4.6.2) to get the
enumeration back.

6 In fact, only integer values are supported right now, but this may change in the future.



3.7. Dealing with nested structures in tables 45

3.6.2 Enumerated arrays

EArray and VLArray leaves can also be declared to store enumerated values by means of the EnumAtom
(see 4.16.3) class, which works very much like EnumCol for tables. Also, Array leaves can be used to open
native HDF enumerated arrays.

Let us create a sample EArray containing ranges of working days as bidimensional values:

>>> workingDays = {’Mon’: 1, ’Tue’: 2, ’Wed’: 3, ’Thu’: 4, ’Fri’: 5}
>>> dayRange = tables.EnumAtom(workingDays, shape=(0, 2), flavor=’Tuple’)
>>> earr = h5f.createEArray(’/’, ’days’, dayRange, title="Working day ranges")
>>>

Nothing surprising, except for a pair of details. In the first place, we use a dictionary instead of a list to
explicitly set concrete values in the enumeration. In the second place, there is no explicit Enum instance
created! Instead, the dictionary is passed as the first argument to the constructor of EnumAtom. If the
constructor gets a list or a dictionary instead of an enumeration, it automatically builds the enumeration
from it.

Now let us feed some data to the array:

>>> wdays = earr.getEnum()
>>> earr.append([(wdays.Mon, wdays.Fri), (wdays.Wed, wdays.Fri)])
>>> earr.append([(wdays.Mon, 1234)])
>>>

Please note that, since we had no explicit Enum instance, we were forced to use getEnum() (see 4.12.2)
to get it from the array (we could also have used dayRange.enum). Also note that we were able to append
an invalid value (1234). Array methods do not check the validity of enumerated values.

Finally, we will print the contents of the array:

>>> for (d1, d2) in earr:
... print "From %s to %s (%d days)." % (wdays(d1), wdays(d2), d2-d1+1)
...
From Mon to Fri (5 days).
From Wed to Fri (3 days).
Traceback (most recent call last):

File "<stdin>", line 2, in ?
File "enum.py", line 311, in __call__

ValueError: no enumerated value with that concrete value: 1234L
>>>

That was an example of operating on concrete values. It also showed how the value-to-name conversion
failed because of the value not belonging to the enumeration.

Now we will close and remove the file, and this little tutorial on enumerated types is done:

>>> import os
>>> h5f.close()
>>> os.remove(’enum.h5’)
>>>

3.7 Dealing with nested structures in tables

PyTables supports the handling of nested structures (or nested datatypes, as you prefer) in table objects,
allowing you to define arbitrarily nested columns.

An example will clarify what this means. Let’s suppose that you want to group your data in pieces of
information that are more related than others pieces in your table, So you may want to tie them up together in
order to have your table better structured but also be able to retrieve and deal with these groups more easily.

You can create such a nested substructures by just nesting subclasses of IsDescription. Let’s see one
example (okay, it’s a bit silly, but will serve for demonstration purposes):



46 Chapter 3. Tutorials

class Info(IsDescription):
"""A sub-structure of Test"""
_v_pos = 2 # The position in the whole structure
name = StringCol(10)
value = Float64Col(pos=0)

colors = Enum([’red’, ’green’, ’blue’]) # An enumerated type

class NestedDescr(IsDescription):
"""A description that has several nested columns"""
color = EnumCol(colors, ’red’, dtype=’UInt32’, indexed=1) # indexed column
info1 = Info()
class info2(IsDescription):

_v_pos = 1
name = StringCol(10)
value = Float64Col(pos=0)
class info3(IsDescription):

x = FloatCol(1)
y = UInt8Col(1)

The root class is NestedDescr and both info1 and info2 are substructures of it. Note how info1 is
actually an instance of the class Info that was defined prior to NestedDescr. Also, there is a third substruc-
ture, namely info3 that hangs from the substructure info2. You can also define positions of substructures
in the containing object by declaring the special class attribute _v_pos.

3.7.1 Nested table creation

Now that we have defined our nested structure, let’s create a nested table, that is a table with columns that
contain other subcolumns.

>>> from tables import *
>>> fileh = openFile("nested-tut.h5", "w")
>>> table = fileh.createTable(fileh.root, ’table’, NestedDescr)
>>>

Done! Now, we have to feed the table with some values. The problem is how we are going to reference
to the nested fields. That’s easy, just use a ’/’ character to separate names in different nested levels. Look at
this:

>>> for i in range(10):
... row[’color’] = colors[[’red’, ’green’, ’blue’][i%3]]
... row[’info1/name’] = "name1-%s" % i
... row[’info2/name’] = "name2-%s" % i
... row[’info2/info3/y’] = i
... # All the rest will be filled with defaults
... row.append()
...
>>> table.flush()
>>> table.nrows
10L
>>>

You see? In order to fill the fields located in the substructures, we just need to specify its full path in the
table hierarchy.



3.7. Dealing with nested structures in tables 47

3.7.2 Reading nested tables: introducing NestedRecArray objects

Now, what happens if we want to read the table? Which data container will be used to keep the data? Well,
it’s worth trying it:

>>> nra = table[::4]
>>> print nra
NestedRecArray[
(((1.0, 0), ’name2-0’, 0.0), (’name1-0’, 0.0), 0L),
(((1.0, 4), ’name2-4’, 0.0), (’name1-4’, 0.0), 1L),
(((1.0, 8), ’name2-8’, 0.0), (’name1-8’, 0.0), 2L)
]
>>>

We have read one row for each four in the table, giving a result of three rows. What about the container?
Well, we can see that it is a new mysterious object known as NestedRecArray. If we ask for more info on
that:

>>> type(nra)
<class ’tables.nestedrecords.NestedRecArray’>

we see that it is an instance of the class NestedRecArray that lives in the module nestedrecords
of tables package. NestedRecArray is actually a subclass of the RecArray object of the records
module of numarray package. You can see more info about NestedRecArray object in appendix B.

You can make use of the above object in many different ways. For example, you can use it to append new
data to the existing table object:

>>> table.append(nra)
>>> table.nrows
13L
>>>

Or, to create new tables:

>>> table2 = fileh.createTable(fileh.root, ’table2’, nra)
>>> table2[:]
array(
[(((1.0, 0), ’name2-0’, 0.0), (’name1-0’, 0.0), 0L),
(((1.0, 4), ’name2-4’, 0.0), (’name1-4’, 0.0), 1L),
(((1.0, 8), ’name2-8’, 0.0), (’name1-8’, 0.0), 2L)],
descr=[(’info2’, [(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]), (’name’,
’1a10’), (’value’, ’1f8’)]), (’info1’, [(’name’, ’1a10’), (’value’,
’1f8’)]), (’color’, ’1u4’)], shape=3)

Finally, we can select nested values that fulfill some condition:

>>> names = [ x[’info2/name’] for x in table if x[’color’] == colors.red ]
>>> names
[’name2-0’, ’name2-3’, ’name2-6’, ’name2-9’, ’name2-0’]
>>>

Note that the row accessor does not provide the natural naming feature, so you have to completely specify
the path of your desired columns in order to reach them.



48 Chapter 3. Tutorials

3.7.3 Using Cols accessor

We can use the cols attribute object (see 4.7) of the table so as to quickly access the info located in the
interesting substructures:

>>> table.cols.info2[1:5]
array(
[((1.0, 1), ’name2-1’, 0.0),
((1.0, 2), ’name2-2’, 0.0),
((1.0, 3), ’name2-3’, 0.0),
((1.0, 4), ’name2-4’, 0.0)],
descr=[(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]), (’name’, ’1a10’),
(’value’, ’1f8’)],

shape=4)
>>>

Here, we have made use of the cols accessor to access to the info2 substructure and an slice operation
to get access to the subset of data we were interested in; you probably have recognized the natural naming
approach here. We can continue and ask for data in info3 substructure:

>>> table.cols.info2.info3[1:5]
array(
[(1.0, 1),
(1.0, 2),
(1.0, 3),
(1.0, 4)],
descr=[(’x’, ’1f8’), (’y’, ’1u1’)],
shape=4)
>>>

You can also use the _f_col method to get a handler for a column:

>>> table.cols._f_col(’info2’)
/table.cols.info2 (Cols), 3 columns

info3 (Cols(1,), Description)
name (Column(1,), CharType)
value (Column(1,), Float64)

Here, you’ve got another Cols object handler because info2 was a nested column. If you select a non-
nested column, you will get a regular Column instance:

>>> ycol = table.cols._f_col(’info2/info3/y’)
>>> ycol
/table.cols.info2.info3.y (Column(1,), UInt8, idx=None)
>>>

To sum up, the cols accessor is a very handy and powerful way to access data in your nested tables. Be
sure of using it, specially when doing interactive work.

3.7.4 Accessing meta-information of nested tables

Tables have an attribute called description which points to an instance of the Description class (see
4.8) and is useful to discover different meta-information about table data.

Let’s see how it looks like:



3.7. Dealing with nested structures in tables 49

>>> table.description
{

"info2": {
"info3": {

"x": FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False),
"y": UInt8Col(dflt=1, shape=1, pos=1, indexed=False)},

"name": StringCol(length=10, dflt=None, shape=1, pos=1, indexed=False),
"value": Float64Col(dflt=0.0, shape=1, pos=2, indexed=False)},

"info1": {
"name": StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False),
"value": Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)},

"color": EnumCol(Enum({’blue’: 2, ’green’: 1, ’red’: 0}), ’red’,
dtype=’UInt32’, shape=1, pos=2, indexed=1)}

>>>

As you can see, it provides very useful information on both the formats and the structure of the columns
in your table.

This object also provides a natural naming approach to access to subcolumns metadata:

>>> table.description.info1
{

"name": StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False),
"value": Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)}

>>> table.description.info2.info3
{

"x": FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False),
"y": UInt8Col(dflt=1, shape=1, pos=1, indexed=False)}

>>>

There are other variables that can be interesting for you:

>>> table.description._v_nestedNames
[(’info2’, [(’info3’, [’x’, ’y’]), ’name’, ’value’]), (’info1’,
[’name’, ’value’]), ’color’]

>>> table.description.info1._v_nestedNames
[’name’, ’value’]
>>>

_v_nestedNames provides the names of the columns as well as its structure. You can see that there
are the same attributes for the different levels of the Description object, because the levels are also
Description objects themselves.

There is a special attribute, called _v_nestedDescr that can be useful to create NestedRecArrays
objects that imitate the structure of the table (or a subtable!):

>>> from tables import nestedrecords
>>> table.description._v_nestedDescr
[(’info2’, [(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]), (’name’, ’1a10’),
(’value’, ’1f8’)]), (’info1’, [(’name’, ’1a10’), (’value’, ’1f8’)]),
(’color’, ’1u4’)]

>>> nestedrecords.array(None, descr=table.description._v_nestedDescr)
array(
[],
descr=[(’info2’, [(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]), (’name’,
’1a10’), (’value’, ’1f8’)]), (’info1’, [(’name’, ’1a10’), (’value’,



50 Chapter 3. Tutorials

’1f8’)]),(’color’, ’1u4’)], shape=0)
>>> nestedrecords.array(None, descr=table.description.info2._v_nestedDescr)
array(
[],
descr=[(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]), (’name’, ’1a10’),
(’value’, ’1f8’)], shape=0)
>>>

Look the section 4.8 for the complete listing of attributes.
Finally, there is a special iterator of the Description class, called _v_walk that is able to return you

the different columns of the table:

>>> for coldescr in table.description._v_walk():
... print "column-->",coldescr
...
column--> Description([(’info2’, [(’info3’, [(’x’, ’1f8’), (’y’,
’1u1’)]), (’name’, ’1a10’), (’value’, ’1f8’)]), (’info1’, [(’name’,
’1a10’), (’value’, ’1f8’)]), (’color’, ’1u4’)])

column--> EnumCol(Enum({’blue’: 2, ’green’: 1, ’red’: 0}), ’red’,
dtype=’UInt32’, shape=1, pos=2, indexed=1)

column--> Description([(’info3’, [(’x’, ’1f8’), (’y’, ’1u1’)]),
(’name’, ’1a10’), (’value’, ’1f8’)])

column--> StringCol(length=10, dflt=None, shape=1, pos=1, indexed=False)
column--> Float64Col(dflt=0.0, shape=1, pos=2, indexed=False)
column--> Description([(’name’, ’1a10’), (’value’, ’1f8’)])
column--> StringCol(length=10, dflt=None, shape=1, pos=0, indexed=False)
column--> Float64Col(dflt=0.0, shape=1, pos=1, indexed=False)
column--> Description([(’x’, ’1f8’), (’y’, ’1u1’)])
column--> FloatCol(dflt=1, shape=1, itemsize=8, pos=0, indexed=False)
column--> UInt8Col(dflt=1, shape=1, pos=1, indexed=False)
>>>

Well, this is the end of this tutorial. As always, do not forget to close your files:

>>> fileh.close()
>>>

Finally, you may want to have a look at your resulting data file:

$ ptdump -d nested-tut.h5
/ (RootGroup) ’’
/table (Table(13L,)) ’’

Data dump:
[0] (((1.0, 0), ’name2-0’, 0.0), (’name1-0’, 0.0), 0L)
[1] (((1.0, 1), ’name2-1’, 0.0), (’name1-1’, 0.0), 1L)
[2] (((1.0, 2), ’name2-2’, 0.0), (’name1-2’, 0.0), 2L)
[3] (((1.0, 3), ’name2-3’, 0.0), (’name1-3’, 0.0), 0L)
[4] (((1.0, 4), ’name2-4’, 0.0), (’name1-4’, 0.0), 1L)
[5] (((1.0, 5), ’name2-5’, 0.0), (’name1-5’, 0.0), 2L)
[6] (((1.0, 6), ’name2-6’, 0.0), (’name1-6’, 0.0), 0L)
[7] (((1.0, 7), ’name2-7’, 0.0), (’name1-7’, 0.0), 1L)
[8] (((1.0, 8), ’name2-8’, 0.0), (’name1-8’, 0.0), 2L)
[9] (((1.0, 9), ’name2-9’, 0.0), (’name1-9’, 0.0), 0L)
[10] (((1.0, 0), ’name2-0’, 0.0), (’name1-0’, 0.0), 0L)



3.8. Other examples in PyTables distribution 51

[11] (((1.0, 4), ’name2-4’, 0.0), (’name1-4’, 0.0), 1L)
[12] (((1.0, 8), ’name2-8’, 0.0), (’name1-8’, 0.0), 2L)
/table2 (Table(3L,)) ’’

Data dump:
[0] (((1.0, 0), ’name2-0’, 0.0), (’name1-0’, 0.0), 0L)
[1] (((1.0, 4), ’name2-4’, 0.0), (’name1-4’, 0.0), 1L)
[2] (((1.0, 8), ’name2-8’, 0.0), (’name1-8’, 0.0), 2L)

Most of the code in this section is also available in examples/nested-tut.py.
All in all, PyTables provides a quite comprehensive toolset to cope with nested structures and address

your classification needs. However, caveat emptor, be sure to not nest your data too deeply or you will get
inevitably messed interpreting too intertwined lists, tuples and description objects.

3.8 Other examples in PyTables distribution

Feel free to examine the rest of examples in directory examples/, and try to understand them. We have
written several practical sample scripts to give you an idea of the PyTables capabilities, its way of dealing
with HDF5 objects, and how it can be used in the real world.





53

Chapter 4

Library Reference

PyTables implements several classes to represent the different nodes in the object tree. They are named
File, Group, Leaf, Table, Array, CArray, EArray, VLArray and UnImplemented. Another one al-
lows the user to complement the information on these different objects; its name is AttributeSet. Finally,
another important class called IsDescription allows to build a Table record description by declaring a
subclass of it. Many other classes are defined in PyTables, but they can be regarded as helpers whose goal
is mainly to declare the data type properties of the different first class objects and will be described at the end
of this chapter as well.

An important function, called openFile is responsible to create, open or append to files. In addition,
a few utility functions are defined to guess if the user supplied file is a PyTables or HDF5 file. These
are called isPyTablesFile() and isHDF5File(), respectively. Finally, there exists a function called
whichLibVersion that informs about the versions of the underlying C libraries (for example, the HDF5 or
the Zlib).

Let’s start discussing the first-level variables and functions available to the user, then the different classes
defined in PyTables.

4.1 tables variables and functions

4.1.1 Global variables

__version__ The PyTables version number.

hdf5Version The underlying HDF5 library version number.

4.1.2 Global functions

copyFile(srcfilename, dstfilename, overwrite=False, **kwargs)

An easy way of copying one PyTables file to another.
This function allows you to copy an existing PyTables file named srcfilename to another file called

dstfilename. The source file must exist and be readable. The destination file can be overwritten in place
if existing by asserting the overwrite argument.

This function is a shorthand for the File.copyFile() method, which acts on an already opened
file. kwargs takes keyword arguments used to customize the copying process. See the documentation of
File.copyFile() (see 4.2.2) for a description of those arguments.

isHDF5File(filename)

Determine whether a file is in the HDF5 format.
When successful, it returns a true value if the file is an HDF5 file, false otherwise. If there were problems

identifying the file, an HDF5ExtError is raised.



54 Chapter 4. Library Reference

isPyTablesFile(filename)

Determine whether a file is in the PyTables format.
When successful, it returns a true value if the file is a PyTables file, false otherwise. The true value is the

format version string of the file. If there were problems identifying the file, an HDF5ExtError is raised.

openFile(filename, mode=’r’, title=’’, trMap={}, rootUEP="/", filters=None)

Open a PyTables (or generic HDF5) file and returns a File object.

filename The name of the file (supports environment variable expansion). It is suggested that it should have
any of ".h5", ".hdf" or ".hdf5" extensions, although this is not mandatory.

mode The mode to open the file. It can be one of the following:

’r’ read-only; no data can be modified.

’w’ write; a new file is created (an existing file with the same name would be deleted).

’a’ append; an existing file is opened for reading and writing, and if the file does not exist it is created.

’r+’ is similar to ’a’, but the file must already exist.

title If filename is new, this will set a title for the root group in this file. If filename is not new, the title will
be read from disk, and this will not have any effect.

trMap A dictionary to map names in the object tree Python namespace into different HDF5 names in file
namespace. The keys are the Python names, while the values are the HDF5 names. This is useful when
you need to use HDF5 node names with invalid or reserved words in Python.

rootUEP The root User Entry Point. This is a group in the HDF5 hierarchy which will be taken as the starting
point to create the object tree. The group has to be named after its HDF5 name and can be a path. If it
does not exist, an HDF5ExtError exception is issued. Use this if you do not want to build the entire
object tree, but rather only a subtree of it.

filters An instance of the Filters class (see section 4.17.1) that provides information about the desired I/O
filters applicable to the leaves that hang directly from root (unless other filters properties are specified
for these leaves). Besides, if you do not specify filter properties for its child groups, they will inherit
these ones. So, if you open a new file with this parameter set, all the leaves that would be created in the
file will recursively inherit this filtering properties (again, if you don’t prevent that from happening by
specifying other filters on the child groups or leaves).

nodeCacheSize The number of unreferenced nodes to be kept in memory. Least recently used nodes are
unloaded from memory when this number of loaded nodes is reached. To load a node again, simply
access it as usual. Nodes referenced by user variables are not taken into account nor unloaded.

whichLibVersion(name)

Get version information about a C library.
If the library indicated by name is available, this function returns a 3-tuple containing the major library

version as an integer, its full version as a string, and the version date as a string. If the library is not available,
None is returned.

The currently supported library names are hdf5, zlib, lzo, ucl (in process of being deprecated) and
bzip2. If another name is given, a ValueError is raised.



4.2. The File class 55

4.2 The File class

An instance of this class is returned when a PyTables file is opened with the openFile() function. It offers
methods to manipulate (create, rename, delete...) nodes and handle their attributes, as well as methods to
traverse the object tree. The user entry point to the object tree attached to the HDF5 file is represented in the
rootUEP attribute. Other attributes are available.

File objects support an Undo/Redo mechanism which can be enabled with the enableUndo() method.
Once the Undo/Redo mechanism is enabled, explicit marks (with an optional unique name) can be set on the
state of the database using the mark() method. There are two implicit marks which are always available: the
initial mark (0) and the final mark (-1). Both the identifier of a mark and its name can be used in undo and
redo operations.

Hierarchy manipulation operations (node creation, movement and removal) and attribute handling oper-
ations (setting and deleting) made after a mark can be undone by using the undo() method, which returns
the database to the state of a past mark. If undo() is not followed by operations that modify the hierarchy or
attributes, the redo() method can be used to return the database to the state of a future mark. Else, future
states of the database are forgotten.

Note that data handling operations can not be undone nor redone by now. Also, hierarchy manipulation
operations on nodes that do not support the Undo/Redo mechanism issue an UndoRedoWarning before
changing the database.

The Undo/Redo mechanism is persistent between sessions and can only be disabled by calling the
disableUndo() method.

4.2.1 File instance variables

filename The name of the opened file.

format_version The PyTables version number of this file.

isopen True if the underlying file is open, false otherwise.

mode The mode in which the file was opened.

title The title of the root group in the file.

trMap A dictionary that maps node names between PyTables and HDF5 domain names. Its initial values
are set from the trMap parameter passed to the openFile function. You can change its contents after
a file is opened and the new map will take effect over any new object added to the tree.

rootUEP The UEP (user entry point) group in the file (see 4.1.2).

filters Default filter properties for the root group (see section 4.17.1).

root The root of the object tree hierarchy (a Group instance).

objects A dictionary which maps path names to objects, for every visible node in the tree (deprecated, see
note below).

groups A dictionary which maps path names to objects, for every visible group in the tree (deprecated, see
note below).

leaves A dictionary which maps path names to objects, for every visible leaf in the tree (deprecated, see note
below).

Note: From PyTables 1.2 on, the dictionaries objects, groups and leaves are just instances
of objects faking the old functionality. Actually, they internally use File.getNode() (see 4.2.2) and
File.walknodes() (see 4.2.2), which are recommended instead.



56 Chapter 4. Library Reference

4.2.2 File methods

createGroup(where, name, title=’’, filters=None)

Create a new Group instance with name name in where location.

where The parent group where the new group will hang from. where parameter can be a path string (for
example "/level1/group5"), or another Group instance.

name The name of the new group.

title A description for this group.

filters An instance of the Filters class (see section 4.17.1) that provides information about the desired I/O
filters applicable to the leaves that hangs directly from this new group (unless other filters properties
are specified for these leaves). Besides, if you do not specify filter properties for its child groups, they
will inherit these ones.

createTable(where, name, description, title=’’, filters=None, expectedrows=10000)

Create a new Table instance with name name in where location. See the section 4.6 for a description of the
Table class.

where The parent group where the new table will hang from. where parameter can be a path string (for
example "/level1/leaf5"), or Group instance.

name The name of the new table.

description This is an object that describes the table, that is, how many columns has it, and properties for
each column: the type, the shape, etc. as well as other table properties.

description can be any of the next several objects:

A user-defined class This should inherit from the IsDescription class (see 4.16.1) where table
fields are specified.

A dictionary For example, when you do not know beforehand which structure will have your table).
See section 3.4 for an example of use.

A RecArray This object from the numarray package is also accepted, and all the information about
columns and other metadata is used as a basis to create the Table object. Moreover, if the
RecArray has actual data this is also injected on the newly created Table object.

A NestedRecArray Finally, if you want to have nested columns in your table, you can use this object
(see appendix B) and all the information about columns and other metadata is used as a basis to
create the Table object. Moreover, if the NestedRecArray has actual data this is also injected
on the newly created Table object.

title A description for this object.

filters An instance of the Filters class (see section 4.17.1) that provides information about the desired I/O
filters to be applied during the life of this object.

expectedrows An user estimate of the number of records that will be on table. If not provided, the default
value is appropriate for tables until 10 MB in size (more or less). If you plan to save bigger tables you
should provide a guess; this will optimize the HDF5 B-Tree creation and management process time and
memory used. See section 5.1 for a discussion on that issue.



4.2. The File class 57

createArray(where, name, object, title=’’)

Create a new Array instance with name name in where location. See the section 4.10 for a description of the
Array class.

object The regular array to be saved. Currently accepted values are: NumPy, Numeric, numarray arrays
(including CharArray string numarrays) or other native Python types, provided that they are regular
(i.e. they are not like [[1,2],2]) and homogeneous (i.e. all the elements are of the same type). Also,
objects that have some of their dimensions equal to zero are not supported (use an EArray object if
you want to create an array with one of its dimensions equal to 0).

See createTable description 4.2.2 for more information on the where, name and title, parameters.

createCArray(where, name, shape, atom, title=’’, filters=None)

Create a new CArray instance with name name in where location. See the section 4.11 for a description of
the CArray class.

shape The shape of the objects to be saved.

atom An Atom instance representing the shape, type and flavor of the chunk of the objects to be saved.

See createTable description 4.2.2 for more information on the where, name and title, parameters.

createEArray(where, name, atom, title=’’, filters=None, expectedrows=1000)

Create a new EArray instance with name name in where location. See the section 4.12 for a description of
the EArray class.

atom An Atom instance representing the shape, type and flavor of the atomic objects to be saved. One (and
only one) of the shape dimensions must be 0. The dimension being 0 means that the resulting EArray
object can be extended along it. Multiple enlargeable dimensions are not supported right now. See
section 4.16.3 for the supported set of Atom class descendants.

expectedrows In the case of enlargeable arrays this represents an user estimate about the number of row
elements that will be added to the growable dimension in the EArray object. If not provided, the default
value is 1000 rows. If you plan to create both much smaller or much bigger EArrays try providing a
guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

See createTable description 4.2.2 for more information on the where, name, title, and filters parame-
ters.

createVLArray(where, name, atom=None, title=’’, filters=None, expectedsizeinMB=1.0)

Create a new VLArray instance with name name in where location. See the section 4.13 for a description of
the VLArray class.

atom An Atom instance representing the shape, type and flavor of the atomic object to be saved. See sec-
tion 4.16.3 for the supported set of Atom class descendants.

expectedsizeinMB An user estimate about the size (in MB) in the final VLArray object. If not provided,
the default value is 1 MB. If you plan to create both much smaller or much bigger VLA’s try providing
a guess; this will optimize the HDF5 B-Tree creation and management process time and the amount of
memory used.

See createTable description 4.2.2 for more information on the where, name, title, and filters parame-
ters.



58 Chapter 4. Library Reference

getNode(where, name=None, classname=None)

Get the node under where with the given name.
where can be a Node instance or a path string leading to a node. If no name is specified, that node is

returned.
If a name is specified, this must be a string with the name of a node under where. In this case the where

argument can only lead to a Group instance (else a TypeError is raised). The node called name under the
group where is returned.

In both cases, if the node to be returned does not exist, a NoSuchNodeError is raised. Please, note that
hidden nodes are also considered.

If the classname argument is specified, it must be the name of a class derived from Node. If the node is
found but it is not an instance of that class, a NoSuchNodeError is also raised.

isVisibleNode(path)

Is the node under path visible?
If the node does not exist, a NoSuchNodeError is raised.

getNodeAttr(where, attrname, name=None)

Returns the attribute attrname under where.name location.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

attrname The name of the attribute to get.

setNodeAttr(where, attrname, attrvalue, name=None)

Sets the attribute attrname with value attrvalue under where.name location. If the node already has a large
number of attributes, a PerformanceWarning will be issued.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

attrname The name of the attribute to set on disk.

attrvalue The value of the attribute to set. Any kind of python object (like string, ints, floats, lists, tuples,
dicts, small Numeric/NumPy/numarray objects...) can be stored as an attribute. However, if necessary,
(c)Pickle is automatically used so as to serialize objects that you might want to save (see 4.15 for
details).

delNodeAttr(where, attrname, name=None)

Delete the attribute attrname in where.name location.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

attrname The name of the attribute to delete on disk.

copyNodeAttrs(where, dstnode, name=None)

Copy the attributes from node where.name to dstnode.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

dstnode This is the destination node where the attributes will be copied. It can be either a path string or a
Node object.



4.2. The File class 59

iterNodes(where, classname=None)

Returns an iterator yielding children nodes hanging from where. These nodes are alpha-numerically sorted
by its node name.

where This argument works as in getNode() (see page 58), referencing the node to be acted upon.

classname If the name of a class derived from Node is supplied in the classname parameter, only instances
of that class (or subclasses of it) will be returned.

listNodes(where, classname=None)

Returns a list with children nodes hanging from where. The list is alpha-numerically sorted by node name.

where This argument works as in getNode() (see page 58), referencing the node to be acted upon.

classname If the name of a class derived from Node is supplied in the classname parameter, only instances
of that class (or subclasses of it) will be returned.

removeNode(where, name=None, recursive=False)

Removes the object node name under where location.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

recursive If not supplied, the object will be removed only if it has no children; if it does, a NodeError will
be raised. If supplied with a true value, the object and all its descendants will be completely removed.

copyNode(where, newparent=None, newname=None, name=None, overwrite=False,
recursive=False, **kwargs)

Copy the node specified by where and name to newparent/newname.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

newparent The destination group that the node will be copied to (a path name or a Group instance). If
newparent is None, the parent of the source node is selected as the new parent.

newname The name to be assigned to the new copy in its destination (a string). If newname is None or not
specified, the name of the source node is used.

overwrite Whether the possibly existing node newparent/newname should be overwritten or not. Note that
trying to copy over an existing node without overwriting it will issue a NodeError.

recursive Specifies whether the copy should recurse into children of the copied node. This argument is
ignored for leaf nodes. The default is not recurse.

kwargs Additional keyword arguments may be passed to customize the copying process. The supported
arguments depend on the kind of node being copied. The following are some of them:

title The new title for the destination. If None, the original title is used. This only applies to the topmost
node for recursive copies.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it
must be an instance of the Filters class (see section 4.17.1). The default is to copy the filter attribute
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to False. The
default is to copy them.

start, stop, step Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dictionary
with keys groups, leaves and bytes having a numeric value. Their values will be incremented to
reflect the number of groups, leaves and bytes, respectively, that have been copied in the operation.



60 Chapter 4. Library Reference

renameNode(where, newname, name=None)

Change the name of the node specified by where and name to newname.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

newname The new name to be assigned to the node (a string).

moveNode(where, newparent=None, newname=None, name=None, overwrite=False)

Move the node specified by where and name to newparent/newname.

where, name These arguments work as in getNode() (see page 58), referencing the node to be acted upon.

newparent The destination group the node will be moved to (a path name or a Group instance). If newparent
is None, the original node parent is selected as the new parent.

newname The new name to be assigned to the node in its destination (a string). If newname is None or not
specified, the original node name is used.

walkGroups(where=’/’)

Iterator that returns the list of Groups (not Leaves) hanging from (and including) where. The where Group
is listed first (pre-order), then each of its child Groups (following an alpha-numerical order) is also traversed,
following the same procedure. If where is not supplied, the root object is used.

where The origin group. Can be a path string or Group instance.

walkNodes(where="/", classname="")

Recursively iterate over the nodes in the File instance. It takes two parameters:

where If supplied, the iteration starts from (and includes) this group.

classname (String) If supplied, only instances of this class are returned.

Example of use:

# Recursively print all the nodes hanging from ’/detector’
print "Nodes hanging from group ’/detector’:"
for node in h5file.walkNodes("/detector"):

print node

copyChildren(srcgroup, dstgroup, overwrite=False, recursive=False, **kwargs)

Copy the children of a group into another group.
This method copies the nodes hanging from the source group srcgroup into the destination group

dstgroup. Existing destination nodes can be replaced by asserting the overwrite argument. If the
recursive argument is true, all descendant nodes of srcnode are recursively copied.

kwargs takes keyword arguments used to customize the copying process. See the documentation of
Group._f_copyChildren() (see 4.4.2) for a description of those arguments.



4.2. The File class 61

copyFile(dstfilename, overwrite=False, **kwargs)

Copy the contents of this file to dstfilename.
dstfilename must be a path string indicating the name of the destination file. If it already exists, the

copy will fail with an IOError, unless the overwrite argument is true, in which case the destination file
will be overwritten in place. In this last case, the destination file should be closed or ugly errors will happen.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may
be collected, etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying
operations of nodes to see which options they support.

Copying a file usually has the beneficial side effect of creating a more compact and cleaner version of the
original file.

flush()

Flush all the leaves in the object tree.

close()

Flush all the leaves in object tree and close the file.

Undo/Redo support

isUndoEnabled() Is the Undo/Redo mechanism enabled?

Returns True if the Undo/Redo mechanism has been enabled for this file, False otherwise. Please,
note that this mechanism is persistent, so a newly opened PyTables file may already have Undo/Redo
support.

enableUndo(filters=Filters(complevel=1)) Enable the Undo/Redo mechanism.

This operation prepares the database for undoing and redoing modifications in the node hierarchy. This
allows mark(), undo(), redo() and other methods to be called.

The filters argument, when specified, must be an instance of class Filters (see section 4.17.1)
and is meant for setting the compression values for the action log. The default is having compression
enabled, as the gains in terms of space can be considerable. You may want to disable compression if
you want maximum speed for Undo/Redo operations.

Calling enableUndo() when the Undo/Redo mechanism is already enabled raises an
UndoRedoError.

disableUndo() Disable the Undo/Redo mechanism.

Disabling the Undo/Redo mechanism leaves the database in the current state and forgets past and
future database states. This makes mark(), undo(), redo() and other methods fail with an
UndoRedoError.

Calling disableUndo() when the Undo/Redo mechanism is already disabled raises an
UndoRedoError.

mark(name=None) Mark the state of the database.

Creates a mark for the current state of the database. A unique (and immutable) identifier for the mark
is returned. An optional name (a string) can be assigned to the mark. Both the identifier of a mark and
its name can be used in undo() and redo() operations. When the name has already been used for
another mark, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.



62 Chapter 4. Library Reference

getCurrentMark() Get the identifier of the current mark.

Returns the identifier of the current mark. This can be used to know the state of a database after an
application crash, or to get the identifier of the initial implicit mark after a call to enableUndo().

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

undo(mark=None) Go to a past state of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and
its name can be used. If the mark is omitted, the last created mark is used. If there are no past marks,
or the specified mark is not older than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

redo(mark=None) Go to a future state of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and
its name can be used. If the mark is omitted, the next created mark is used. If there are no future marks,
or the specified mark is not newer than the current one, an UndoRedoError is raised.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

goto(mark) Go to a specific mark of the database.

Returns the database to the state associated with the specified mark. Both the identifier of a mark and
its name can be used.

This method can only be called when the Undo/Redo mechanism has been enabled. Otherwise, an
UndoRedoError is raised.

4.2.3 File special methods

Following are described the methods that automatically trigger actions when a File instance is accessed in a
special way.

__contains__(path)

Is there a node with that path?
Returns True if the file has a node with the given path (a string), False otherwise.

__iter__()

Iterate over the children on the File instance. However, this does not accept parameters. This iterator is
recursive.

Example of use:

# Recursively list all the nodes in the object tree
h5file = tables.openFile("vlarray1.h5")
print "All nodes in the object tree:"
for node in h5file:

print node



4.3. The Node class 63

__str__()

Prints a short description of the File object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f
data/test.h5 (File) ’Table Benchmark’
Last modif.: ’Mon Sep 20 12:40:47 2004’
Object Tree:
/ (Group) ’Table Benchmark’
/tuple0 (Table(100L,)) ’This is the table title’
/group0 (Group) ’’
/group0/tuple1 (Table(100L,)) ’This is the table title’
/group0/group1 (Group) ’’
/group0/group1/tuple2 (Table(100L,)) ’This is the table title’
/group0/group1/group2 (Group) ’’

__repr__()

Prints a detailed description of the File object.

4.3 The Node class

This is the base class for all nodes in a PyTables hierarchy. It is an abstract class, i.e. it may not be directly
instantiated; however, every node in the hierarchy is an instance of this class.

A PyTables node is always hosted in a PyTables file, under a parent group, at a certain depth in the node
hierarchy. A node knows its own name in the parent group and its own path name in the file. When using a
translation map (see 4.2), its HDF5 name might differ from its PyTables name.

All the previous information is location-dependent, i.e. it may change when moving or renaming a node
in the hierarchy. A node also has location-independent information, such as its HDF5 object identifier and its
attribute set.

This class gathers the operations and attributes (both location-dependent and independent) which are
common to all PyTables nodes, whatever their type is. Nonetheless, due to natural naming restrictions, the
names of all of these members start with a reserved prefix (see 4.4).

Sub-classes with no children (i.e. leaf nodes) may define new methods, attributes and properties to
avoid natural naming restrictions. For instance, _v_attrs may be shortened to attrs and _f_rename
to rename. However, the original methods and attributes should still be available.

4.3.1 Node instance variables

Location dependent

_v_file The hosting File instance (see 4.2).

_v_parent The parent Group instance (see 4.4).

_v_depth The depth of this node in the tree (an non-negative integer value).

_v_name The name of this node in its parent group (a string).

_v_hdf5name The name of this node in the hosting HDF5 file (a string).

_v_pathname The path of this node in the tree (a string).

_v_rootgroup The root group instance. This is deprecated; please use node._v_file.root.



64 Chapter 4. Library Reference

Location independent

_v_objectID The identifier of this node in the hosting HDF5 file.

_v_attrs The associated AttributeSet instance (see 4.15).

Attribute shorthands

_v_title A description of this node. A shorthand for TITLE attribute.

4.3.2 Node methods

Hierarchy manipulation

_f_close() Close this node in the tree.

This releases all resources held by the node, so it should not be used again. On nodes with data, it may
be flushed to disk.

The closing operation is not recursive, i.e. closing a group does not close its children.

_f_isOpen() Is this node open?

_f_remove(recursive=False) Remove this node from the hierarchy.

If the node has children, recursive removal must be stated by giving recursive a true value; other-
wise, a NodeError will be raised.

_f_rename(newname) Rename this node in place.

Changes the name of a node to newname (a string).

_f_move(newparent=None, newname=None, overwrite=False) Move or rename this node.

Moves a node into a new parent group, or changes the name of the node. newparent can be a Group
object or a pathname in string form. If it is not specified or None, the current parent group is chosen as
the new parent. newname must be a string with a new name. If it is not specified or None, the current
name is chosen as the new name.

Moving a node across databases is not allowed, nor it is moving a node into itself. These result in a
NodeError. However, moving a node over itself is allowed and simply does nothing. Moving over
another existing node is similarly not allowed, unless the optional overwrite argument is true, in
which case that node is recursively removed before moving.

Usually, only the first argument will be used, effectively moving the node to a new location without
changing its name. Using only the second argument is equivalent to renaming the node in place.

_f_copy(newparent=None, newname=None, overwrite=False, recursive=False, **kwargs) Copy this
node and return the new node.

Creates and returns a copy of the node, maybe in a different place in the hierarchy. newparent can be
a Group object or a pathname in string form. If it is not specified or None, the current parent group is
chosen as the new parent. newname must be a string with a new name. If it is not specified or None,
the current name is chosen as the new name. If recursive copy is stated, all descendants are copied
as well.

Copying a node across databases is supported but can not be undone. Copying a node over itself is
not allowed, nor it is recursively copying a node into itself. These result in a NodeError. Copying
over another existing node is similarly not allowed, unless the optional overwrite argument is true,
in which case that node is recursively removed before copying.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats
may be collected, etc. See the documentation for the particular node type.

Using only the first argument is equivalent to copying the node to a new location without changing its
name. Using only the second argument is equivalent to making a copy of the node in the same group.



4.4. The Group class 65

_f_isVisible() Is this node visible?

Attribute handling

_f_getAttr(name) Get a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

_f_setAttr(name, value) Set a PyTables attribute for this node.

If the node already has a large number of attributes, a PerformanceWarning is issued.

_f_delAttr(name) Delete a PyTables attribute from this node.

If the named attribute does not exist, an AttributeError is raised.

4.4 The Group class

Instances of this class are a grouping structure containing instances of zero or more groups or leaves, together
with supporting metadata.

Working with groups and leaves is similar in many ways to working with directories and files, respec-
tively, in a Unix filesystem. As with Unix directories and files, objects in the object tree are often de-
scribed by giving their full (or absolute) path names. This full path can be specified either as a string (like in
’/group1/group2’) or as a complete object path written in natural name schema (like in
file.root.group1.group2) as discussed in the section 1.2.

A collateral effect of the natural naming schema is that names of Group members must be carefully
chosen to avoid colliding with existing children node names. For this reason and not to pollute the children
namespace, it is explicitly forbidden to assign normal attributes to Group instances, and all existing members
start with some reserved prefixes, like _f_ (for methods) or _v_ (for instance variables). Any attempt to set
a new child node whose name starts with one of these prefixes will raise a ValueError exception.

Another effect of natural naming is that nodes having reserved Python names and other non-allowed
Python names (like for example $a or 44) can not be accessed using the node.child syntax. You will be
forced to use getattr(node, child) and delattr(node, child) to access them.

You can also make use of the trMap (translation map dictionary) parameter in the openFile function
(see section 4.1.2) in order to translate HDF5 names not suited for natural naming into more convenient ones.

4.4.1 Group instance variables

These instance variables are provided in addition to those in Node (see 4.3).

_v_nchildren The number of children hanging from this group.

_v_children Dictionary with all nodes hanging from this group.

_v_groups Dictionary with all groups hanging from this group.

_v_leaves Dictionary with all leaves hanging from this group.

_v_filters Default filter properties for child nodes —see 4.17.1. A shorthand for FILTERS attribute.

4.4.2 Group methods

This class defines the __setattr__, __getattr__ and __delattr__ methods, and they set, get and
delete ordinary Python attributes as normally intended. In addition to that, __getattr__ allows getting
child nodes by their name for the sake of easy interaction on the command line, as long as there is no Python
attribute with the same name. Groups also allow the interactive completion (when using readline) of the
names of child nodes. For instance:



66 Chapter 4. Library Reference

nchild = group._v_nchildren # get a Python attribute

# Add a Table child called "table" under "group".
h5file.createTable(group, ’table’, myDescription)

table = group.table # get the table child instance
group.table = ’foo’ # set a Python attribute
# (PyTables warns you here about using the name of a child node.)
foo = group.table # get a Python attribute
del group.table # delete a Python attribute
table = group.table # get the table child instance again

Caveat: The following methods are documented for completeness, and they can be used without any
problem. However, you should use the high-level counterpart methods in the File class, because these are
most used in documentation and examples, and are a bit more powerful than those exposed here.

These methods are provided in addition to those in Node (see 4.3).

_f_getChild(childname)

Get the child called childname of this group.
If the child exists (be it visible or not), it is returned. Else, a NoSuchNodeError is raised.

_f_copy(newparent, newname, overwrite=False, recursive=False, **kwargs)

Copy this node and return the new one.
This method has the behavior described in Node._f_copy() (see page 64). In addition, it recognizes

the following keyword arguments:

title The new title for the destination. If omitted or None, the original title is used. This only applies to the
topmost node in recursive copies.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it must
be an instance of the Filters class (see section 4.17.1). The default is to copy the filter properties
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to False. The
default is to copy them.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dic-
tionary with keys ’groups’, ’leaves’ and ’bytes’ having a numeric value. Their values will
be incremented to reflect the number of groups, leaves and bytes, respectively, that have been copied
during the operation.

_f_iterNodes(classname=None)

Returns an iterator yielding all the object nodes hanging from this instance. The nodes are alpha-numerically
sorted by its node name. If a classname parameter is supplied, it will only return instances of this class (or
subclasses of it).

_f_listNodes(classname=None)

Returns a list with all the object nodes hanging from this instance. The list is alpha-numerically sorted by
node name. If a classname parameter is supplied, it will only return instances of this class (or subclasses of
it).



4.4. The Group class 67

_f_walkGroups()

Iterate over the list of Groups (not Leaves) hanging from (and including) self. This Group is listed first (pre-
order), then each of its child Groups (following an alpha-numerical order) is also traversed, following the
same procedure.

_f_walkNodes(classname=None, recursive=True)

Iterate over the nodes in the Group instance. It takes two parameters:

classname (String) If supplied, only instances of this class are returned.

recursive (Integer) If false, only children hanging immediately after the group are returned. If true, a recur-
sion over all the groups hanging from it is performed.

Example of use:

# Recursively print all the arrays hanging from ’/’
print "Arrays the object tree ’/’:"
for array in h5file.root._f_walkNodes("Array", recursive=1):

print array

_f_close()

Close this node in the tree.
This method has the behavior described in Node._f_close() (see page 64). It should be noted that

this operation disables access to nodes descending from this group. Therefore, if you want to explicitly close
them, you will need to walk the nodes hanging from this group before closing it.

_f_copyChildren(dstgroup, overwrite=False, recursive=False, **kwargs)

Copy the children of this group into another group.
Children hanging directly from this group are copied into dstgroup, which can be a Group (see 4.4)

object or its pathname in string form.
The operation will fail with a NodeError if there is a child node in the destination group with the same

name as one of the copied children from this one, unless overwrite is true; in this case, the former child
node is recursively removed before copying the later.

By default, nodes descending from children groups of this node are not copied. If the recursive argu-
ment is true, all descendant nodes of this node are recursively copied.

Additional keyword arguments may be passed to customize the copying process. For instance, title and
filters may be changed, user attributes may be or may not be copied, data may be sub-sampled, stats may
be collected, etc. Arguments unknown to nodes are simply ignored. Check the documentation for copying
operations of nodes to see which options they support.

4.4.3 Group special methods

Following are described the methods that automatically trigger actions when a Group instance is accessed in
a special way.

__setattr__(name, value)

Set a Python attribute called name with the given value.
This method stores an ordinary Python attribute in the object. It does not store new children nodes

under this group; for that, use the File.create*() methods (see 4.2). It does neither store a PyTables
node attribute; for that, use File.setNodeAttr() (see page 58), Node._f_setAttr() (see page 65) or
Node._v_attrs (see page 64).



68 Chapter 4. Library Reference

If there is already a child node with the same name, a NaturalNameWarning will be issued and
the child node will not be accessible via natural naming nor getattr(). It will still be available via
File.getNode() (see page 58), Group._f_getChild() (see page 66) and children dictionaries in the
group (if visible).

__getattr__(name)

Get a Python attribute or child node called name.
If the object has a Python attribute called name, its value is returned. Else, if the node has a child node

called name, it is returned. Else, an AttributeError is raised.

__delattr__(name)

Delete a Python attribute called name.
This method deletes an ordinary Python attribute from the object. It does not remove children nodes

from this group; for that, use File.removeNode() (see page 59) or Node._f_remove() (see page 64).
It does neither delete a PyTables node attribute; for that, use File.delNodeAttr() (see page 58),
Node._f_delAttr() (see page 65) or Node._v_attrs (see page 64).

If there were an attribute and a child node with the same name, the child node will be made accessible
again via natural naming.

__contains__(name)

Is there a child with that name?
Returns True if the group has a child node (visible or hidden) with the given name (a string), False

otherwise.

__iter__()

Iterate over the children on the group instance. However, this does not accept parameters. This iterator is not
recursive.

Example of use:

# Non-recursively list all the nodes hanging from ’/detector’
print "Nodes in ’/detector’ group:"
for node in h5file.root.detector:

print node

__str__()

Prints a short description of the Group object.
Example of use:

>>> f=tables.openFile("data/test.h5")
>>> print f.root.group0
/group0 (Group) ’First Group’
>>>

__repr__()

Prints a detailed description of the Group object.
Example of use:



4.5. The Leaf class 69

>>> f=tables.openFile("data/test.h5")
>>> f.root.group0
/group0 (Group) ’First Group’

children := [’tuple1’ (Table), ’group1’ (Group)]
>>>

4.5 The Leaf class

The goal of this class is to provide a place to put common functionality of all its descendants as well as provide
a way to help classifying objects on the tree. A Leaf object is an end-node, that is, a node that can hang
directly from a group object, but that is not a group itself and, thus, it can not have descendants. Right now,
the set of end-nodes is composed by Table, Array, CArray, EArray, VLArray and UnImplemented
class instances. In fact, all the previous classes inherit from the Leaf class.

4.5.1 Leaf instance variables

These instance variables are provided in addition to those in Node (see 4.3).

shape The shape of data in the leaf.

byteorder The byte ordering of data in the leaf.

filters Filter properties for this leaf —see 4.17.1.

name The name of this node in its parent group (a string). An alias for Node._v_name.

hdf5name The name of this node in the hosting HDF5 file (a string). An alias for Node._v_hdf5name.

objectID The identifier of this node in the hosting HDF5 file. An alias for Node._v_objectID.

attrs The associated AttributeSet instance (see 4.15). An alias for Node._v_attrs.

title A description for this node. An alias for Node._v_title.

4.5.2 Leaf methods

flush()

Flush pending data to disk.
Saves whatever remaining buffered data to disk. It also releases I/O buffers, so, if you are filling many

objects (i.e. tables) in the same PyTables session, please, call flush() extensively so as to help PyTables to
keep memory requirements low.

_f_close(flush=True)

Close this node in the tree.
This method has the behavior described in Node._f_close() (see page 64). Besides that, the optional

argument flush tells whether to flush pending data to disk or not before closing.

close(flush=True)

Close this node in the tree.
This method is completely equivalent to _f_close().

isOpen()

Is this node open?
This method is completely equivalent to _f_isOpen().



70 Chapter 4. Library Reference

remove()

Remove this node from the hierarchy.
This method has the behavior described in Node._f_remove() (see page 64). Please, note that there is

no recursive flag since leaves do not have child nodes.

copy(newparent, newname, overwrite=False, **kwargs)

Copy this node and return the new one.
This method has the behavior described in Node._f_copy() (see page 64). Please, note that there is

no recursive flag since leaves do not have child nodes. In addition, this method recognizes the following
keyword arguments:

title The new title for the destination. If omitted or None, the original title is used.

filters Specifying this parameter overrides the original filter properties in the source node. If specified, it must
be an instance of the Filters class (see section 4.17.1). The default is to copy the filter properties
from the source node.

copyuserattrs You can prevent the user attributes from being copied by setting this parameter to False. The
default is to copy them.

start, stop, step Specify the range of rows in child leaves to be copied; the default is to copy all the rows.

stats This argument may be used to collect statistics on the copy process. When used, it should be a dic-
tionary with keys ’groups’, ’leaves’ and ’bytes’ having a numeric value. Their values will
be incremented to reflect the number of groups, leaves and bytes, respectively, that have been copied
during the operation.

rename(newname)

Rename this node in place.
This method has the behavior described in Node._f_rename() (see page 64).

move(newparent=None, newname=None, overwrite=False)

Move or rename this node.
This method has the behavior described in Node._f_move() (see page 64).

_f_isVisible()

Is this node visible?
This method has the behavior described in Node._f_isVisible() (see page 65).

getAttr(name)

Get a PyTables attribute from this node.
This method has the behavior described in Node._f_getAttr() (see page 65).

setAttr(name, value)

Set a PyTables attribute for this node.
This method has the behavior described in Node._f_setAttr() (see page 65).

delAttr(name)

Delete a PyTables attribute from this node.
This method has the behavior described in Node._f_delAttr() (see page 65).



4.6. The Table class 71

4.6 The Table class

Instances of this class represents table objects in the object tree. It provides methods to read/write data and
from/to table objects in the file.

Data can be read from or written to tables by accessing to an special object that hangs from Table. This
object is an instance of the Row class (see 4.6.4). See the tutorial sections chapter 3 on how to use the Row
interface. The columns of the tables can also be easily accessed (and more specifically, they can be read but
not written) by making use of the Column class, through the use of an extension of the natural naming schema
applied inside the tables. See the section 4.9 for some examples of use of this capability.

Note that this object inherits all the public attributes and methods that Leaf already has.
Finally, during the description of the different methods, there will appear references to a particular object

called NestedRecArray. This inherits from numarray.records.RecArray and is designed to keep
columns that have nested datatypes. Please, see appendix B for info on these objects.

4.6.1 Table instance variables

description A Description (see 4.8) instance describing the structure of this table.

row The associated Row instance (see 4.6.4).

nrows The number of rows in this table.

rowsize The size in bytes of each row in the table.

cols A Cols (see section 4.7) instance that serves as an accessor to Column (see section 4.9) objects.

colnames A tuple containing the (possibly nested) names of the columns in the table.

coltypes Maps the name of a column to its data type.

colstypes Maps the name of a column to its data string type.

colshapes Maps the name of a column to it shape.

colitemsizes Maps the name of a column to the size of its base items.

coldflts Maps the name of a column to its default.

colindexed Is the column which name is used as a key indexed? (dictionary)

indexed Does this table have any indexed columns?

indexprops Index properties for this table (an IndexProps instance, see 4.17.2).

flavor The default flavor for this table. This determines the type of objects returned during input (i.e. read)
operations. It can take the "numarray" (default) or "numpy" values. Its value is derived from the
_v_flavor attribute of the IsDescription metaclass (see 4.16.1) or, if the table has been created
directly from a numarray or NumPy object, the flavor is set to the appropriate value.

4.6.2 Table methods

getEnum(colname)

Get the enumerated type associated with the named column.
If the column named colname (a string) exists and is of an enumerated type, the corresponding Enum

instance (see 4.17.4) is returned. If it is not of an enumerated type, a TypeError is raised. If the column
does not exist, a KeyError is raised.



72 Chapter 4. Library Reference

append(rows)

Append a series of rows to this Table instance. rows is an object that can keep the rows to be append in
several formats, like a NestedRecArray (see appendix B), a RecArray, a NumPy object, a list of tuples,
list of Numeric/numarray/NumPy objects, string, Python buffer or None (no append will result). Of course,
this rows object has to be compliant with the underlying format of the Table instance or a ValueError will
be issued.

Example of use:

from tables import *
class Particle(IsDescription):

name = StringCol(16, pos=1) # 16-character String
lati = IntCol(pos=2) # integer
longi = IntCol(pos=3) # integer
pressure = Float32Col(pos=4) # float (single-precision)
temperature = FloatCol(pos=5) # double (double-precision)

fileh = openFile("test4.h5", mode = "w")
table = fileh.createTable(fileh.root, ’table’, Particle, "A table")
# Append several rows in only one call
table.append([("Particle: 10", 10, 0, 10*10, 10**2),

("Particle: 11", 11, -1, 11*11, 11**2),
("Particle: 12", 12, -2, 12*12, 12**2)])

fileh.close()

col(name)

Get a column from the table.
If a column called name exists in the table, it is read and returned as a numarray object, or as a NumPy

object (whatever is more appropriate depending on the flavor of the table). If it does not exist, a KeyError
is raised.

Example of use:

narray = table.col(’var2’)

That statement is equivalent to:

narray = table.read(field=’var2’)

Here you can see how this method can be used as a shorthand for the read() (see 4.6.2) method.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding Row (see section 4.6.4) instances built from rows in table. If a range is supplied
(i.e. some of the start, stop or step parameters are passed), only the appropriate rows are returned. Else, all
the rows are returned. See also the __iter__() special method in section 4.6.3 for a shorter way to call this
iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result = [ row[’var2’] for row in table.iterrows(step=5)
if row[’var1’] <= 20 ]

Note: This iterator can be nested (see example in section 4.6.2).



4.6. The Table class 73

itersequence(sequence, sort=True)

Iterate over a sequence of row coordinates.

sequence Can be any object that supports the __getitem__ special method, like lists, tuples, Nu-
meric/NumPy/numarray objects, etc.

sort If true, means that sequence will be sorted out so that the I/O process would get better performance. If
your sequence is already sorted or you don’t want to sort it, put this parameter to 0. The default is to
sort the sequence.

Note: This iterator can be nested (see example in section 4.6.2).

read(start=None, stop=None, step=1, field=None, flavor=None)

Returns the actual data in Table. If field is not supplied, it returns the data as a NestedRecArray (see
appendix B) object table.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

The rest of the parameters are described next:

field If specified, only the column field is returned as an homogeneous numarray/NumPy/Numeric object,
depending on the flavor. If this is not supplied, all the fields are selected and a NestedRecArray (see
appendix B) or NumPy object is returned. Nested fields can be specified in the field parameter by using
a ’/’ character as a separator between fields (e.g. Info/value).

flavor Passing a flavor parameter make an additional conversion to happen in the default returned object.
flavor can have any of the next values: "numarray" "numpy", "python" or "numeric" (only if
field has been specified). If flavor is not specified, then it will take the value of self.flavor.

readCoordinates(coords, field=None, flavor=None)

Read a set of rows given their indexes into an in-memory object.
This method works much like the read() method (see 4.6.2), but it uses a sequence (coords) of row

indexes to select the wanted columns, instead of a column range.
It returns the selected rows in a NestedRecArray object (see appendix B). If flavor is provided, an

additional conversion to an object of this flavor is made, just as in read().

modifyRows(start=None, stop=None, step=1, rows=None)

Modify a series of rows in the [start:stop:step] extended slice range. If you pass None to stop, all the
rows existing in rows will be used.

rows can be either a recarray or a structure that is able to be converted to any of them and compliant with
the table format.

Returns the number of modified rows.
It raises an ValueError in case the rows parameter could not be converted to an object compliant with

table description.
It raises an IndexError in case the modification will exceed the length of the table.

modifyColumn(start=None, stop=None, step=1, column=None, colname=None)

Modify a series of rows in the [start:stop:step] extended slice row range. If you pass None to stop,
all the rows existing in column will be used.

column can be either a NestedRecArray (see appendix B), RecArray, numarray, NumPy object, list
or tuple that is able to be converted into a NestedRecArray compliant with the specified colname column
of the table.



74 Chapter 4. Library Reference

colname specifies the column name of the table to be modified.
Returns the number of modified rows.
It raises an ValueError in case the column parameter could not be converted into an object compliant

with column description.
It raises an IndexError in case the modification will exceed the length of the table.

modifyColumns(start=None, stop=None, step=1, columns=None, names=None)

Modify a series of rows in the [start:stop:step] extended slice row range. If you pass None to stop,
all the rows existing in columns will be used.

columns can be either a NestedRecArray (see appendix B), RecArray, a NumPy object, a list of
arrays or list or tuples (the columns) that are able to be converted to a NestedRecArray compliant with the
specified column names subset of the table format.

names specifies the column names of the table to be modified.
Returns the number of modified rows.
It raises an ValueError in case the columns parameter could not be converted to an object compliant

with table description.
It raises an IndexError in case the modification will exceed the length of the table.

removeRows(start, stop=None)

Removes a range of rows in the table. If only start is supplied, this row is to be deleted. If a range is supplied,
i.e. both the start and stop parameters are passed, all the rows in the range are removed. A step parameter is
not supported, and it is not foreseen to implement it anytime soon.

start Sets the starting row to be removed. It accepts negative values meaning that the count starts from the
end. A value of 0 means the first row.

stop Sets the last row to be removed to stop - 1, i.e. the end point is omitted (in the Python range tradition).
It accepts, likewise start, negative values. A special value of None (the default) means removing just
the row supplied in start.

removeIndex(index)

Remove the index associated with the specified column. Only Index instances (see 4.17.3) are accepted
as parameter. This index can be recreated again by calling the createIndex (see 4.9.2) method of the
appropriate Column object.

flushRowsToIndex()

Add remaining rows in buffers to non-dirty indexes. This can be useful when you have chosen non-automatic
indexing for the table (see section 4.17.2) and want to update the indexes on it.

reIndex()

Recompute all the existing indexes in table. This can be useful when you suspect that, for any reason, the
index information for columns is no longer valid and want to rebuild the indexes on it.

reIndexDirty()

Recompute the existing indexes in table, but only if they are dirty. This can be useful when you have set
the reindex parameter to 0 in IndexProps constructor (see 4.17.2) for the table and want to update the
indexes after a invalidating index operation (Table.removeRows, for example).



4.6. The Table class 75

where(condition, start=None, stop=None, step=None)

Iterate over values fulfilling a condition.
This method returns an iterator yielding Row (see 4.6.4) instances built from rows in the table that satisfy

the given condition over a column. If that column is indexed, its index will be used in order to accelerate
the search. Else, the in-kernel iterator (with has still better performance than standard Python selections) will
be chosen instead. Please, check the section 5.2 for more information about the performance of the different
searching modes.

Moreover, if a range is supplied (i.e. some of the start, stop or step parameters are passed), only
the rows in that range and fulfilling the condition are returned. The meaning of the start, stop and
step parameters is the same as in the range() Python function, except that negative values of step are not
allowed. Moreover, if only start is specified, then stop will be set to start+1.

You can mix this method with standard Python selections in order to have complex queries. It is strongly
recommended that you pass the most restrictive condition as the parameter to this method if you want to
achieve maximum performance.

Example of use:

passvalues=[]
for row in table.where(0 < table.cols.col1 < 0.3, step=5):

if row[’col2’] <= 20:
passvalues.append(row[’col3’])

print "Values that pass the cuts:", passvalues

Note that, from PyTables 1.1 on, you can nest several iterators over the same table. For example:

for p in rout.where(rout.cols.pressure < 16):
for q in rout.where(rout.cols.pressure < 9):

for n in rout.where(rout.cols.energy < 10):
print "pressure, energy:", p[’pressure’],n[’energy’]

In this example, the iterators returned by where() has been nested, but in fact, you can use any of the
other reading iterators that the Table object offers. Look at examples/nested-iter.py for the full
code.

whereAppend(dstTable, condition, start=None, stop=None, step=None)

Append rows fulfilling the condition to the dstTable table.
dstTable must be capable of taking the rows resulting from the query, i.e. it must have columns with the

expected names and compatible types. The meaning of the other arguments is the same as in the where()
method (see 4.6.2).

The number of rows appended to dstTable is returned as a result.

getWhereList(condition, flavor=None)

Get the row coordinates that fulfill the condition parameter. This method will take advantage of an indexed
column to speed-up the search.

flavor is the desired type of the returned list. It can take the "numarray", "numpy", "numeric" or
"python" values. The default is returning an object of the same flavor than self.flavor.

4.6.3 Table special methods

Following are described the methods that automatically trigger actions when a Table instance is accessed in
a special way (e.g., table["var2"] will be equivalent to a call to table.__getitem__("var2")).



76 Chapter 4. Library Reference

__iter__()

It returns the same iterator than Table.iterrows(0,0,1). However, this does not accept parameters.
Example of use:

result = [ row[’var2’] for row in table if row[’var1’] <= 20 ]

Which is equivalent to:

result = [ row[’var2’] for row in table.iterrows()
if row[’var1’] <= 20 ]

Note: This iterator can be nested (see example in section 4.6.2).

__getitem__(key)

Get a row or a range of rows from the table.
If the key argument is an integer, the corresponding table row is returned as a

tables.nestedrecords.NestedRecord object. If key is a slice, the range of rows determined
by it is returned as a tables.nestedrecords.NestedRecArray object.

Using a string as key to get a column is supported but deprecated. Please use the col() (see 4.6.2)
method.

Example of use:

record = table[4]
recarray = table[4:1000:2]

Those statements are equivalent to:

record = table.read(start=4)[0]
recarray = table.read(start=4, stop=1000, step=2)

Here you can see how indexing and slicing can be used as shorthands for the read() (see 4.6.2) method.

__setitem__(key, value)

It takes different actions depending on the type of the key parameter:

key is an Integer The corresponding table row is set to value. value must be a List or Tuple capable of
being converted to the table field format.

key is a Slice The row slice determined by key is set to value. value must be a NestedRecArray object
or a RecArray object or a list of rows capable of being converted to the table field format.

Example of use:

# Modify just one existing row
table[2] = [456,’db2’,1.2]
# Modify two existing rows
rows = numarray.records.array([[457,’db1’,1.2],[6,’de2’,1.3]],
formats="i4,a3,f8")
table[1:3:2] = rows

Which is equivalent to:



4.6. The Table class 77

table.modifyRows(start=2, rows=[456,’db2’,1.2])
rows = numarray.records.array([[457,’db1’,1.2],[6,’de2’,1.3]],
formats="i4,a3,f8")
table.modifyRows(start=1, step=2, rows=rows)

4.6.4 The Row class

This class is used to fetch and set values on the table fields. It works very much like a dictionary, where the
keys are the field names of the associated table and the values are the values of those fields in a specific row.

This object turns out to actually be an extension type, so you won’t be able to access its documentation
interactively. However, you will be able to access some of its internal attributes through the use of Python
properties. In addition, there are some important methods that are useful for adding and modifying values in
tables.

Row attributes

nrow Property that returns the current row number in the table. It is useful to know which row is being dealt
with in the middle of a loop or iterator.

Row methods

append() Once you have filled the proper fields for the current row, calling this method actually append these
new data to the disk (actually data are written to the output buffer).

Example of use:

row = table.row
for i in xrange(nrows):

row[’col1’] = i-1
row[’col2’] = ’a’
row[’col3’] = -1.0
row.append()

table.flush()

Please, note that, after the loop in which Row.append() has been called, it is always convenient to
make a call to Table.flush() in order to avoid losing the last rows that can be in internal buffers.

update() This allows you to modify values of your tables when you are in the middle of table iterators, like
Table.iterrows() (see 4.6.2) or Table.where() (see 4.6.2). Once you have filled the proper
fields for the current row, calling this method actually commits these data to the disk (actually data are
written to the output buffer).

Example of use:

for row in table.iterrows(step=10):
row[’col1’] = row.nrow
row[’col2’] = ’b’
row[’col3’] = 0.0
row.update()

which modifies every tenth row in table. Or:



78 Chapter 4. Library Reference

for row in table.where(table.cols.col1 > 3):
row[’col1’] = row.nrow
row[’col2’] = ’b’
row[’col3’] = 0.0
row.update()

which just updates the rows with values in first column bigger than 3.

4.7 The Cols class

This class is used as an accessor to the table columns following the natural name convention, so that you
can access the different columns because there exists one attribute with the name of the columns for each
associated column, which can be a Column instance (non-nested column) or another Cols instance (nested
column).

Columns under a Cols accessor can be accessed as attributes of it. For instance, if table.cols is a
Cols instance with a column named col1 under it, the later can be accessed as table.cols.col1. If
col1 is nested and contains a col2 column, this can be accessed as table.cols.col1.col2 and so on
and so forth.

4.7.1 Cols instance variables

_v_colnames A list of the names of the columns (or nested columns) hanging directly from this Cols in-
stance. The order of the names matches the order of their respective columns in the containing table.

_v_colpathnames A list of the complete pathnames of the columns hanging directly from this Cols instance.
If the table does not contain nested columns, this is exactly the same as _v_colnames attribute.

_v_table The parent Table instance.

_v_desc The associated Description 4.9 instance.

4.7.2 Cols methods

_f_col(colname)

Return a handler to the colname column. If colname is a nested column, a Cols instance is returned. If
colname is a non-nested column a Column object is returned instead.

__getitem__(key)

Get a row or a range of rows from the Cols accessor.
If the key argument is an integer, the corresponding Cols row is returned as a

tables.nestedrecords.NestedRecord object. If key is a slice, the range of rows determined
by it is returned as a tables.nestedrecords.NestedRecArray object.

Using a string as key to get a column is supported but deprecated. Please use the col() (see 4.6.2)
method.

Example of use:

record = table.cols[4] # equivalent to table[4]
recarray = table.cols.Info[4:1000:2]

Those statements are equivalent to:

nrecord = table.read(start=4)[0]
nrecarray = table.read(start=4, stop=1000, step=2).field(’Info’)



4.8. The Description class 79

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the
read() (see 4.6.2) method.

__setitem__(key)

Set a row or a range of rows to the Cols accessor.
If the key argument is an integer, the corresponding Cols row is set to the value object. If key is a

slice, the range of rows determined by it is set to the value object.
Example of use:

table.cols[4] = record
table.cols.Info[4:1000:2] = recarray

Those statements are equivalent to:

table.modifyRows(4, rows=record)
table.modifyColumn(4, 1000, 2, colname=’Info’, column=recarray)

Here you can see how a mix of natural naming, indexing and slicing can be used as shorthands for the
modifyRows() and modifyColumn() (see 4.6.2 and 4.6.2) methods.

4.8 The Description class

The instances of the Description class provide a description of the structure of a table.
An instance of this class is automatically bound to Table (see 4.6) objects when they are created. It

provides a browseable representation of the structure of the table, made of non-nested (Col —see 4.16.2) and
nested (Description) columns. It also contains information that will allow you to build NestedRecArray
(see appendix B) objects suited for the different columns in a table (be they nested or not).

Column descriptions (see Col class in 4.16.2) under a description can be accessed as attributes of it. For
instance, if table.description is a Description instance with a column named col1 under it, the
later can be accessed as table.description.col1. If col1 is nested and contains a col2 column, this
can be accessed as table.description.col1.col2.

4.8.1 Description instance variables

_v_name The name of this description instance. If description is the root of the nested type (or the description
of a flat table), its name will be the empty string (’’).

_v_names A list of the names of the columns hanging directly from this description instance. The order of
the names matches the order of their respective columns in the containing description.

_v_pathnames A list of the pathnames of the columns hanging directly from this description. If the table
does not contain nested columns, this is exactly the same as _v_names attribute.

_v_nestedNames A nested list of the names of all the columns hanging directly from this description in-
stance. You can use this for the names argument of NestedRecArray factory functions.

_v_nestedFormats A nested list of the numarray string formats (and shapes) of all the columns hang-
ing directly from this description instance. You can use this for the formats argument of
NestedRecArray factory functions.



80 Chapter 4. Library Reference

_v_nestedDescr A nested list of pairs of (name, format) tuples for all the columns under this table or
nested column. You can use this for the descr argument of NestedRecArray factory functions.

_v_types A dictionary mapping the names of non-nested columns hanging directly from this description
instance to their respective numarray types.

_v_stypes A dictionary mapping the names of non-nested columns hanging directly from this description
instance to their respective string types.

_v_shapes A dictionary mapping the names of non-nested columns hanging directly from this description
instance to their respective shapes.

_v_dflts A dictionary mapping the names of non-nested columns hanging directly from this description in-
stance to their respective default values. Please, note that all the default values are kept internally as
numarray objects.

_v_colObjects A dictionary mapping the names of the columns hanging directly from this description in-
stance to their respective descriptions (Col —see 4.16.2— or Description —see 4.8— instances).

_v_itemsizes A dictionary mapping the names of non-nested columns hanging directly from this description
instance to their respective item size (in bytes).

_v_nestedlvl The level of the description in the nested datatype.

4.8.2 Description methods

_v_walk(type=’All’) Iterate over nested columns.

If type is ’All’ (the default), all column description objects (Col and Description instances) are
returned in top-to-bottom order (pre-order).

If type is ’Col’ or ’Description’, only column descriptions of that type are returned.

4.9 The Column class

Each instance of this class is associated with one column of every table. These instances are mainly used to
fetch and set actual data from the table columns, but there are a few other associated methods to deal with
indexes.

4.9.1 Column instance variables

table The parent Table instance.

name The name of the associated column.

pathname The complete pathname of the associated column. This is mainly useful in nested columns; for
non-nested ones this value is the same a name.

type The data type of the column.

shape The shape of the column.

index The associated Index object (see 4.17.3) to this column (None if does not exist).

dirty Whether the index is dirty or not (property).

4.9.2 Column methods

createIndex()

Create an Index (see 4.17.3) object for this column.



4.9. The Column class 81

reIndex()

Recompute the index associated with this column. This can be useful when you suspect that, for any reason,
the index information is no longer valid and want to rebuild it.

reIndexDirty()

Recompute the existing index only if it is dirty. This can be useful when you have set the reindex parameter
to 0 in IndexProps constructor (see 4.17.2) for the table and want to update the column’s index after a
invalidating index operation (Table.removeRows, for example).

removeIndex()

Delete the associated column’s index. After doing that, you will loose the indexation information on disk.
However, you can always re-create it using the createIndex() method (see 4.9.2).

4.9.3 Column special methods

__getitem__(key)

Returns a column element or slice. It takes different actions depending on the type of the key parameter:

key is an Integer The corresponding element in the column is returned as a scalar object or as a
numarray object, depending on its shape.

key is a Slice The row range determined by this slice is returned as a numarray object.

Example of use:

print "Column handlers:"
for name in table.colnames:

print table.cols[name]
print
print "Some selections:"
print "Select table.cols.name[1]-->", table.cols.name[1]
print "Select table.cols.name[1:2]-->", table.cols.name[1:2]
print "Select table.cols.lati[1:3]-->", table.cols.lati[1:3]
print "Select table.cols.pressure[:]-->", table.cols.pressure[:]
print "Select table.cols[’temperature’][:]-->", table.cols[’temperature’][:]

and the output of this for a certain arbitrary table is:

Column handlers:
/table.cols.name (Column(1,), CharType)
/table.cols.lati (Column(2,), Int32)
/table.cols.longi (Column(1,), Int32)
/table.cols.pressure (Column(1,), Float32)
/table.cols.temperature (Column(1,), Float64)

Some selections:
Select table.cols.name[1]--> Particle: 11
Select table.cols.name[1:2]--> [’Particle: 11’]
Select table.cols.lati[1:3]--> [[11 12]
[12 13]]

Select table.cols.pressure[:]--> [ 90. 110. 132.]
Select table.cols[’temperature’][:]--> [ 100. 121. 144.]

See the examples/table2.py for a more complete example.



82 Chapter 4. Library Reference

__setitem__(key, value)

It takes different actions depending on the type of the key parameter:

key is an Integer The corresponding element in the column is set to value. value must be a scalar or
numarray/NumPy object, depending on column’s shape.

key is a Slice The row slice determined by key is set to value. value must be a list of elements or a
numarray/NumPy.

Example of use:

# Modify row 1
table.cols.col1[1] = -1
# Modify rows 1 and 3
table.cols.col1[1::2] = [2,3]

Which is equivalent to:

# Modify row 1
table.modifyColumns(start=1, columns=[[-1]], names=["col1"])
# Modify rows 1 and 3
columns = numarray.records.fromarrays([[2,3]], formats="i4")
table.modifyColumns(start=1, step=2, columns=columns, names=["col1"])

4.10 The Array class

Represents an array on file. It provides methods to write/read data to/from array objects in the file. This class
does not allow you to enlarge the datasets on disk; see the EArray descendant in section 4.12 if you want
enlargeable dataset support and/or compression features. See also CArray in section 4.11

The array data types supported are the same as the set provided by the numarray package. For details of
these data types see appendix A, or the numarray reference manual (Greenfield et al.).

An interesting property of the Array class is that it remembers the flavor of the object that has been saved
so that if you saved, for example, a List, you will get a List during readings afterwards, or if you saved a
NumPy array, you will get a NumPy object.

Note that this object inherits all the public attributes and methods that Leaf already provides.

4.10.1 Array instance variables

flavor The object representation for this array. It can be any of "numarray", "numpy", "numeric" or "python"
values.

nrows The length of the first dimension of the array.

nrow On iterators, this is the index of the current row.

type The type class of the represented array.

stype The string type of the represented array.

itemsize The size of the base items. Specially useful for CharType objects.

4.10.2 Array methods

Note that, as this object has no internal I/O buffers, it is not necessary to use the flush() method inherited from
Leaf in order to save its internal state to disk. When a writing method call returns, all the data is already on
disk.



4.10. The Array class 83

getEnum()

Get the enumerated type associated with this array.
If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is

not of an enumerated type, a TypeError is raised.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding numarray instances built from rows in array. The return rows are taken from
the first dimension in case of an Array and CArray instance and the enlargeable dimension in case of an
EArray instance. If a range is supplied (i.e. some of the start, stop or step parameters are passed), only the
appropriate rows are returned. Else, all the rows are returned. See also the and __iter__() special methods
in section 4.10.3 for a shorter way to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

result = [ row for row in arrayInstance.iterrows(step=4) ]

read(start=None, stop=None, step=1)

Read the array from disk and return it as a numarray (default) object, or an object with the same original
flavor that it was saved. It accepts start, stop and step parameters to select rows (the first dimension in the
case of an Array and CArray instance and the enlargeable dimension in case of an EArray) for reading.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

4.10.3 Array special methods

Following are described the methods that automatically trigger actions when an Array instance is accessed
in a special way (e.g., array[2:3,...,::2] will be equivalent to a call to
array.__getitem__(slice(2,3, None), Ellipsis, slice(None, None, 2))).

__iter__()

It returns the same iterator than Array.iterrows(0,0,1). However, this does not accept parameters.
Example of use:

result = [ row[2] for row in array ]

Which is equivalent to:

result = [ row[2] for row in array.iterrows(0, 0, 1) ]

__getitem__(key)

It returns a numarray (default) object (or an object with the same original flavor that it was saved) containing
the slice of rows stated in the key parameter. The set of allowed tokens in key is the same as extended slicing
in python (the Ellipsis token included).

Example of use:



84 Chapter 4. Library Reference

array1 = array[4] # array1.shape == array.shape[1:]
array2 = array[4:1000:2] # len(array2.shape) == len(array.shape)
array3 = array[::2, 1:4, :]
array4 = array[1, ..., ::2, 1:4, 4:] # General slice selection

__setitem__(key, value)

Sets an Array element, row or extended slice. It takes different actions depending on the type of the key
parameter:

key is an integer: The corresponding row is assigned to value. If needed, this value is broadcasted to fit
the specified row.

key is a slice: The row slice determined by it is assigned to value. If needed, this value is broadcasted
to fit in the desired range. If the slice to be updated exceeds the actual shape of the array, only the
values in the existing range are updated, i.e. the index error will be silently ignored. If value is a
multidimensional object, then its shape must be compatible with the slice specified in key, otherwise,
a ValueError will be issued.

Example of use:

a1[0] = 333 # Assign an integer to a Integer Array row
a2[0] = "b" # Assign a string to a string Array row
a3[1:4] = 5 # Broadcast 5 to slice 1:4
a4[1:4:2] = "xXx" # Broadcast "xXx" to slice 1:4:2
# General slice update (a5.shape = (4,3,2,8,5,10)
a5[1, ..., ::2, 1:4, 4:] = arange(1728, shape=(4,3,2,4,3,6))

4.11 The CArray class

This is a child of the Array class (see 4.10) and as such, CArray represents an array on the file. The
difference is that CArray has a chunked layout and, as a consequence, it also supports compression. You can
use this class to easily save or load array (or array slices) objects to or from disk, with compression support
included.

4.11.1 CArray instance variables

In addition to the attributes that CArray inherits from Array, it supports some more that provide information
about the filters used.

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atomic objects to be
saved.

4.11.2 Example of use

See below a small example of CArray class. The code is available in examples/carray1.py.

import numarray
import tables

fileName = ’carray1.h5’
shape = (200,300)
atom = tables.UInt8Atom(shape = (128,128))
filters = tables.Filters(complevel=5, complib=’zlib’)



4.12. The EArray class 85

h5f = tables.openFile(fileName,’w’)
ca = h5f.createCArray(h5f.root, ’carray’, shape, atom, filters=filters)
# Fill a hyperslab in ca. The array will be converted to UInt8 elements
ca[10:60,20:70] = numarray.ones((50,50))
h5f.close()

# Re-open a read another hyperslab
h5f = tables.openFile(fileName)
print h5f
print h5f.root.carray[8:12, 18:22]
h5f.close()

The output for the previous script is something like:

carray1.h5 (File) ’’
Last modif.: ’Thu Jun 16 10:47:18 2005’
Object Tree:
/ (RootGroup) ’’
/carray (CArray(200L, 300L)) ’’

[[0 0 0 0]
[0 0 0 0]
[0 0 1 1]
[0 0 1 1]]

4.12 The EArray class

This is a child of the Array class (see 4.10) and as such, EArray represents an array on the file. The dif-
ference is that EArray allows to enlarge datasets along any single dimension1 you select. Another important
difference is that it also supports compression.

So, in addition to the attributes and methods that EArray inherits from Array, it supports a few more
that provide a way to enlarge the arrays on disk. Following are described the new variables and methods as
well as some that already exist in Array but that differ somewhat on the meaning and/or functionality in the
EArray context.

4.12.1 EArray instance variables

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atomic objects to be
saved. One of the dimensions of the shape is 0, meaning that the array can be extended along it.

extdim The enlargeable dimension, i.e. the dimension this array can be extended along.

nrows The length of the enlargeable dimension of the array.

4.12.2 EArray methods

getEnum()

Get the enumerated type associated with this array.
If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is

not of an enumerated type, a TypeError is raised.
1 In the future, multiple enlargeable dimensions might be implemented as well.



86 Chapter 4. Library Reference

append(sequence)

Appends a sequence to the underlying dataset. Obviously, this sequence must have the same type as the
EArray instance; otherwise a TypeError is issued. In the same way, the dimensions of the sequence
have to conform to those of EArray, that is, all the dimensions have to be the same except, of course, that of
the enlargeable dimension which can be of any length (even 0!).

Example of use (code available in examples/earray1.py):

import tables
from numarray import strings

fileh = tables.openFile("earray1.h5", mode = "w")
a = tables.StringAtom(shape=(0,), length=8)
# Use ’a’ as the object type for the enlargeable array
array_c = fileh.createEArray(fileh.root, ’array_c’, a, "Chars")
array_c.append(strings.array([’a’*2, ’b’*4], itemsize=8))
array_c.append(strings.array([’a’*6, ’b’*8, ’c’*10], itemsize=8))

# Read the string EArray we have created on disk
for s in array_c:

print "array_c[%s] => ’%s’" % (array_c.nrow, s)
# Close the file
fileh.close()

and the output is:

array_c[0] => ’aa’
array_c[1] => ’bbbb’
array_c[2] => ’aaaaaa’
array_c[3] => ’bbbbbbbb’
array_c[4] => ’cccccccc’

4.13 The VLArray class

Instances of this class represents array objects in the object tree with the property that their rows can have a
variable number of (homogeneous) elements (called atomic objects, or just atoms). Variable length arrays
(or VLA’s for short), similarly to Table instances, can have only one dimension, and likewise Table, the
compound elements (the atoms) of the rows of VLArrays can be fully multidimensional objects.

VLArray provides methods to read/write data from/to variable length array objects residents on disk.
Also, note that this object inherits all the public attributes and methods that Leaf already has.

4.13.1 VLArray instance variables

atom An Atom (see 4.16.3) instance representing the shape, type and flavor of the atomic objects to be
saved.

nrow On iterators, this is the index of the current row.

nrows The total number of rows.

4.13.2 VLArray methods

getEnum()

Get the enumerated type associated with this array.



4.13. The VLArray class 87

If this array is of an enumerated type, the corresponding Enum instance (see 4.17.4) is returned. If it is
not of an enumerated type, a TypeError is raised.

append(sequence, *objects)

Append objects in the sequence to the array.
This method appends the objects in the sequence to a single row in this array. The type of individual

objects must be compliant with the type of atoms in the array. In the case of variable length strings, the very
string to append is the sequence.

Example of use (code available in examples/vlarray1.py):

import tables
from numpy import * # or, from numarray import *

# Create a VLArray:
fileh = tables.openFile("vlarray1.h5", mode = "w")
vlarray = fileh.createVLArray(fileh.root, ’vlarray1’,
tables.Int32Atom(flavor="numpy"),

"ragged array of ints", Filters(complevel=1))
# Append some (variable length) rows:
vlarray.append(array([5, 6]))
vlarray.append(array([5, 6, 7]))
vlarray.append([5, 6, 9, 8])

# Now, read it through an iterator:
for x in vlarray:

print vlarray.name+"["+str(vlarray.nrow)+"]-->", x

# Close the file
fileh.close()

The output of the previous program looks like this:

vlarray1[0]--> [5 6]
vlarray1[1]--> [5 6 7]
vlarray1[2]--> [5 6 9 8]

The objects argument is only retained for backwards compatibility; please do not use it.

iterrows(start=None, stop=None, step=1)

Returns an iterator yielding one row per iteration. If a range is supplied (i.e. some of the start, stop or step
parameters are passed), only the appropriate rows are returned. Else, all the rows are returned. See also the
__iter__() special methods in section 4.13.3 for a shorter way to call this iterator.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

Example of use:

for row in vlarray.iterrows(step=4):
print vlarray.name+"["+str(vlarray.nrow)+"]-->", row



88 Chapter 4. Library Reference

read(start=None, stop=None, step=1)

Returns the actual data in VLArray. As the lengths of the different rows are variable, the returned value is a
python list, with as many entries as specified rows in the range parameters.

The meaning of the start, stop and step parameters is the same as in the range() python function, except
that negative values of step are not allowed. Moreover, if only start is specified, then stop will be set to
start+1. If you do not specify neither start nor stop, then all the rows in the object are selected.

4.13.3 VLArray special methods

Following are described the methods that automatically trigger actions when a VLArray in-
stance is accessed in a special way (e.g., vlarray[2:5] will be equivalent to a call to
vlarray.__getitem__(slice(2,5,None)).

__iter__()

It returns the same iterator than VLArray.iterrows(0,0,1). However, this does not accept parameters.
Example of use:

result = [ row for row in vlarray ]

Which is equivalent to:

result = [ row for row in vlarray.iterrows() ]

__getitem__(key)

It returns the slice of rows determined by key, which can be an integer index or an extended slice. The
returned value is a list of objects of type array.atom.type.

Example of use:

list1 = vlarray[4]
list2 = vlarray[4:1000:2]

__setitem__(keys, value)

Updates a vlarray row described by keys by setting it to value. Depending on the value of keys, the action
taken is different:

keys is an integer: It refers to the number of row to be modified. The value object must be type and shape
compatible with the object that exists in the vlarray row.

keys is a tuple: The first element refers to the row to be modified, and the second element to the range (so,
it can be an integer or an slice) of the row that will be updated. As above, the value object must be
type and shape compatible with the object specified in the vlarray row and range.

Note: When updating VLStrings (codification UTF-8) or Objects atoms, there is a problem: one
can only update values with exactly the same bytes than in the original row. With UTF-8 encoding this is
problematic because, for instance, ’c’ takes 1 byte, but ’ç’ takes two. The same applies when using Objects
atoms, because when cPickle applies to a class instance (for example), it does not guarantee to return the same
number of bytes than over other instance, even of the same class than the former. These facts effectively limit
the number of objects than can be updated in VLArrays.

Example of use:



4.14. The UnImplemented class 89

vlarray[0] = vlarray[0]*2+3
vlarray[99,3:] = arange(96)*2+3
# Negative values for start and stop (but not step) are supported
vlarray[99,-99:-89:2] = vlarray[5]*2+3

4.14 The UnImplemented class

Instances of this class represents an unimplemented dataset in a generic HDF5 file. When reading such a file
(i.e. one that has not been created with PyTables, but with some other HDF5 library based tool), chances
are that the specific combination of datatypes and/or dataspaces in some dataset might not be supported by
PyTables yet. In such a case, this dataset will be mapped into the UnImplemented class and hence, the
user will still be able to build the complete object tree of this generic HDF5 file, as well as enabling the access
(both read and write) of the attributes of this dataset and some metadata. Of course, the user won’t be able to
read the actual data on it.

This is an elegant way to allow users to work with generic HDF5 files despite the fact that some of its
datasets would not be supported by PyTables. However, if you are really interested in having access to an
unimplemented dataset, please, get in contact with the developer team.

This class does not have any public instance variables, except those inherited from the Leaf class
(see 4.5).

4.15 The AttributeSet class

Represents the set of attributes of a node (Leaf or Group). It provides methods to create new attributes, open,
rename or delete existing ones.

Like in Group instances, AttributeSet instances make use of the natural naming convention, i.e. you
can access the attributes on disk like if they were normal AttributeSet attributes. This offers the user a
very convenient way to access (but also to set and delete) node attributes by simply specifying them like a
normal attribute class.

Caveat emptor: All Python data types are supported. In particular, multidimensional numarray objects
are saved natively as multidimensional objects in the HDF5 file. Python strings are also saved natively as
HDF5 strings, and loaded back as Python strings. However, the rest of the data types including the Python
scalar ones (i.e. Int, Long and Float) and more general objects (like NumPy or Numeric) are serialized using
cPickle, so you will be able to correctly retrieve them only from a Python-aware HDF5 library. So, if
you want to save Python scalar values and be able to read them with generic HDF5 tools, you should make
use of scalar numarray objects (for example numarray.array(1, type=numarray.Int64)). In the
same way, attributes in HDF5 native files will be always mapped into numarray objects. Specifically, a
multidimensional attribute will be mapped into a multidimensional numarray and an scalar will be mapped
into a scalar numarray (for example, an attribute of type H5T_NATIVE_LLONG will be read and returned as
a numarray.array(X, type=numarray.Int64) scalar).

One more warning: because of the various potential difficulties in restoring a Python object stored in an
attribute, you may end up getting a cPickle string where a Python object is expected. If this is the case, you
may wish to run cPickle.loads() on that string to get an idea of where things went wrong, as shown in
this example:

>>> import tables
>>>
>>> class MyClass(object):
... foo = ’bar’
...
>>> # An object of my custom class.
... myObject = MyClass()



90 Chapter 4. Library Reference

>>>
>>> h5f = tables.openFile(’test.h5’, ’w’)
>>> h5f.root._v_attrs.obj = myObject # store the object
>>> print h5f.root._v_attrs.obj.foo # retrieve it
bar
>>> h5f.close()
>>>
>>> # Delete class of stored object and reopen the file.
... del MyClass, myObject
>>>
>>> h5f = tables.openFile(’test.h5’, ’r’)
>>> print h5f.root._v_attrs.obj.foo
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’str’ object has no attribute ’foo’
>>> # Let us inspect the object to see what is happening.
... print repr(h5f.root._v_attrs.obj)
’ccopy_reg\n_reconstructor\np1\n(c__main__\nMyClass\np2\nc__builtin__\nobject\np3\nNtRp4\n.’
>>> # Maybe unpickling the string will yield more information:
... import cPickle
>>> cPickle.loads(h5f.root._v_attrs.obj)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: ’module’ object has no attribute ’MyClass’
>>> # So the problem was not in the stored object,
... # but in the *environment* where it was restored.
... h5f.close()

4.15.1 AttributeSet instance variables

_v_node The parent node instance.

_v_attrnames List with all attribute names.

_v_attrnamessys List with system attribute names.

_v_attrnamesuser List with user attribute names.

4.15.2 AttributeSet methods

Note that this class defines the __setattr__, __getattr__ and __delattr__ and they work as nor-
mally intended. Any scalar (string, ints or floats) attribute is supported natively as an attribute. However,
(c)Pickle is automatically used so as to serialize other kind of objects (like lists, tuples, dicts, small
NumPy/Numeric/numarray objects, ...) that you might want to save. If an attribute is set on a target node that
already has a large number of attributes, a PerformanceWarning will be issued.

With these special methods, you can access, assign or delete attributes on disk by just using the next
constructs:

leaf.attrs.myattr = "str attr" # Set a string (native support)
leaf.attrs.myattr2 = 3 # Set an integer (native support)
leaf.attrs.myattr3 = [3,(1,2)] # A generic object (Pickled)
attrib = leaf.attrs.myattr # Get the attribute myattr
del leaf.attrs.myattr # Delete the attribute myattr



4.16. Declarative classes 91

_f_copy(where) Copy the user attributes (as well as certain system attributes) to where object. where has to
be a Group or Leaf instance.

_f_list(attrset = "user") Return a list of attribute names of the parent node. attrset selects the attribute set
to be used. A user value returns only the user attributes and this is the default. sys returns only the
system attributes. all returns both the system and user attributes.

_f_rename(oldattrname, newattrname) Rename an attribute.

4.16 Declarative classes

In this section a series of classes that are meant to declare datatypes that are required for primary PyTables
(like Table or VLArray ) objects are described.

4.16.1 The IsDescription class

This class is designed to be used as an easy, yet meaningful way to describe the properties of Table objects
through the definition of derived classes that inherit properties from it. In order to define such a class, you
must declare it as descendant of IsDescription, with as many attributes as columns you want in your table.
The name of each attribute will become the name of a column, and its value will hold a description of it.

Ordinary columns can be described using instances of the Col (see section 4.16.2) class. Nested columns
can be described by using classes derived from IsDescription or instances of it. Derived classes can be
declared in place (in which case the column takes the name of the class) or referenced by name, and they can
have a _v_pos special attribute which sets the position of the nested column among its sibling columns.

Once you have created a description object, you can pass it to the Table constructor, where all the
information it contains will be used to define the table structure. See the section 3.4 for an example on how
that works.

See below for a complete list of the special attributes that can be specified to complement the metadata of
an IsDescription class.

IsDescription special attributes

_v_flavor The flavor of the table. It can take "numarray" (default) or "numpy" values. This determines the
type of objects returned during input (i.e. read) operations.

_v_indexprops An instance of the IndexProps class (see section 4.17.2). You can use this to alter the
properties of the index creation process for a table.

_v_pos Sets the position of a possible nested column description among its sibling columns.

4.16.2 The Col class and its descendants

The Col class is used as a mean to declare the different properties of a table column. In addition, a series of
descendant classes are offered in order to make these column descriptions easier to the user. In general, it is
recommended to use these descendant classes, as they are more meaningful when found in the middle of the
code.

Col instance attributes

type The type class of the column.

stype The string type of the column.

recarrtype The string type, in RecArray format, of the column.

shape The shape of the column.



92 Chapter 4. Library Reference

itemsize The size of the base items. Specially useful for StringCol objects.

indexed Whether this column is meant to be indexed or not.

_v_pos The position of this column with regard to its column siblings.

_v_name The name of this column

_v_pathname The complete pathname of the column. This is mainly useful in nested columns; for non-
nested ones this value is the same a _v_name.

Col methods

None.

Col constructors

A description of the different constructors with their parameters follows:

Col(dtype="Float64", shape=1, dflt=None, pos=None, indexed=0) Declare the properties of a Table
column.

dtype The data type for the column. All types listed in appendix A are valid data types for columns.
The type description is accepted both in string-type format and as a numarray data type.

shape An integer or a tuple, that specifies the number of dtype items for each element (or shape, for
multidimensional elements) of this column. For CharType columns, the last dimension is used
as the length of the character strings. However, for this kind of objects, the use of StringCol
subclass is strongly recommended.

dflt The default value for elements of this column. If the user does not supply a value for an element
while filling a table, this default value will be written to disk. If the user supplies an scalar value
for a multidimensional column, this value is automatically broadcasted to all the elements in the
column cell. If dflt is not supplied, an appropriate zero value (or null string) will be chosen by
default. Please, note that all the default values are kept internally as numarray objects.

pos By default, columns are arranged in memory following an alpha-numerical order of the column
names. In some situations, however, it is convenient to impose a user defined ordering. pos
parameter allows the user to force the desired ordering.

indexed Whether this column should be indexed for better performance in table selections.

StringCol(length=None, dflt=None, shape=1, pos=None, indexed=0) Declare a column to be of type
CharType. The length parameter sets the length of the strings. The meaning of the other parame-
ters are like in the Col class.

BoolCol(dflt=0, shape=1, pos=None, indexed=0) Define a column to be of type Bool. The meaning of the
parameters are the same of those in the Col class.

IntCol(dflt=0, shape=1, itemsize=4, sign=1, pos=None, indexed=0) Declare a column to be of type
IntXX, depending on the value of itemsize parameter, that sets the number of bytes of the integers
in the column. sign determines whether the integers are signed or not. The meaning of the other
parameters are the same of those in the Col class.

This class has several descendants:

Int8Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type Int8.

UInt8Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type UInt8.

Int16Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type Int16.

UInt16Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type UInt16.



4.16. Declarative classes 93

Int32Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type Int32.
UInt32Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type UInt32.
Int64Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type Int64.
UInt64Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type UInt64.

FloatCol(dflt=0.0, shape=1, itemsize=8, pos=None, indexed=0) Define a column to be of type FloatXX,
depending on the value of itemsize. The itemsize parameter sets the number of bytes of the floats
in the column and the default is 8 bytes (double precision). The meaning of the other parameters are
the same as those in the Col class.

This class has two descendants:

Float32Col(dflt=0.0, shape=1, pos=None, indexed=0) Define a column of type Float32.
Float64Col(dflt=0.0, shape=1, pos=None, indexed=0) Define a column of type Float64.

ComplexCol(dflt=0.+0.j, shape=1, itemsize=16, pos=None) Define a column to be of type ComplexXX,
depending on the value of itemsize. The itemsize parameter sets the number of bytes of the
complex types in the column and the default is 16 bytes (double precision complex). The meaning of
the other parameters are the same as those in the Col class.

This class has two descendants:

Complex32Col(dflt=0.+0.j, shape=1, pos=None) Define a column of type Complex32.
Float64Col(dflt=0+0.j, shape=1, pos=None) Define a column of type Complex64.

ComplexCol columns and its descendants do not support indexation.

TimeCol(dflt=0, shape=1, itemsize=8, pos=None, indexed=0) Define a column to be of type Time. Two
kinds of time columns are supported depending on the value of itemsize: 4-byte signed integer and
8-byte double precision floating point columns (the default ones). The meaning of the other parameters
are the same as those in the Col class.

Time columns have a special encoding in the HFD5 file. See appendix A for more information on those
types.

This class has two descendants:

Time32Col(dflt=0, shape=1, pos=None, indexed=0) Define a column of type Time32.
Time64Col(dflt=0.0, shape=1, pos=None, indexed=0) Define a column of type Time64.

EnumCol(enum, dflt, dtype=’UInt32’, shape=1, pos=None, indexed=False) Description of a column of
an enumerated type.

Instances of this class describe a table column which stores enumerated values. Those values belong
to an enumerated type, defined by the first argument (enum) in the constructor of EnumCol, which
accepts the same kinds of arguments as Enum (see 4.17.4). The enumerated type is stored in the enum
attribute of the column.

A default value must be specified as the second argument (dflt) in the constructor; it must be the
name (a string) of one of the enumerated values in the enumerated type. Once the column is created,
the corresponding concrete value is stored in its dflt attribute. If the name does not match any value
in the enumerated type, a KeyError is raised.

A numarray data type might be specified in order to determine the base type used for storing the values
of enumerated values in memory and disk. The data type must be able to represent each and every
concrete value in the enumeration. If it is not, a TypeError is raised. The default base type is
unsigned 32-bit integer, which is sufficient for most cases.

The stype attribute of enumerated columns is always ’Enum’, while the type attribute is the data
type used for storing concrete values.

The shape, position and indexed attributes of the column are treated as with other column description
objects (see 4.16.2).



94 Chapter 4. Library Reference

4.16.3 The Atom class and its descendants.

The Atom class is a descendant of the Col class (see 4.16.2) and is meant to declare the different properties
of the base element (also known as atom) of CArray, EArray and VLArray objects. The Atom instances
have the property that their length is always the same. However, you can grow objects along the extensible
dimension in the case of EArray or put a variable number of them on a VLArray row. Moreover, the atoms
are not restricted to scalar values, and they can be fully multidimensional objects.

A series of descendant classes are offered in order to make the use of these element descriptions easier. In
general, it is recommended to use these descendant classes, as they are more meaningful when found in the
middle of the code.

Atom instance variables

In addition to the variables that it inherits from the Col class, it has the next additional attributes:

flavor The object representation for this atom. See below on constructors description for Atom class the
possible values it can take.

Atom methods

atomsize() Returns the total length, in bytes, of the element base atom. If its shape is has one zero element
on it (for use in EArrays, for example), this is replaced by an one in order to compute the atom size
correctly.

Atom constructors

A description of the different constructors with their parameters follows:

Atom(dtype="Float64", shape=1, flavor="numarray") Define properties for the base elements of
CArray, EArray and VLArray objects.

dtype The data type for the base element. See the appendix A for a relation of data types supported.
The type description is accepted both in string-type format and as a numarray data type.

shape In a EArray context, it is a tuple specifying the shape of the object, and one (and only one) of
its dimensions must be 0, meaning that the EArray object will be enlarged along this axis. In the
case of a VLArray, it can be an integer with a value of 1 (one) or a tuple, that specifies whether
the atom is an scalar (in the case of a 1) or has multiple dimensions (in the case of a tuple). For
CharType elements, the last dimension is used as the length of the character strings. However,
for this kind of objects, the use of StringAtom subclass is strongly recommended.

flavor The object representation for this atom. It can be any of "numarray", "numpy" or "python" for
the character types and "numarray", "numpy", "numeric" or "python" for the numerical types. If
specified, the read atoms will be converted to that specific flavor. If not specified, the atoms will
remain in their native format (i.e. numarray).

StringAtom(shape=1, length=None, flavor="numarray") Define an atom to be of CharType type. The
meaning of the shape parameter is the same as in the Atom class. length sets the length of the strings
atoms. flavor can be whether "numarray", "numpy" or "python". Unicode strings are not sup-
ported by this type; see the VLStringAtom class if you want Unicode support (only available for
VLAtom objects).

BoolAtom(shape=1, flavor="numarray") Define an atom to be of type Bool. The meaning of the param-
eters are the same of those in the Atom class.

IntAtom(shape=1, itemsize=4, sign=1, flavor="numarray") Define an atom to be of type IntXX, de-
pending on the value of itemsize parameter, that sets the number of bytes of the integers that conform
the atom. sign determines whether the integers are signed or not. The meaning of the other parameters
are the same of those in the Atom class.

This class has several descendants:



4.16. Declarative classes 95

Int8Atom(shape=1, flavor="numarray") Define an atom of type Int8.
UInt8Atom(shape=1, flavor="numarray") Define an atom of type UInt8.
Int16Atom(shape=1, flavor="numarray") Define an atom of type Int16.
UInt16Atom(shape=1, flavor="numarray") Define an atom of type UInt16.
Int32Atom(shape=1, flavor="numarray") Define an atom of type Int32.
UInt32Atom(shape=1, flavor="numarray") Define an atom of type UInt32.
Int64Atom(shape=1, flavor="numarray") Define an atom of type Int64.
UInt64Atom(shape=1, flavor="numarray") Define an atom of type UInt64.

FloatAtom(shape=1, itemsize=8, flavor="numarray") Define an atom to be of FloatXX type, depending
on the value of itemsize. The itemsize parameter sets the number of bytes of the floats in the atom
and the default is 8 bytes (double precision). The meaning of the other parameters are the same as those
in the Atom class.

This class has two descendants:

Float32Atom(shape=1, flavor="numarray") Define an atom of type Float32.
Float64Atom(shape=1, flavor="numarray") Define an atom of type Float64.

ComplexAtom(shape=1, itemsize=16, flavor="numarray") Define an atom to be of ComplexXX type,
depending on the value of itemsize. The itemsize parameter sets the number of bytes of the floats
in the atom and the default is 16 bytes (double precision complex). The meaning of the other parameters
are the same as those in the Atom class.

This class has two descendants:

Complex32Atom(shape=1, flavor="numarray") Define an atom of type Complex32.
Complex64Atom(shape=1, flavor="numarray") Define an atom of type Complex64.

TimeAtom(shape=1, itemsize=8, flavor="numarray") Define an atom to be of type Time. Two kinds of
time atoms are supported depending on the value of itemsize: 4-byte signed integer and 8-byte
double precision floating point atoms (the default ones). The meaning of the other parameters are the
same as those in the Atom class.

Time atoms have a special encoding in the HFD5 file. See appendix A for more information on those
types.

This class has two descendants:

Time32Atom(shape=1, flavor="numarray") Define an atom of type Time32.
Time64Atom(shape=1, flavor="numarray") Define an atom of type Time64.

EnumAtom(enum, dtype=’UInt32’, shape=1, flavor=’numarray’) Description of an atom of an enumer-
ated type.

Instances of this class describe the atom type used by an array to store enumerated values. Those values
belong to an enumerated type.

The meaning of the enum and dtype arguments is the same as in EnumCol (see 4.16.2). The shape
and flavor arguments have the usual meaning of other Atom classes (the flavor applies to the
representation of concrete read values).

Enumerated atoms also have stype and type attributes with the same values as in EnumCol.

Now, there come two special classes, ObjectAtom and VLString, that actually do not descend from
Atom, but which goal is so similar that they should be described here. The difference between them and
the Atom and descendants classes is that these special classes does not allow multidimensional atoms, nor
multiple values per row. A flavor can not be specified neither as it is immutable (see below).

Caveat emptor: You are only allowed to use these classes to create VLArray objects, not CArray and
EArray objects.



96 Chapter 4. Library Reference

ObjectAtom() This class is meant to fit any kind of object in a row of an VLArray instance by using
cPickle behind the scenes. Due to the fact that you can not foresee how long will be the output of the
cPickle serialization (i.e. the atom already has a variable length), you can only fit a representant of
it per row. However, you can still pass several parameters to the VLArray.append() method as they
will be regarded as a tuple of compound objects (the parameters), so that we still have only one object to
be saved in a single row. It does not accept parameters and its flavor is automatically set to "Object",
so the reads of rows always returns an arbitrary python object. You can regard ObjectAtom types as
an easy way to save an arbitrary number of generic python objects in a VLArray object.

VLStringAtom() This class describes a row of the VLArray class, rather than an atom. It differs from
the StringAtom class in that you can only add one instance of it to one specific row, i.e. the
VLArray.append() method only accepts one object when the base atom is of this type. Besides,
it supports Unicode strings (contrarily to StringAtom) because it uses the UTF-8 codification (this
is why its atomsize() method returns always 1) when serializing to disk. It does not accept any
parameter and because its flavor is automatically set to "VLString", the reads of rows always returns
a python string. See the appendix D.3.5 if you are curious on how this is implemented at the low-level.
You can regard VLStringAtom types as an easy way to save generic variable length strings.

See examples/vlarray1.py and examples/vlarray2.py for further examples on VLArrays,
including object serialization and Unicode string management.

4.17 Helper classes

In this section are listed classes that does not fit in any other section and that mainly serve for ancillary
purposes.

4.17.1 The Filters class

This class is meant to serve as a container that keeps information about the filter properties associated with
the enlargeable leaves, that is Table, EArray and VLArray as well as CArray.

The public variables of Filters are listed below:

complevel The compression level (0 means no compression).

complib The compression filter used (in case of compressed dataset).

shuffle Whether the shuffle filter is active or not.

fletcher32 Whether the fletcher32 filter is active or not.

There are no Filters public methods with the exception of the constructor itself that is described next.

Filters(complevel=0, complib="zlib", shuffle=1, fletcher32=0)

The parameters that can be passed to the Filters class constructor are:

complevel Specifies a compress level for data. The allowed range is 0-9. A value of 0 disables compres-
sion. The default is that compression is disabled, that balances between compression effort and CPU
consumption.

complib Specifies the compression library to be used. Right now, "zlib" (default), "lzo", "ucl" and
"bzip2" values are supported. See section 5.3 for some advice on which library is better suited to
your needs.

shuffle Whether or not to use the shuffle filter present in the HDF5 library. This is normally used to improve
the compression ratio (at the cost of consuming a little bit more CPU time). A value of 0 disables
shuffling and 1 makes it active. The default value depends on whether compression is enabled or not;
if compression is enabled, shuffling defaults to be active, else shuffling is disabled.



4.17. Helper classes 97

fletcher32 Whether or not to use the fletcher32 filter in the HDF5 library. This is used to add a checksum on
each data chunk. A value of 0 disables the checksum and it is the default.

Of course, you can also create an instance and then assign the ones you want to change. For example:

import numarray as na
from tables import *

fileh = openFile("test5.h5", mode = "w")
atom = Float32Atom(shape=(0,2))
filters = Filters(complevel=1, complib = "lzo")
filters.fletcher32 = 1
arr = fileh.createEArray(fileh.root, ’earray’, atom, "A growable array",

filters = filters)
# Append several rows in only one call
arr.append(na.array([[1., 2.],

[2., 3.],
[3., 4.]], type=na.Float32))

# Print information on that enlargeable array
print "Result Array:"
print repr(arr)

fileh.close()

This enforces the use of the LZO library, a compression level of 1 and a fletcher32 checksum filter as well.
See the output of this example:

Result Array:
/earray (EArray(3L, 2), fletcher32, shuffle, lzo(1)) ’A growable array’

type = Float32
shape = (3L, 2)
itemsize = 4
nrows = 3
extdim = 0
flavor = ’numarray’
byteorder = ’little’

4.17.2 The IndexProps class

You can use this class to set/unset the properties in the indexing process of a Table column. To use it, create
an instance, and assign it to the special attribute _v_indexprops in a table description class (see 4.16.1) or
dictionary.

The public variables of IndexProps are listed below:

auto Whether an existing index should be updated or not after a table append operation.

reindex Whether the table columns are to be re-indexed after an invalidating index operation.

filters The filter settings for the different Table indexes.

There are no IndexProps public methods with the exception of the constructor itself that is described
next.



98 Chapter 4. Library Reference

IndexProps(auto=1, reindex=1, filters=None)

The parameters that can be passed to the IndexProps class constructor are:

auto Specifies whether an existing index should be updated or not after a table append operation. The default
is enable automatic index updates.

reindex Specifies whether the table columns are to be re-indexed after an invalidating index operation (like
for example, after a Table.removeRows call). The default is to reindex after operations that invali-
date indexes.

filters Sets the filter properties for Column indexes. It has to be an instance of the Filters (see sec-
tion 4.17.1) class. A None value means that the default settings for the Filters object are selected.

4.17.3 The Index class

This class is used to keep the indexing information for table columns. It is actually a descendant of the Group
class, with some added functionality.

It has no methods intended for programmer’s use, but it has some attributes that maybe interesting for
him.

Index instance variables

column The column object this index belongs to.

type The type class for the index.

itemsize The size of the atomic items. Specially useful for columns of CharType type.

nelements The total number of elements in index.

dirty Whether the index is dirty or not.

filters The Filters (see section 4.17.1) instance for this index.

4.17.4 The Enum class

Each instance of this class represents an enumerated type. The values of the type must be declared exhaustively
and named with strings, and they might be given explicit concrete values, though this is not compulsory. Once
the type is defined, it can not be modified.

There are three ways of defining an enumerated type. Each one of them corresponds to the type of the
only argument in the constructor of Enum:

• Sequence of names: each enumerated value is named using a string, and its order is determined by its
position in the sequence; the concrete value is assigned automatically:

>>> boolEnum = Enum([’True’, ’False’])

• Mapping of names: each enumerated value is named by a string and given an explicit concrete value.
All of the concrete values must be different, or a ValueError will be raised.

>>> priority = Enum({’red’: 20, ’orange’: 10, ’green’: 0})
>>> colors = Enum({’red’: 1, ’blue’: 1})
Traceback (most recent call last):

...
ValueError: enumerated values contain duplicate concrete values: 1

• Enumerated type: in that case, a copy of the original enumerated type is created. Both enumerated
types are considered equal.



4.17. Helper classes 99

>>> prio2 = Enum(priority)
>>> priority == prio2
True

Please, note that names starting with _ are not allowed, since they are reserved for internal usage:

>>> prio2 = Enum([’_xx’])
Traceback (most recent call last):

...
ValueError: name of enumerated value can not start with ‘‘_‘‘: ’_xx’

The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enum
instance (see __getattr__()) or as an item (see __getitem__()). This allows comparisons between
enumerated values and assigning them to ordinary Python variables:

>>> redv = priority.red
>>> redv == priority[’red’]
True
>>> redv > priority.green
True
>>> priority.red == priority.orange
False

The name of the enumerated value corresponding to a concrete value can also be obtained by using the
__call__() method of the enumerated type. In this way you get the symbolic name to use it later with
__getitem__():

>>> priority(redv)
’red’
>>> priority.red == priority[priority(priority.red)]
True

(If you ask, the __getitem__() method is not used for this purpose to avoid ambiguity in the case of
using strings as concrete values.)

Special methods

__getitem__(name) Get the concrete value of the enumerated value with that name.

The name of the enumerated value must be a string. If there is no value with that name in the enumer-
ation, a KeyError is raised.

__getattr__(name) Get the concrete value of the enumerated value with that name.

The name of the enumerated value must be a string. If there is no value with that name in the enumer-
ation, an AttributeError is raised.

__contains__(name) Is there an enumerated value with that name in the type?

If the enumerated type has an enumerated value with that name, True is returned. Otherwise, False
is returned. The name must be a string.

This method does not check for concrete values matching a value in an enumerated type. For that,
please use the __call__() method.

__call__(value, *default) Get the name of the enumerated value with that concrete value.

If there is no value with that concrete value in the enumeration and a second argument is given as a
default, this is returned. Else, a ValueError is raised.

This method can be used for checking that a concrete value belongs to the set of concrete values in an
enumerated type.



100 Chapter 4. Library Reference

__len__() Return the number of enumerated values in the enumerated type.

__iter__() Iterate over the enumerated values.

Enumerated values are returned as (name, value) pairs in no particular order.

__eq__(other) Is the other enumerated type equivalent to this one?

Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the
same names and concrete values).

__repr__() Return the canonical string representation of the enumeration. The output of this method can be
evaluated to give a new enumeration object that will compare equal to this one.



... durch planmässiges Tattonieren.
[... through systematic, palpable

experimentation.]

—Johann Karl Friedrich Gauss
[asked how he came upon his theorems]

101

Chapter 5

Optimization tips

On this chapter, you will get deeper knowledge of PyTables internals. PyTables has several places
where the user can improve the performance of his application. If you are planning to deal with really large
data, you should read carefully this section in order to learn how to get an important efficiency boost for your
code. But if your dataset is small or medium size (say, up to 10 MB), you should not worry about that as the
default parameters in PyTables are already tuned to handle that perfectly.

5.1 Informing PyTables about expected number of rows in tables

The underlying HDF5 library that is used by PyTables allows for certain datasets (chunked datasets) to take
the data in bunches of a certain length, so-called chunks, to write them on disk as a whole, i.e. the HDF5
library treats chunks as atomic objects and disk I/O is always made in terms of complete chunks. This allows
data filters to be defined by the application to perform tasks such as compression, encryption, checksumming,
etc. on entire chunks.

An in-memory B-tree is used to map chunk structures on disk. The more chunks that are allocated for a
dataset the larger the B-tree. Large B-trees take memory and cause file storage overhead as well as more disk
I/O and higher contention for the metadata cache. Consequently, it’s important to balance between memory
and I/O overhead (small B-trees) and time to access data (big B-trees).

PyTables can determine an optimum chunk size to make B-trees adequate to your dataset size if you
help it by providing an estimation of the number of rows for a table. This must be made at table creation time
by passing this value to the expectedrows keyword of the createTable method (see 4.2.2).

When your table size is bigger than 10 MB (take this figure only as a reference, not strictly), by providing
this guess of the number of rows you will be optimizing the access to your data. When the table size is larger
than, say 100MB, you are strongly suggested to provide such a guess; failing to do that may cause your
application to do very slow I/O operations and to demand huge amounts of memory. You have been warned!

5.2 Accelerating your searches

If you are going to use a lot of searches like the next one:

row = table.row
result = [ row[’var2’] for row in table if row[’var1’] <= 20 ]

(for future reference, we will call this the standard selection mode) and you want to improve the time taken
to run it, keep reading.

5.2.1 In-kernel searches

PyTables provides a way to accelerate data selections when they are simple, i.e. when only a column is
implied in the selection process, through the use of the where iterator (see 4.6.2). We will call this mode of



102 Chapter 5. Optimization tips

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

T
im

e 
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables 
 (condition applied over Int32 values)

Standard
In-kernel
Indexed

Figure 5.1: Times for different selection modes over Int32 values. Benchmark made on a machine with Itanium (IA64)
@ 900 MHz processors with SCSI disk @ 10K RPM.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

T
im

e 
(s

ec
on

ds
)

Number of rows

Comparison between the different selection modes in PyTables 
 (condition applied over Float64 values)

Standard
In-kernel
Indexed

Figure 5.2: Times for different selection modes over Float64 values. Benchmark made on a machine with Itanium
(IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

selecting data in-kernel. Let’s see an example of in-kernel selection based on the standard selection mentioned
above:

row = table
result = [ row[’var2’] for row in table.where(table.cols.var1 <= 20)]

This simple change of mode selection can account for an improvement in search times up to a factor of 10
(see the figure 5.1).

So, where is the trick? It’s easy. In the standard selection mode the data for column var1 has to be
carried up to Python space so as to evaluate the condition and decide if the var2 value should be added to the
result list. On the contrary, in the in-kernel mode, the condition is passed to the PyTables kernel (hence
the name), written in C, and evaluated there at C speed (with some help of the numarray package), so that
the only values that are brought to the Python space are the references for rows that fulfilled the condition.



5.2. Accelerating your searches 103

You should note, however, that currently the where method only accepts conditions along a single col-
umn1. Fortunately, you can mix the in-kernel and standard selection modes for evaluating arbitrarily complex
conditions along several columns at once. Look at this example:

row = table
result = [ row[’var2’] for row in table.where(table.cols.var3 == "foo")

if row[’var1’] <= 20 ]

here, we have used a in-kernel selection to filter the rows whose var3 field is equal to string "foo". Then,
we apply a standard selection to complete the query.

Of course, when you mix the in-kernel and standard selection modes you should pass the most restrictive
condition to the in-kernel part, i.e. to the where iterator. In situations where it is not clear which is the most
restrictive condition, you might want to experiment a bit in order to find the best combination.

5.2.2 Indexed searches

When you need more speed than in-kernel selections can offer you, PyTables offers a third selection method,
the so-called indexed mode. In this mode, you have to decide which column(s) you are going to do your
selections on, and index them. Indexing is just a kind of sort operation, so that next searches along a column
will look at the sorted information using a binary search which is much faster than a sequential search.

You can index your selected columns in several ways:

Declaratively In this mode, you can declare a column as being indexed by passing the indexed parameter to
the column descriptor. That is:

class Example(IsDescription):
var1 = StringCol(length=4, dflt="", pos=1, indexed=1)
var2 = BoolCol(0, indexed=1, pos = 2)
var3 = IntCol(0, indexed=1, pos = 3)
var4 = FloatCol(0, indexed=0, pos = 4)

In this case, we are telling that var1, var2 and var3 columns will be indexed automatically when
you add rows to the table with this description.

Calling Column.createIndex() In this mode, you can create an index even on an already created table. For
example:

indexrows = table.cols.var1.createIndex()
indexrows = table.cols.var2.createIndex()
indexrows = table.cols.var3.createIndex()

will create indexes for all var1, var2 and var3 columns, and after doing that, they will behave as
regular indexes.

After you have indexed a column, you can proceed to use it through the use of Table.where method:

row = table
result = [ row[’var2’] for row in table.where(table.cols.var1 == "foo") ]

or, if you want to add more conditions, you can mix the indexed selection with a standard one:

row = table
result = [ row[’var2’] for row in table.where(table.cols.var3 <= 20)

if row[’var1’] == "foo" ]

1 PyTables Pro will address this shortcoming.



104 Chapter 5. Optimization tips

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1000  10000  100000  1e+06  1e+07  1e+08  1e+09

T
im

e 
(s

ec
on

ds
)

Number of rows

Index creation time

Figure 5.3: Times for indexing a couple of columns of data type Int32 and Float64. Benchmark made on a machine
with Itanium (IA64) @ 900 MHz processors with SCSI disk @ 10K RPM.

remember to pass the most restrictive condition to the where iterator.
You can see in figures 5.1 and 5.2 that indexing can accelerate quite a lot your data selections in tables.

For moderately large tables (> one million rows), you can get speedups in the order of 100x with regard to
in-kernel selections, and in the order of 1000x with regard to standard selections.

One important aspect of indexation in PyTables is that it has been implemented with the goal of being
capable to manage effectively very large tables. In figure 5.3, you can see that the times to index columns in
tables always grow linearly. In particular, the time to index a couple of columns with 1 billion of rows each
is 40 min. (roughly 20 min. each), which is a quite reasonable figure. This is because PyTables has chosen
an algorithm that does a partial sort of the columns in order to ensure that the indexing time grows linearly.
On the contrary, most of relational databases try to do a complete sort of columns, and this makes the time to
index grow much faster with the number of rows.

The fact that relational databases use a complete sorting algorithm for indexes means that their index
would be more effective (but not by a large extent) for searching purposes than the PyTables approach.
However, for relatively large tables (> 10 millions of rows) the time required for completing such a sort can
be so large, that indexing is not normally worth the effort. In other words, PyTables indexing scales much
better than relational databases. So don’t worry if you have extremely large columns to index: PyTables is
designed to cope with that perfectly.

5.3 Compression issues

One of the beauties of PyTables is that it supports compression on tables and arrays2, although it is not used
by default. Compression of big amounts of data might be a bit controversial feature, because compression
has a legend of being a very big consumer of CPU time resources. However, if you are willing to check
if compression can help not only by reducing your dataset file size but also by improving I/O efficiency,
specially when dealing with very large datasets, keep reading.

There is a common scenario where users need to save duplicated data in some record fields, while the
others have varying values. In a relational database approach such redundant data can normally be moved to
other tables and a relationship between the rows on the separate tables can be created. But that takes analysis
and implementation time, and makes the underlying libraries more complex and slower.

PyTables transparent compression allows the users to not worry about finding which is their optimum
strategy for data tables, but rather use less, not directly related, tables with a larger number of columns while

2 More precisely, it is supported in CArray, EArray and VLArray objects, but not in Array objects.



5.3. Compression issues 105

still not cluttering the database too much with duplicated data (compression is responsible to avoid that). As
a side effect, data selections can be made more easily because you have more fields available in a single
table, and they can be referred in the same loop. This process may normally end in a simpler, yet powerful
manner to process your data (although you should still be careful about in which kind of scenarios the use of
compression is convenient or not).

The compression library used by default is the Zlib (see Gailly and Adler). Since HDF5 requires it, you
can safely use it and expect that your HDF5 files will be readable on any other platform that has HDF5 libraries
installed. Zlib provides good compression ratio, although somewhat slow, and reasonably fast decompression.
Because of that, it is a good candidate to be used for compressing you data.

However, in some situations it is critical to have very good decompression speed (at the expense of lower
compression ratios or more CPU wasted on compression, as we will see soon). In others, the emphasis is put
in achieving the maximum compression ratios, no matter which reading speed will result. This is why support
for two additional compressors has been added to PyTables: LZO (see Oberhumer) and bzip2 (see Seward).
Following the author of LZO (and checked by the author of this section, as you will see soon), LZO offers
pretty fast compression (though a small compression ratio) and extremely fast decompression. In fact, LZO is
so fast when compressing/decompressing that it may well happen (that depends on your data, of course) that
writing or reading a compressed dataset is sometimes faster than if it is not compressed at all (specially when
dealing with extremely large datasets). This fact is very important, specially if you have to deal with very
large amounts of data. Regarding bzip2, it has a reputation of achieving excellent compression ratios, but at
the price of spending much more CPU time, which results in very low compression/decompression speeds.

Be aware that the LZO and bzip2 support in PyTables is not standard on HDF5, so if you are going to
use your PyTables files in other contexts different from PyTables you will not be able to read them. Still,
see the appendix C.2 (where the ptrepack utility is described) to find a way to free your files from LZO
or bzip2 dependencies, so that you can use these compressors locally with the warranty that you can replace
them with Zlib (or even remove compression completely) if you want to use these files with other HDF5 tools
or platforms afterwards.

In order to allow you to grasp what amount of compression can be achieved, and how this affects perfor-
mance, a series of experiments has been carried out. All the results presented in this section (and in the next
one) have been obtained with synthetic data and using PyTables 1.3. Also, the tests have been conducted on
a IBM OpenPower 720 (e-series) with a PowerPC G5 at 1.65 GHz and a hard disk spinning at 15K RPM. As
your data and platform may be totally different for your case, take this just as a guide because your mileage
will probably vary. Finally, and to be able to play with tables with a number of rows as large as possible, the
record size has been chosen to be small (16 bytes). Here is its definition:

class Bench(IsDescription):
var1 = StringCol(length=4)
var2 = IntCol()
var3 = FloatCol()

With this setup, you can look at the compression ratios that can be achieved in plot 5.4. As you can see,
LZO is the compressor that performs worse in this sense, but, curiosly enough, there is not much difference
between Zlib and bzip2.

Also, PyTables lets you select different compression levels for Zlib and bzip2, although you may get a
bit disappointed by the small improvement that show these compressors when dealing with a combination
of numbers and strings as in our example. As a reference, see plot 5.5 for a comparison of the compression
achieved by selecting different levels of Zlib. Very oddly, the best compression ratio corresponds to level 1 (!).
It’s difficult to explain that, but this lesson will serve to reaffirm that there is no replacement for experiments
with your own data. In general, it is recommended to select the lowest level of compression in order to achieve
best performance and decent (if not the best!) compression ratio. See later for more figures on this regard.

Have also a look at graph 5.6. It shows how the speed of writing rows evolves as the size (the row number)
of the table grows. Even though in these graphs the size of one single row is 16 bytes, you can most probably
extrapolate these figures to other row sizes.

In plot 5.7 you can see how compression affects the reading performance. In fact, what you see in the plot
is an in-kernel selection speed, but provided that this operation is very fast (see section 5.2.1), we can accept
it as an actual read test. Compared with the reference line without compression, the general trend here is that



106 Chapter 5. Optimization tips

Disk space taken by a record (original record size: 16 bytes)

103 104 105 106 107 108

Number of rows

5

10

15

20

25

30

B
y
te

s
/r

o
w

No compression

zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.4: Comparison between different compression libraries.

Disk space taken by a record (original record size: 16 bytes)

103 104 105 106 107 108

Number of rows

5

10

15

20

25

30

B
y
te

s
/r

o
w

No compression

zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.5: Comparison between different compression levels of Zlib.



5.3. Compression issues 107

Writing with small (16 bytes) record size

103 104 105 106 107 108

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R
o
w

s
/s

No compression

zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.6: Writing tables with several compressors.

LZO does not affect too much the reading performance (and in some points it is actually better), Zlib makes
speed to drop to a half, while bzip2 is performing very slow (up to 8x slower).

Also, in the same figure 5.7 you can notice some strange peaks in the speed that we might be tempted
to attribute to libraries on which PyTables relies (HDF5, compressors...), or to PyTables itself. However,
graph 5.8 reveals that, if we put the file in the filesystem cache (by reading it several times before, for exam-
ple), the evolution of the performance is much smoother. So, the most probable explanation would be that
such a peaks are a consequence of the underlying OS filesystem, rather than a flaw in PyTables (or any other
library behind it). Another consequence that can be derived from the above plot is that LZO decompression
performance is much better than Zlib, allowing an improvement in overal speed of more than 2x, and perhaps
more important, the read performance for really large datasets (i.e. when they do not fit in the OS filesystem
cache) can be actually better than not using compression at all. Finally, one can see that reading performance
is very badly affected when bzip2 is used (it is 10x slower than LZO and 4x than Zlib), but this is not too
strange anyway.

So, generally speaking and looking at the experiments above, you can expect that LZO will be the fastest
in both compressing and decompressing, but the one that achieves the worse compression ratio (although that
may be just OK for many situations, specially when used with the shuffle filter 5.4). bzip2 is the slowest, by
large, in both compressing and decompressing, and besides, it does not achieve any better compression ratio
than Zlib. Zlib represents a balance between them: it’s somewhat slow compressing (2x) and decompressing
(3x) than LZO, but it normally achieves fairly good compression ratios.

Finally, by looking at the plots 5.9, 5.10, and the aforementioned 5.5 you can see why the recommended
compression level to use for all compression libraries is 1. This is the lowest level of compression, but if
you take the approach suggested above, the redundant data is to be found normally in the same row, making
redundancy locality very high so that a small level of compression should be enough to achieve a good
compression ratio on your data tables, saving CPU cycles for doing other things. Nonetheless, in some
situations you may want to check for your own how the different compression levels affect your application.

You can select the compression library and level by setting the complib and complevel keywords in
the Filters class (see 4.17.1). A compression level of 0 will completely disable compression (the default),
1 is the less CPU time demanding level, while 9 is the maximum level and most CPU intensive. Finally,
have in mind that LZO is not accepting a compression level right now, so, when using LZO, 0 means that
compression is not active, and any other value means that LZO is active.

So, in conclusion, if your ultimate goal is writing and reading as fast as possible, choose LZO. If you
want to reduce as much as possible your data, while retaining acceptable read speed, choose Zlib. Finally, if
portability is important for you, Zlib is your best bet. So, when you want to use bzip2? Well, looking at the



108 Chapter 5. Optimization tips

Selecting with small (16 bytes) record size (file not in cache)

103 104 105 106 107 108

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
R
o
w

s
/s

No compression

zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.7: Selecting values in tables with several compressors. The file is not in the OS cache.

Selecting with small (16 bytes) record size (file in cache)

103 104 105 106 107 108

Number of rows

0

2

4

6

8

10

12

14

16

M
R
o
w

s
/s

No compression

zlib lvl1
lzo lvl1
bzip2 lvl1

Figure 5.8: Selecting values in tables with several compressors. The file is in the OS cache.



5.4. Shuffling (or how to make the compression process more effective) 109

Writing with small (16 bytes) record size

103 104 105 106 107 108

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R
o
w

s
/s

No compression

zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.9: Writing in tables with different levels of compression.

Selecting with small (16 bytes) record size (file in cache)

103 104 105 106 107 108

Number of rows

0

2

4

6

8

10

12

14

16

M
R
o
w

s
/s

No compression

zlib lvl1
zlib lvl3
zlib lvl6
zlib lvl9

Figure 5.10: Selecting values in tables with different levels of compression. The file is in the OS cache.

results, it is difficult to recommend its use in general, but you may want to experiment with it in those cases
where you know that it is well suited for your data pattern (for example, for dealing with repetitive string
datasets).

5.4 Shuffling (or how to make the compression process more
effective)

The HDF5 library provides an interesting filter that can leverage the results of your favorite compressor. Its
name is shuffle, and because it can greatly benefit compression and it does not take many CPU resources (see
below for a justification), it is active by default in PyTables whenever compression is activated (indepen-



110 Chapter 5. Optimization tips

Disk space taken by a record (original record size: 16 bytes)

103 104 105 106 107 108

Number of rows

0

5

10

15

20

25

30

B
y
te

s
/r

o
w

No compression

zlib lvl1
zlib lvl1 (Shuffle)

lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.11: Comparison between different compression libraries with and without the shuffle filter.

dently of the chosen compressor). It is of course deactivated when compression is off (which is the default,
as you already should know). Of course, you can deactivate it if you want, but this is not recommended.

So, how exactly works this mysterious filter? From the HDF5 reference manual: “The shuffle filter de-
interlaces a block of data by reordering the bytes. All the bytes from one consistent byte position of each
data element are placed together in one block; all bytes from a second consistent byte position of each data
element are placed together a second block; etc. For example, given three data elements of a 4-byte datatype
stored as 012301230123, shuffling will re-order data as 000111222333. This can be a valuable step in an
effective compression algorithm because the bytes in each byte position are often closely related to each other
and putting them together can increase the compression ratio. ”

In graph 5.11 you can see a benchmark that shows how the shuffle filter can help the different libraries in
compressing data. In this experiment, shuffle has made LZO to compress almost 3x more (!), while Zlib and
bzip2 are seeing improvements of 2x. Once again, the data for this experiment is synthetic, and shuffle seems
to do a great work with it, but in general, the results will vary in each case3.

At any rate, the most remarkable fact about the shuffle filter is the relatively high level of compression
that compressor filters can achieve when used in combination with it. A curious thing to note is that the
Bzip2 compression rate does not seem very much improved (less than a 40%), and what is more striking,
Bzip2+shuffle does compress quite less than Zlib+shuffle or LZO+shuffle combinations, which is kind of
unexpected. The thing that seems clear is that Bzip2 is not very good at compressing patterns that result of
shuffle application. As always, you may want to experiment with your own data before widely applying the
Bzip2+shuffle combination in order to avoid surprises.

Now, how does shuffling affect performance? Well, if you look at plots 5.12, 5.13 and 5.14, you
will get a somewhat unexpected (but pleasant) surprise. Roughly, shuffle makes the writing process (shuf-
fling+compressing) faster (aproximately a 15% for LZO, 30% for Bzip2 and a 80% for Zlib), which is
an interesting result by itself. But perhaps more exciting is the fact that the reading process (unshuf-
fling+decompressing) is also accelerated by a similar extent (a 20% for LZO, 60% for Zlib and a 75% for
Bzip2, roughly).

You may wonder why introducing another filter in the write/read pipelines does effectively accelerate
the throughput. Well, maybe data elements are more similar or related column-wise than row-wise, i.e.
contiguous elements in the same column are more alike, so shuffling makes the job of the compressor easier
(faster) and more effective (greater ratios). As a side effect, compressed chunks do fit better in the CPU cache

3 Some users reported that the typical improvement with real data is between a factor 1.5x and 2.5x over the already compressed
datasets.



5.4. Shuffling (or how to make the compression process more effective) 111

Writing with small (16 bytes) record size

103 104 105 106 107 108

Number of rows

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
R
o
w

s
/s

No compression

zlib lvl1
zlib lvl1 (Shuffle)

lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.12: Writing with different compression libraries with and without the shuffle filter.

Selecting with small (16 bytes) record size (file not in cache)

103 104 105 106 107 108

Number of rows

0

1

2

3

4

5

6

7

M
R
o
w

s
/s

No compression

zlib lvl1 (Shuffle)

lzo lvl1 (Shuffle)

bzip2 lvl1 (Shuffle)

Figure 5.13: Reading with different compression libraries with the shuffle filter. The file is not in OS cache.



112 Chapter 5. Optimization tips

Selecting with small (16 bytes) record size (file in cache)

103 104 105 106 107 108

Number of rows

0

2

4

6

8

10

12

14

16

M
R
o
w

s
/s

No compression

zlib lvl1
zlib lvl1 (Shuffle)

lzo lvl1
lzo lvl1 (Shuffle)

bzip2 lvl1

bzip2 lvl1 (Shuffle)

Figure 5.14: Reading with different compression libraries with and without the shuffle filter. The file is in OS cache.

(at least, the chunks are smaller!) so that the process of unshuffle/decompress can make a better use of the
cache (i.e. reducing the number of CPU cache faults).

So, given the potential gains (faster writing and reading, but specially much improved compression level),
it is a good thing to have such a filter enabled by default in the battle for discovering redundancy when you
want to compress your data, just as PyTables does.

5.5 Using Psyco

Psyco (see Rigo) is a kind of specialized compiler for Python that typically accelerates Python applications
with no change in source code. You can think of Psyco as a kind of just-in-time (JIT) compiler, a little bit
like Java’s, that emits machine code on the fly instead of interpreting your Python program step by step. The
result is that your unmodified Python programs run faster.

Psyco is very easy to install and use, so in most scenarios it is worth to give it a try. However, it only runs
on Intel 386 architectures, so if you are using other architectures, you are out of luck (at least until Psyco will
support yours).

As an example, imagine that you have a small script that reads and selects data over a series of datasets,
like this:

def readFile(filename):
"Select data from all the tables in filename"

fileh = openFile(filename, mode = "r")
result = []
for table in fileh("/", ’Table’):
result = [ p[’var3’] for p in table if p[’var2’] <= 20 ]

fileh.close()
return result

if __name__=="__main__":
print readFile("myfile.h5")



5.6. Getting the most from the node LRU cache 113

 0

 50

 100

 150

 200

 250

 1000  10000  100000  1e+06  1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Writing with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.15: Writing tables with/without Psyco.

In order to accelerate this piece of code, you can rewrite your main program to look like:

if __name__=="__main__":
import psyco
psyco.bind(readFile)
print readFile("myfile.h5")

That’s all!. From now on, each time that you execute your Python script, Psyco will deploy its sophisti-
cated algorithms so as to accelerate your calculations.

You can see in the graphs 5.15 and 5.16 how much I/O speed improvement you can get by using Psyco.
By looking at this figures you can get an idea if these improvements are of your interest or not. In general, if
you are not going to use compression you will take advantage of Psyco if your tables are medium sized (from
a thousand to a million rows), and this advantage will disappear progressively when the number of rows grows
well over one million. However if you use compression, you will probably see improvements even beyond
this limit (see section 5.3). As always, there is no substitute for experimentation with your own dataset.

5.6 Getting the most from the node LRU cache

Starting from PyTables 1.2 on, it has been introduced a new LRU cache that prevents from loading all the
nodes of the object tree in memory. This cache is responsible of loading just up to a certain amount of nodes
and discard the least recent used ones when there is a need to load new ones. This represents a big advantage
over the old schema, specially in terms of memory usage (as there is no need to load every node in memory),
but it also adds very convenient optimizations for working interactively like, for example, speeding-up the
opening times of files with lots of nodes, allowing to open almost any kind of file in typically less than one
tenth of second (compare this with the more than 10 seconds for files with more than 10000 nodes in PyTables
pre-1.2 era). See Altet and Vilata for more info on the advantages (and also drawbacks) of this approach.

One thing that deserves some discussion is the election of the parameter that sets the maximum amount
of nodes to be held in memory at any time. As PyTables is meant to be deployed in machines that have
potentially low memory, the default for it is quite conservative (you can look at its actual value in the
NODE_CACHE_SIZE parameter in module tables/constants.py). However, if you usually have to
deal with files that have much more nodes than the maximum default, and you have a lot of free memory in
your system, then you may want to experiment which is the appropriate value of NODE_CACHE_SIZE that
fits better your needs.



114 Chapter 5. Optimization tips

 0

 200

 400

 600

 800

 1000

 1200

 1000  10000  100000  1e+06  1e+07

S
pe

ed
 (

K
ro

w
/s

)

Number of rows

Selecting with medium record size (56 bytes)

No Psyco
Psyco

Figure 5.16: Reading tables with/without Psyco.

Table 5.1: Retrieving speed and memory consumption dependency of the number of nodes in LRU cache.

100 nodes 1000 nodes

Memory (MB) Time (ms) Memory (MB) Time (ms)

Node is coming from... Cache size 256 1024 256 1024 256 1024 256 1024

From disk 14 14 1.24 1.24 51 66 1.33 1.31
From cache 14 14 0.53 0.52 65 73 1.35 0.68

As an example, look at the next code:

def browse_tables(filename):
fileh = openFile(filename,’a’)
group = fileh.root.newgroup
for j in range(10):
for tt in fileh.walkNodes(group, "Table"):

title = tt.attrs.TITLE
for row in tt:

pass
fileh.close()

We will be running the code above against a couple of files having a /newgroup containing 100 tables
and 1000 tables respectively. We will run this small benchmark for different values of the LRU cache size,
namely 256 and 1024. You can see the results in table 5.1.

From the data in table 5.1, one can see that, when the number of objects that you are dealing with does
fit in cache, you will get better access times to them. Also, incrementing the node cache size does effectively
consumes more memory only if the total nodes exceeds the slots in cache; otherwise the memory consumption
remains the same. It is also worth noting that incrementing the node cache size in the case you want to fit all
your nodes in cache, it does not take much more memory than keeping too conservative. On another hand,
it might happen that the speed-up that you can achieve by allocating more slots in your cache maybe is not
worth the amount of memory used.

Anyway, if you feel that this issue is important for you, setup your own experiments and proceed fine-
tuning the NODE_CACHE_SIZE parameter.



5.7. Selecting an User Entry Point (UEP) in your tree 115

Table2

Group1 Group2

Table1

Root

Group3

Table4 Table5 Array2

Array1

Figure 5.17: Complete tree in file test.h5, and subtree of interest for the user.

Table4 Table5 Array2

Root

Figure 5.18: Resulting object tree derived from the use of the rootUEP parameter.

5.7 Selecting an User Entry Point (UEP) in your tree

Note: After the introduction of the new object tree cache in PyTables 1.2, this feature is not very useful
anymore and might become deprecated in future versions.

If you have a huge tree in your data file with many nodes on it, creating the object tree would take long
time. Many times, however, you are interested only in access to a part of the complete tree, so you won’t
strictly need PyTables to build the entire object tree in-memory, but only the interesting part.

This is where the rootUEP parameter of openFile function (see 4.1.2) can be helpful. Imagine that you
have a file called "test.h5" with the associated tree that you can see in figure 5.17, and you are interested
only in the section marked in red. You can avoid the build of all the object tree by saying to openFile that
your root will be the /Group2/Group3 group. That is:

fileh = openFile("test.h5", rootUEP="/Group2/Group3")

As a result, the actual object tree built will be like the one that can be seen in figure 5.18.
Of course this has been a simple example and the use of the rootUEP parameter was not very necessary.

But when you have thousands of nodes on a tree, you will certainly appreciate the rootUEP parameter.

5.8 Compacting your PyTables files

Let’s suppose that you have a file on which you have made a lot of row deletions on one or more tables,
or deleted many leaves or even entire subtrees. These operations might leave holes (i.e. space that is not
used anymore) in your files, that may potentially affect not only the size of the files but, more importantly, the



116 Chapter 5. Optimization tips

performance of I/O. This is because when you delete a lot of rows on a table, the space is not automatically re-
covered on-the-flight. In addition, if you add many more rows to a table than specified in the expectedrows
keyword in creation time this may affect performance as well, as explained in section 5.1.

In order to cope with these issues, you should be aware that a handy PyTables utility called ptrepack
can be very useful, not only to compact your already existing leaky files, but also to adjust some internal
parameters (both in memory and in file) in order to create adequate buffer sizes and chunk sizes for optimum
I/O speed. Please, check the appendix C.2 for a brief tutorial on its use.

Another thing that you might want to use ptrepack for is changing the compression filters or compres-
sion levels on your existing data for different goals, like checking how this can affect both final size and I/O
performance, or getting rid of the optional compressors like LZO, UCL or bzip2 in your existing files in case
you want to use them with generic HDF5 tools that do not have support for these filters.



117

Part II

Complementary modules





119

Chapter 6

FileNode - simulating a filesystem with
PyTables

6.1 What is FileNode?

FileNode is a module which enables you to create a PyTables database of nodes which can be used like
regular opened files in Python. In other words, you can store a file in a PyTables database, and read and
write it as you would do with any other file in Python. Used in conjunction with PyTables hierarchical
database organization, you can have your database turned into an open, extensible, efficient, high capacity,
portable and metadata-rich filesystem for data exchange with other systems (including backup purposes).

Between the main features of FileNode, one can list:

• Open: Since it relies on PyTables, which in turn, sits over HDF5 (see NCSA), a standard hierarchical
data format from NCSA.

• Extensible: You can define new types of nodes, and their instances will be safely preserved (as are
normal groups, leafs and attributes) by PyTables applications having no knowledge of their types.
Moreover, the set of possible attributes for a node is not fixed, so you can define your own node at-
tributes.

• Efficient: Thanks to PyTables’ proven extreme efficiency on handling huge amounts of data. FileNode
can make use of PyTables’ on-the-fly compression and decompression of data.

• High capacity: Since PyTables and HDF5 are designed for massive data storage (they use 64-bit ad-
dressing even where the platform does not support it natively).

• Portable: Since the HDF5 format has an architecture-neutral design, and the HDF5 libraries and PyTa-
bles are known to run under a variety of platforms. Besides that, a PyTables database fits into a single
file, which poses no trouble for transportation.

• Metadata-rich: Since PyTables can store arbitrary key-value pairs (even Python objects!) for every
database node. Metadata may include authorship, keywords, MIME types and encodings, ownership
information, access control lists (ACL), decoding functions and anything you can imagine!

6.2 Finding a FileNode node

FileNode nodes can be recognized because they have a NODE_TYPE system attribute with a ’file’ value.
It is recommended that you use the getNodeAttr() method (see 4.2.2) of tables.File class to get the
NODE_TYPE attribute independently of the nature (group or leaf) of the node, so you do not need to care
about.



120 Chapter 6. FileNode - simulating a filesystem with PyTables

6.3 FileNode - simulating files inside PyTables

The FileNode module is part of the nodes sub-package of PyTables. The recommended way to import
the module is:

>>> from tables.nodes import FileNode

However, FileNode exports very few symbols, so you can import * for interactive usage. In fact, you
will most probably only use the NodeType constant and the newNode() and openNode() calls.

The NodeType constant contains the value that the NODE_TYPE system attribute of a node file is ex-
pected to contain (’file’, as we have seen). Although this is not expected to change, you should use
FileNode.NodeType instead of the literal ’file’ when possible.

newNode() and openNode() are the equivalent to the Python file() call (alias open()) for ordinary
files. Their arguments differ from that of file(), but this is the only point where you will note the difference
between working with a node file and working with an ordinary file.

For this little tutorial, we will assume that we have a PyTables database opened for writing. Also,
if you are somewhat lazy at typing sentences, the code that we are going to explain is included in the
examples/filenodes1.py file.

You can create a brand new file with these sentences:

>>> import tables
>>> h5file = tables.openFile(’fnode.h5’, ’w’)

6.3.1 Creating a new file node

Creation of a new file node is achieved with the newNode() call. You must tell it in which PyTables
file you want to create it, where in the PyTables hierarchy you want to create the node and which
will be its name. The PyTables file is the first argument to newNode(); it will be also called the
’host PyTables file’. The other two arguments must be given as keyword arguments where and
name, respectively. As a result of the call, a brand new appendable and readable file node object is returned.

So let us create a new node file in the previously opened h5file PyTables file, named ’fnode_test’
and placed right under the root of the database hierarchy. This is that command:

>>> fnode = FileNode.newNode(h5file, where=’/’, name=’fnode_test’)

That is basically all you need to create a file node. Simple, isn’t it? From that point on, you can use
fnode as any opened Python file (i.e. you can write data, read data, lines of text and so on).

newNode() accepts some more keyword arguments. You can give a title to your file with the title
argument. You can use PyTables’ compression features with the filters argument. If you know before-
hand the size that your file will have, you can give its final file size in bytes to the expectedsize argument
so that the PyTables library would be able to optimize the data access.

newNode() creates a PyTables node where it is told to. To prove it, we will try to get the NODE_TYPE
attribute from the newly created node.

>>> print h5file.getNodeAttr(’/fnode_test’, ’NODE_TYPE’)
file

6.3.2 Using a file node

As stated above, you can use the new node file as any other opened file. Let us try to write some text in and
read it.



6.3. FileNode - simulating files inside PyTables 121

>>> print >> fnode, "This is a test text line."
>>> print >> fnode, "And this is another one."
>>> print >> fnode
>>> fnode.write("Of course, file methods can also be used.")
>>>
>>> fnode.seek(0) # Go back to the beginning of file.
>>>
>>> for line in fnode:
... print repr(line)
’This is a test text line.\n’
’And this is another one.\n’
’\n’
’Of course, file methods can also be used.’

This was run on a Unix system, so newlines are expressed as ’\n’. In fact, you can override the line
separator for a file by setting its lineSeparator property to any string you want.

While using a file node, you should take care of closing it before you close the PyTables host file.
Because of the way PyTables works, your data it will not be at a risk, but every operation you execute
after closing the host file will fail with a ValueError. To close a file node, simply delete the corresponding
reference it or call its close() method.

>>> fnode.close()
>>> print fnode.closed
True

6.3.3 Opening an existing file node

If you have a file node that you created using newNode(), you can open it later by calling openNode().
Its arguments are similar to that of file() or open(): the first argument is the PyTables node that you
want to open (i.e. a node with a NODE_TYPE attribute having a ’file’ value), and the second argument is a
mode string indicating how to open the file. Contrary to file(), openNode() can not be used to create a
new file node.

File nodes can be opened in read-only mode (’r’) or in read-and-append mode (’a+’). Reading from
a file node is allowed in both modes, but appending is only allowed in the second one. Just like Python files
do, writing data to an appendable file places it after the file pointer if it is on or beyond the end of the file, or
otherwise after the existing data. Let us see an example:

>>> node = h5file.root.fnode_test
>>> fnode = FileNode.openNode(node, ’a+’)
>>> print repr(fnode.readline())
’This is a test text line.\n’
>>> print fnode.tell()
26
>>> print >> fnode, "This is a new line."
>>> print repr(fnode.readline())
’’

Of course, the data append process places the pointer at the end of the file, so the last readline() call
hit EOF. Let us seek to the beginning of the file to see the whole contents of our file.

>>> fnode.seek(0)
>>> for line in fnode:
... print repr(line)



122 Chapter 6. FileNode - simulating a filesystem with PyTables

’This is a test text line.\n’
’And this is another one.\n’
’\n’
’Of course, file methods can also be used.This is a new line.\n’

As you can check, the last string we wrote was correctly appended at the end of the file, instead of
overwriting the second line, where the file pointer was positioned by the time of the appending.

6.3.4 Adding metadata to a file node

You can associate arbitrary metadata to any open node file, regardless of its mode, as long as the host
PyTables file is writable. Of course, you could use the setNodeAttr() method of tables.File to
do it directly on the proper node, but FileNode offers a much more comfortable way to do it. FileNode
objects have an attrs property which gives you direct access to their corresponding AttributeSet object.

For instance, let us see how to associate MIME type metadata to our file node:

>>> fnode.attrs.content_type = ’text/plain; charset=us-ascii’

As simple as A-B-C. You can put nearly anything in an attribute, which opens the way to authorship,
keywords, permissions and more. Moreover, there is not a fixed list of attributes. However, you should avoid
names in all caps or starting with ’_’, since PyTables and FileNode may use them internally. Some valid
examples:

>>> fnode.attrs.author = "Ivan Vilata i Balaguer"
>>> fnode.attrs.creation_date = ’2004-10-20T13:25:25+0200’
>>> fnode.attrs.keywords_en = ["FileNode", "test", "metadata"]
>>> fnode.attrs.keywords_ca = ["FileNode", "prova", "metadades"]
>>> fnode.attrs.owner = ’ivan’
>>> fnode.attrs.acl = {’ivan’: ’rw’, ’@users’: ’r’}

You can check that these attributes get stored by running the ptdump command on the host PyTables
file:

$ ptdump -a fnode.h5:/fnode_test
/fnode_test (EArray(113,)) ’’
/fnode_test.attrs (AttributeSet), 14 attributes:
[CLASS := ’EARRAY’,
EXTDIM := 0,
FLAVOR := ’numarray’,
NODE_TYPE := ’file’,
NODE_TYPE_VERSION := 2,
TITLE := ’’,
VERSION := ’1.2’,
acl := {’ivan’: ’rw’, ’@users’: ’r’},
author := ’Ivan Vilata i Balaguer’,
content_type := ’text/plain; charset=us-ascii’,
creation_date := ’2004-10-20T13:25:25+0200’,
keywords_ca := [’FileNode’, ’prova’, ’metadades’],
keywords_en := [’FileNode’, ’test’, ’metadata’],
owner := ’ivan’]

Note that FileNodemakes no assumptions about the meaning of your metadata, so its handling is entirely
left to your needs and imagination.



6.4. Complementary notes 123

6.4 Complementary notes

You can use FileNode objects and PyTables groups to mimic a filesystem with files and directories. Since
you can store nearly anything you want as file metadata, this enables you to use a PyTables file as a portable
compressed backup, even between radically different platforms. However, you may need to devise some
strategy to represent special files such as devices, sockets and such (not necessarily using FileNode).

We are eager to hear your opinion about FileNode and its potential uses. Suggestions to improve
FileNode and create other node types are also welcome. Do not hesitate to contact us!

6.5 Current limitations

FileNode is still a young piece of software, so it lacks some functionality. This is a list of known current
limitations:

1. Node files can only be opened for read-only or read and append mode. This will be enhanced in the
future.

2. There is no universal newline support yet. This is likely to be implemented in a near future.

3. Sparse files (files with lots of zeros) are not treated specially; if you want them to take less space, you
should be better off using compression.

4. Node file and attribute names are constrained to valid PyTables node names, which happen to be
more or less those accepted by Unix filesystems (see 4.4).

These limitations still make FileNode entirely adequate to work with most binary and text files. Of
course, suggestions and patches are welcome.

6.6 FileNode module reference

6.6.1 Global constants

NodeType Value for NODE_TYPE node system attribute.

NodeTypeVersions Supported values for NODE_TYPE_VERSION node system attribute.

6.6.2 Global functions

newNode(h5file, where, name, title="", filters=None, expectedsize=1000)

Creates a new file node object in the specified PyTables file object. Additional named arguments where and
name must be passed to specify where the file node is to be created. Other named arguments such as title
and filters may also be passed. The special named argument expectedsize, indicating an estimate of
the file size in bytes, may also be passed. It returns the file node object.

openNode(node, mode = ’r’)

Opens an existing file node. Returns a file node object from the existing specified PyTables node. If mode is
not specified or it is ’r’, the file can only be read, and the pointer is positioned at the beginning of the file. If
mode is ’a+’, the file can be read and appended, and the pointer is positioned at the end of the file.



124 Chapter 6. FileNode - simulating a filesystem with PyTables

6.6.3 The FileNode abstract class

This is the ancestor of ROFileNode and RAFileNode (see below). Instances of these classes are returned
when newNode() or openNode() are called. It represents a new file node associated with a PyTables
node, providing a standard Python file interface to it.

This abstract class provides only an implementation of the reading methods needed to implement a file-
like object over a PyTables node. The attribute set of the node becomes available via the attrs property.
You can add attributes there, but try to avoid attribute names in all caps or starting with ’_’, since they may
clash with internal attributes.

The node used as storage is also made available via the read-only attribute node. Please do not tamper
with this object unless unavoidably, since you may break the operation of the file node object.

The lineSeparator property contains the string used as a line separator, and defaults to os.linesep.
It can be set to any reasonably-sized string you want.

The constructor sets the closed, softspace and _lineSeparator attributes to their initial values,
as well as the node attribute to None. Sub-classes should set the node, mode and offset attributes.

Version 1 implements the file storage as a UInt8 uni-dimensional EArray.

FileNode methods

getLineSeparator() Returns the line separator string.

setLineSeparator() Sets the line separator string.

getAttrs() Returns the attribute set of the file node.

close() Flushes the file and closes it. The node attribute becomes None and the attrs property becomes no
longer available.

next() Returns the next line of text. Raises StopIteration when lines are exhausted. See
file.next.__doc__ for more information.

read(size=None) Reads at most size bytes. See file.read.__doc__ for more information

readline(size=-1) Reads the next text line. See file.readline.__doc__ for more information

readlines(sizehint=-1) Reads the text lines. See file.readlines.__doc__ for more information.

seek(offset, whence=0) Moves to a new file position. See file.seek.__doc__ for more information.

tell() Gets the current file position. See file.tell.__doc__ for more information.

xreadlines() For backward compatibility. See file.xreadlines.__doc__ for more information.

6.6.4 The ROFileNode class

Instances of this class are returned when openNode() is called in read-only mode (’r’). This is a descen-
dant of FileNode class, so it inherits all its methods. Moreover, it does not define any other useful method,
just some protections against users intents to write on file.

6.6.5 The RAFileNode class

Instances of this class are returned when either newNode() is called or when openNode() is called in
append mode (’a+’). This is a descendant of FileNode class, so it inherits all its methods. It provides
additional methods that allow to write on file nodes.

flush() Flushes the file node. See file.flush.__doc__ for more information.

truncate(size=None) Truncates the file node to at most size bytes. Currently, this method only makes sense
to grow the file node, since data can not be rewritten nor deleted. See file.truncate.__doc__ for
more information.



6.6. FileNode module reference 125

write(string) Writes the string to the file. Writing an empty string does nothing, but requires the file to be
open. See file.write.__doc__ for more information.

writelines(sequence) Writes the sequence of strings to the file. See file.writelines.__doc__ for
more information.





127

Chapter 7

NetCDF - a PyTables NetCDF3
emulation API

7.1 What is NetCDF?

The netCDF format is a popular format for binary files. It is portable between machines and self-describing,
i.e. it contains the information necessary to interpret its contents. A free library provides convenient
access to these files (see Davis et al.). A very nice python interface to that library is available in the
Scientific Python NetCDF module (see Hinsen). Although it is somewhat less efficient and flexi-
ble than HDF5, netCDF is geared for storing gridded data and is quite easy to use. It has become a de facto
standard for gridded data, especially in meteorology and oceanography. The next version of netCDF (netCDF
4) will actually be a software layer on top of HDF5 (see Rew et al.). The tables.NetCDF module does not
create HDF5 files that are compatible with netCDF 4 (although this is a long-term goal).

7.2 Using the tables.NetCDF module

The module tables.NetCDF emulates the Scientific.IO.NetCDF API using PyTables. It presents the
data in the form of objects that behave very much like arrays. A tables.NetCDF file contains any number
of dimensions and variables, both of which have unique names. Each variable has a shape defined by a set
of dimensions, and optionally attributes whose values can be numbers, number sequences, or strings. One
dimension of a file can be defined as unlimited, meaning that the file can grow along that direction. In the
sections that follow, a step-by-step tutorial shows how to create and modify a tables.NetCDF file. All of
the code snippets presented here are included in examples/netCDF_example.py. The tables.NetCDF
module is designed to be used as a drop-in replacement for Scientific.IO.NetCDF, with only minor
modifications to existing code. The differences between table.NetCDF and Scientific.IO.NetCDF
are summarized in the last section of this chapter.

7.2.1 Creating/Opening/Closing a tables.NetCDF file

To create a tables.netCDF file from python, you simply call the NetCDFFile constructor. This is
also the method used to open an existing tables.netCDF file. The object returned is an instance of the
NetCDFFile class and all future access must be done through this object. If the file is open for write access
(’w’ or ’a’), you may write any type of new data including new dimensions, variables and attributes. The
optional history keyword argument can be used to set the history NetCDFFile global file attribute.
Closing the tables.NetCDF file is accomplished via the close method of NetCDFFile object.

Here’s an example:

>>> import tables.NetCDF as NetCDF
>>> import time



128 Chapter 7. NetCDF - a PyTables NetCDF3 emulation API

>>> history = ’Created ’ + time.ctime(time.time())
>>> file = NetCDF.NetCDFFile(’test.h5’, ’w’, history=history)
>>> file.close()

7.2.2 Dimensions in a tables.NetCDF file

NetCDF defines the sizes of all variables in terms of dimensions, so before any variables can be created the
dimensions they use must be created first. A dimension is created using the createDimension method of
the NetCDFFile object. A Python string is used to set the name of the dimension, and an integer value is
used to set the size. To create an unlimited dimension (a dimension that can be appended to), the size value is
set to None.

>>> import tables.NetCDF as NetCDF
>>> file = NetCDF.NetCDFFile(’test.h5’, ’a’)
>>> file.NetCDFFile.createDimension(’level’, 12)
>>> file.NetCDFFile.createDimension(’time’, None)
>>> file.NetCDFFile.createDimension(’lat’, 90)

All of the dimension names and their associated sizes are stored in a Python dictionary.

>>> print file.dimensions
{’lat’: 90, ’time’: None, ’level’: 12}

7.2.3 Variables in a tables.NetCDF file

Most of the data in a tables.NetCDF file is stored in a netCDF variable (except for global attributes).
To create a netCDF variable, use the createVariable method of the NetCDFFile object. The
createVariable method has three mandatory arguments, the variable name (a Python string), the vari-
able datatype described by a single character Numeric typecode string which can be one of f (Float32), d
(Float64), i (Int32), l (Int32), s (Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1 (Int8),
and a tuple containing the variable’s dimension names (defined previously with createDimension). The
dimensions themselves are usually defined as variables, called coordinate variables. The createVariable
method returns an instance of the NetCDFVariable class whose methods can be used later to access and
set variable data and attributes.

>>> times = file.createVariable(’time’,’d’,(’time’,))
>>> levels = file.createVariable(’level’,’i’,(’level’,))
>>> latitudes = file.createVariable(’latitude’,’f’,(’lat’,))
>>> temp = file.createVariable(’temp’,’f’,(’time’,’level’,’lat’,))
>>> pressure = file.createVariable(’pressure’,’i’,(’level’,’lat’,))

All of the variables in the file are stored in a Python dictionary, in the same way as the dimensions:

>>> print file.variables
{’latitude’: <tables.NetCDF.NetCDFVariable instance at 0x244f350>,
’pressure’: <tables.NetCDF.NetCDFVariable instance at 0x244f508>,
’level’: <tables.NetCDF.NetCDFVariable instance at 0x244f0d0>,
’temp’: <tables.NetCDF.NetCDFVariable instance at 0x244f3a0>,
’time’: <tables.NetCDF.NetCDFVariable instance at 0x2564c88>}



7.2. Using the tables.NetCDF module 129

7.2.4 Attributes in a tables.NetCDF file

There are two types of attributes in a tables.NetCDF file, global (or file) and variable. Global attributes
provide information about the dataset, or file, as a whole. Variable attributes provide information about one
of the variables in the file. Global attributes are set by assigning values to NetCDFFile instance variables.
Variable attributes are set by assigning values to NetCDFVariable instance variables.

Attributes can be strings, numbers or sequences. Returning to our example,

>>> file.description = ’bogus example to illustrate the use of tables.NetCDF’
>>> file.source = ’PyTables Users Guide’
>>> latitudes.units = ’degrees north’
>>> pressure.units = ’hPa’
>>> temp.units = ’K’
>>> times.units = ’days since January 1, 2005’
>>> times.scale_factor = 1

The ncattrs method of the NetCDFFile object can be used to retrieve the names of all the global
attributes. This method is provided as a convenience, since using the built-in dir Python function will
return a bunch of private methods and attributes that cannot (or should not) be modified by the user. Similarly,
the ncattrs method of a NetCDFVariable object returns all of the netCDF variable attribute names.
These functions can be used to easily print all of the attributes currently defined, like this

>>> for name in file.ncattrs():
>>> print ’Global attr’, name, ’=’, getattr(file,name)
Global attr description = bogus example to illustrate the use of tables.NetCDF
Global attr history = Created Mon Nov 7 10:30:56 2005
Global attr source = PyTables Users Guide

Note that the ncattrs function is not part of the Scientific.IO.NetCDF interface.

7.2.5 Writing data to and retrieving data from a tables.NetCDF variable

Now that you have a netCDF variable object, how do you put data into it? If the variable has no unlimited
dimension, you just treat it like a Numeric array object and assign data to a slice.

>>> import numarray
>>> levels[:] = numarray.arange(12)+1
>>> latitudes[:] = numarray.arange(-89,90,2)
>>> for lev in levels[:]:
>>> pressure[:,:] = 1000.-100.*lev
>>> print ’levels = ’,levels[:]
levels = [ 1 2 3 4 5 6 7 8 9 10 11 12]
>>> print ’latitudes =\n’,latitudes[:]
latitudes =
[-89. -87. -85. -83. -81. -79. -77. -75. -73. -71. -69. -67. -65. -63.
-61. -59. -57. -55. -53. -51. -49. -47. -45. -43. -41. -39. -37. -35.
-33. -31. -29. -27. -25. -23. -21. -19. -17. -15. -13. -11. -9. -7.
-5. -3. -1. 1. 3. 5. 7. 9. 11. 13. 15. 17. 19. 21.
23. 25. 27. 29. 31. 33. 35. 37. 39. 41. 43. 45. 47. 49.
51. 53. 55. 57. 59. 61. 63. 65. 67. 69. 71. 73. 75. 77.
79. 81. 83. 85. 87. 89.]



130 Chapter 7. NetCDF - a PyTables NetCDF3 emulation API

Note that retrieving data from the netCDF variable object works just like a Numeric array too. If the
netCDF variable has an unlimited dimension, and there is not yet an entry for the data along that dimension,
the append method must be used.

>>> for n in range(10):
>>> times.append(n)
>>> print ’times = ’,times[:]
times = [ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]

The data you append must have either the same number of dimensions as the NetCDFVariable, or
one less. The shape of the data you append must be the same as the NetCDFVariable for all of the
dimensions except the unlimited dimension. The length of the data long the unlimited dimension controls
how may entries along the unlimited dimension are appended. If the data you append has one fewer
number of dimensions than the NetCDFVariable, it is assumed that you are appending one entry along
the unlimited dimension. For example, if the NetCDFVariable has shape (10,50,100) (where the
dimension length of length 10 is the unlimited dimension), and you append an array of shape (50,100),
the NetCDFVariable will subsequently have a shape of (11,50,100). If you append an array with
shape (5,50,100), the NetCDFVariable will have a new shape of (15,50,100). Appending an array
whose last two dimensions do not have a shape (50,100) will raise an exception. This append method
does not exist in the Scientific.IO.NetCDF interface, instead entries are appended along the unlimited
dimension one at a time by assigning to a slice. This is the biggest difference between the tables.NetCDF
and Scientific.IO.NetCDF interfaces.

Once data has been appended to any variable with an unlimited dimension, the sync method can be used
to synchronize the sizes of all the other variables with an unlimited dimension. This is done by filling in
missing values (given by the default netCDF _FillValue, which is intended to indicate that the data was
never defined). The sync method is automatically invoked with a NetCDFFile object is closed. Once the
sync method has been invoked, the filled-in values can be assigned real data with slices.

>>> print ’temp.shape before sync = ’,temp.shape
temp.shape before sync = (0, 12, 90)
>>> file.sync()
>>> print ’temp.shape after sync = ’,temp.shape
temp.shape after sync = (10L, 12, 90)
>>> import numarray.random_array as random_array
>>> for n in range(10):
>>> temp[n] = 10.*random_array.random(pressure.shape)
>>> print ’time, min/max temp, temp[n,0,0] = ’,\

times[n],min(temp[n].flat),max(temp[n].flat),temp[n,0,0]
time, min/max temp, temp[n,0,0] = 0.0 0.0122650898993 9.99259281158 6.13053750992
time, min/max temp, temp[n,0,0] = 1.0 0.00115821603686 9.9915933609 6.68516159058
time, min/max temp, temp[n,0,0] = 2.0 0.0152112031356 9.98737239838 3.60537290573
time, min/max temp, temp[n,0,0] = 3.0 0.0112022599205 9.99535560608 6.24249696732
time, min/max temp, temp[n,0,0] = 4.0 0.00519315246493 9.99831295013 0.225010097027
time, min/max temp, temp[n,0,0] = 5.0 0.00978941563517 9.9843454361 4.56814193726
time, min/max temp, temp[n,0,0] = 6.0 0.0159023851156 9.99160385132 6.36837291718
time, min/max temp, temp[n,0,0] = 7.0 0.0019518379122 9.99939727783 1.42762875557
time, min/max temp, temp[n,0,0] = 8.0 0.00390585977584 9.9909954071 2.79601073265
time, min/max temp, temp[n,0,0] = 9.0 0.0106026884168 9.99195957184 8.18835449219



7.2. Using the tables.NetCDF module 131

Note that appending data along an unlimited dimension always increases the length of the variable along
that dimension. Assigning data to a variable with an unlimited dimension with a slice operation does not
change its shape. Finally, before closing the file we can get a summary of its contents simply by printing the
NetCDFFile object. This produces output very similar to running ’ncdump -h’ on a netCDF file.

>>> print file
test.h5 {
dimensions:

lat = 90 ;
time = UNLIMITED ; // (10 currently)
level = 12 ;

variables:
float latitude(’lat’,) ;

latitude:units = ’degrees north’ ;
int pressure(’level’, ’lat’) ;

pressure:units = ’hPa’ ;
int level(’level’,) ;
float temp(’time’, ’level’, ’lat’) ;

temp:units = ’K’ ;
double time(’time’,) ;

time:scale_factor = 1 ;
time:units = ’days since January 1, 2005’ ;

// global attributes:
:description = ’bogus example to illustrate the use of tables.NetCDF’ ;
:history = ’Created Wed Nov 9 12:29:13 2005’ ;
:source = ’PyTables Users Guilde’ ;

}

7.2.6 Efficient compression of tables.NetCDF variables

Data stored in NetCDFVariable objects is compressed on disk by default. The parameters for
the default compression are determined from a Filters class instance (see section 4.17.1) with
complevel=6, complib=’zlib’ and shuffle=1. To change the default compression, simply pass
a Filters instance to createVariable with the filters keyword. If your data only has a certain
number of digits of precision (say for example, it is temperature data that was measured with a precision of
0.1 degrees), you can dramatically improve compression by quantizing (or truncating) the data using the
least_significant_digit keyword argument to createVariable. The least significant digit is the
power of ten of the smallest decimal place in the data that is a reliable value. For example if the data has
a precision of 0.1, then setting least_significant_digit=1 will cause data the data to be quantized
using numarray.around(scale*data)/scale, where scale = 2**bits, and bits is determined so
that a precision of 0.1 is retained (in this case bits=4).

In our example, try replacing the line

>>> temp = file.createVariable(’temp’,’f’,(’time’,’level’,’lat’,))

with

>>> temp = file.createVariable(’temp’,’f’,(’time’,’level’,’lat’,),
least_significant_digit=1)

and see how much smaller the resulting file is.



132 Chapter 7. NetCDF - a PyTables NetCDF3 emulation API

The least_significant_digit keyword argument is not allowed in Scientific.IO.NetCDF,
since netCDF version 3 does not support compression. The flexible, fast and efficient compression available
in HDF5 is the main reason I wrote the tables.NetCDF module - my netCDF files were just getting too big.

The createVariable method has one other keyword argument not found in
Scientific.IO.NetCDF - expectedsize. The expectedsize keyword can be used to set the
expected number of entries along the unlimited dimension (default 10000). If you expect that your data with
have an order of magnitude more or less than 10000 entries along the unlimited dimension, you may consider
setting this keyword to improve efficiency (see section 5.1 for details).

7.3 tables.NetCDF module reference

7.3.1 Global constants

_fillvalue_dict Dictionary whose keys are NetCDFVariable single character typecodes and whose values
are the netCDF _FillValue for that typecode.

ScientificIONetCDF_imported True if Scientific.IO.NetCDF is installed and can be imported.

7.3.2 The NetCDFFile class

NetCDFFile(filename, mode=’r’, history=None)

Opens an existing tables.NetCDF file (mode = ’r’ or ’a’) or creates a new one (mode = ’w’). The
history keyword can be used to set the NetCDFFile.history global attribute (if mode = ’a’ or ’w’).

A NetCDFFile object has two standard attributes: dimensions and variables. The values of both
are dictionaries, mapping dimension names to their associated lengths and variable names to variables. All
other attributes correspond to global attributes defined in a netCDF file. Global file attributes are created by
assigning to an attribute of the NetCDFFile object.

NetCDFFile methods

close() Closes the file (after invoking the sync method).

sync() Synchronizes the size of variables along the unlimited dimension, by filling in data with default
netCDF _FillValue. Returns the length of the unlimited dimension. Invoked automatically when the
NetCDFFile object is closed.

ncattrs() Returns a list with the names of all currently defined netCDF global file attributes.

createDimension(name, length) Creates a netCDF dimension with a name given by the Python string name
and a size given by the integer size. If size = None, the dimension is unlimited (i.e. it can grow
dynamically). There can be only one unlimited dimension in a file.

createVariable(name, type, dimensions, least_significant_digit=None, expectedsize=10000, filters=None)
Creates a new variable with the given name, type, and dimensions. The type is a one-letter
Numeric typecode string which can be one of f (Float32), d (Float64), i (Int32), l (Int32), s
(Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1 (Int8); the predefined type
constants from Numeric can also be used. The F and D types are not supported in netCDF or
Scientific.IO.NetCDF, if they are used in a tables.NetCDF file, that file cannot be converted to a
true netCDF file nor can it be shared over the internet with OPeNDAP. Dimensions must be a tuple
containing dimension names (strings) that have been defined previously by createDimensions.
The least_significant_digit is the power of ten of the smallest decimal place in the variable’s
data that is a reliable value. If this keyword is specified, the variable’s data truncated to this precision
to improve compression. The expectedsize keyword can be used to set the expected number of



7.3. tables.NetCDF module reference 133

entries along the unlimited dimension (default 10000). If you expect that your data with have an
order of magnitude more or less than 10000 entries along the unlimited dimension, you may consider
setting this keyword to improve efficiency (see section 5.1 for details). The filters keyword is a
PyTables Filters instance that describes how to store the data on disk. The default corresponds to
complevel=6, complib=’zlib’, shuffle=1 and fletcher32=0.

nctoh5(filename, unpackshort=True, filters=None) Imports the data in a netCDF version
3 file (filename) into a NetCDFFile object using Scientific.IO.NetCDF
(ScientificIONetCDF_imported must be True). If unpackshort=True, data packed
as short integers (type s) in the netCDF file will be unpacked to type f using the scale_factor and
add_offset netCDF variable attributes. The filters keyword can be set to a PyTables Filters
instance to change the default parameters used to compress the data in the tables.NetCDF file. The
default corresponds to complevel=6, complib=’zlib’, shuffle=1 and fletcher32=0.

h5tonc(filename, packshort=False, scale_factor=None, add_offset=None) Exports the data in a
tables.NetCDF file defined by the NetCDFFile instance into a netCDF version 3 file
using Scientific.IO.NetCDF (ScientificIONetCDF_imported must be True). If
packshort=True> the dictionaries scale_factor and add_offset are used to pack data of type
f as short integers (of type s) in the netCDF file. Since netCDF version 3 does not provide automatic
compression, packing as short integers is a commonly used way of saving disk space (see this page
for more details). The keys of these dictionaries are the variable names to pack, the values are the
scale_factors and offsets to use in the packing. The data are packed so that the original Float32 values
can be reconstructed by multiplying the scale_factor and adding add_offset. The resulting
netCDF file will have the scale_factor and add_offset variable attributes set appropriately.

7.3.3 The NetCDFVariable class

The NetCDFVariable constructor is not called explicitly, rather an NetCDFVarible instance is re-
turned by an invocation of NetCDFFile.createVariable. NetCDFVariable objects behave like ar-
rays, and have the standard attributes of arrays (such as shape). Data can be assigned or extracted from
NetCDFVariable objects via slices.

NetCDFVariable methods

typecode() Returns a single character typecode describing the type of the variable, one of f (Float32), d
(Float64), i (Int32), l (Int32), s (Int16), c (CharType - length 1), F (Complex32), D (Complex64) or 1
(Int8).

append(data) Append data to a variable along its unlimited dimension. The data you append must have
either the same number of dimensions as the NetCDFVariable, or one less. The shape of the data
you append must be the same as the NetCDFVariable for all of the dimensions except the unlimited
dimension. The length of the data long the unlimited dimension controls how may entries along the
unlimited dimension are appended. If the data you append has one fewer number of dimensions than
the NetCDFVariable, it is assumed that you are appending one entry along the unlimited dimension.
For variables without an unlimited dimension, data can simply be assigned to a slice without using the
append method.

ncattrs() Returns a list with all the names of the currently defined netCDF variable attributes.

assignValue(data) Provided for compatiblity with Scientific.IO.NetCDF. Assigns data to the variable.
If the variable has an unlimited dimension, it is equivalent to append(data). If the variable has no
unlimited dimension, it is equivalent to assigning data to the variable with the slice [:].

getValue() Provided for compatiblity with Scientific.IO.NetCDF. Returns all the data in the variable.
Equivalent to extracting the slice [:] from the variable.

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml


134 Chapter 7. NetCDF - a PyTables NetCDF3 emulation API

7.4 Converting between true netCDF files and tables.NetCDF
files

If Scientific.IO.NetCDF is installed, tables.NetCDF provides facilities for converting between
true netCDF version 3 files and tables.NetCDF hdf5 files via the NetCDFFile.h5tonc() and
NetCDFFile.nctoh5() class methods. Also, the nctoh5 command-line utility (see Appendix C.3) uses
the NetCDFFile.nctoh5() class method.

As an example, look how to convert a tables.NetCDF hdf5 file to a true netCDF version 3 file (named
test.nc)

>>> scale_factor = {’temp’: 1.75e-4}
>>> add_offset = {’temp’: 5.}
>>> file.h5tonc(’test.nc’,packshort=True, \

scale_factor=scale_factor,add_offset=add_offset)
packing temp as short integers ...
>>> file.close()

The dictionaries scale_factor and add_offset are used to optionally pack the data as short integers
in the netCDF file. Since netCDF version 3 does not provide automatic compression, packing as short integers
is a commonly used way of saving disk space (see this page for more details). The keys of these dictionaries
are the variable names to pack, the values are the scale_factors and offsets to use in the packing. The resulting
netCDF file will have the scale_factor and add_offset variable attributes set appropriately.

To convert the netCDF file back to a tables.NetCDF hdf5 file:

>>> history = ’Convert from netCDF ’ + time.ctime(time.time())
>>> file = NetCDF.NetCDFFile(’test2.h5’, ’w’, history=history)
>>> nobjects, nbytes = file.nctoh5(’test.nc’,unpackshort=True)
>>> print nobjects,’ objects converted from netCDF, totaling’,nbytes,’bytes’
5 objects converted from netCDF, totaling 48008 bytes
>>> temp = file.variables[’temp’]
>>> times = file.variables[’time’]
>>> print ’temp.shape after h5 --> netCDF --> h5 conversion = ’,temp.shape
temp.shape after h5 --> netCDF --> h5 conversion = (10L, 12, 90)
>>> for n in range(10):
>>> print ’time, min/max temp, temp[n,0,0] = ’,\

times[n],min(temp[n].flat),max(temp[n].flat),temp[n,0,0]
time, min/max temp, temp[n,0,0] = 0.0 0.0123250000179 9.99257469177 6.13049983978
time, min/max temp, temp[n,0,0] = 1.0 0.00130000000354 9.99152469635 6.68507480621
time, min/max temp, temp[n,0,0] = 2.0 0.0153000000864 9.98732471466 3.60542488098
time, min/max temp, temp[n,0,0] = 3.0 0.0112749999389 9.99520015717 6.2423248291
time, min/max temp, temp[n,0,0] = 4.0 0.00532499980181 9.99817466736 0.225124999881
time, min/max temp, temp[n,0,0] = 5.0 0.00987500045449 9.98417472839 4.56827497482
time, min/max temp, temp[n,0,0] = 6.0 0.01600000076 9.99152469635 6.36832523346
time, min/max temp, temp[n,0,0] = 7.0 0.00200000009499 9.99922466278 1.42772495747
time, min/max temp, temp[n,0,0] = 8.0 0.00392499985173 9.9908246994 2.79605007172
time, min/max temp, temp[n,0,0] = 9.0 0.0107500003651 9.99187469482 8.18832492828
>>> file.close()

Setting unpackshort=True tells nctoh5 to unpack all of the variables which have the
scale_factor and add_offset attributes back to floating point arrays. Note that tables.NetCDF
files have some features not supported in netCDF (such as Complex data types and the ability to make any
dimension unlimited). tables.NetCDF files which utilize these features cannot be converted to netCDF
using NetCDFFile.h5tonc.

http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml


7.5. tables.NetCDF file structure 135

7.5 tables.NetCDF file structure

A tables.NetCDF file consists of array objects (either EArrays or CArrays) located in the root group
of a pytables hdf5 file. Each of the array objects must have a dimensions attribute, consisting of a tuple
of dimension names (the length of this tuple should be the same as the rank of the array object). Any array
objects with one of the supported datatypes in a pytables file that conforms to this simple structure can be
read with the tables.NetCDF module.

7.6 Sharing data in tables.NetCDF files over the internet with
OPeNDAP

tables.NetCDF datasets can be shared over the internet with the OPeNDAP protocol (http://opendap.org),
via the python opendap module (http://opendap.oceanografia.org). A plugin for the python opendap server
is included with the pytables distribution (contrib/h5_dap_plugin.py). Simply copy that file into the
plugins directory of the opendap python module source distribution, run python setup.py install,
point the opendap server to the directory containing your tables.NetCDF files, and away you go. Any
OPeNDAP aware client (such as Matlab or IDL) will now be able to access your data over http as if it were
a local disk file. The only restriction is that your tables.NetCDF files must have the extension .h5 or
.hdf5. Unfortunately, tables.NetCDF itself cannot act as an OPeNDAP client, although there is a client
included in the opendap python module, and Scientific.IO.NetCDF can act as an OPeNDAP client if it
is linked with the OPeNDAP netCDF client library. Either of these python modules can be used to remotely
acess tables.NetCDF datasets with OPeNDAP.

7.7 Differences between the Scientific.IO.NetCDF API and
the tables.NetCDF API

1. tables.NetCDF data is stored in an HDF5 file instead of a netCDF file.

2. Although each variable can have only one unlimited dimension in a tables.NetCDF file, it need
not be the first as in a true NetCDF file. Complex data types F (Complex32) and D (Complex64) are
supported in tables.NetCDF, but are not supported in netCDF (or Scientific.IO.NetCDF).
Files with variables that have these datatypes, or an unlimited dimension other than the first, cannot be
converted to netCDF using h5tonc.

3. Variables in a tables.NetCDF file are compressed on disk by default using HDF5 zlib compression
with the shuffle filter. If the least_significant_digit keyword is used when a variable is created with
the createVariable method, data will be truncated (quantized) before being written to the file.
This can significantly improve compression. For example, if least_significant_digit=1, data
will be quantized using numarray.around(scale*data)/scale, where scale = 2**bits,
and bits is determined so that a precision of 0.1 is retained (in this case bits=4).
From http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml: “least_significant_digit -
- power of ten of the smallest decimal place in unpacked data that is a reliable value.” Auto-
matic data compression is not available in netCDF version 3, and hence is not available in the
Scientific.IO.NetCDF module.

4. In tables.NetCDF, data must be appended to a variable with an unlimited dimension using the
append method of the netCDF variable object. In Scientific.IO.NetCDF, data can be added
along an unlimited dimension by assigning it to a slice (there is no append method). The sync method
of a tables.NetCDF NetCDFVariable object synchronizes the size of all variables with an unlim-
ited dimension by filling in data using the default netCDF _FillValue. The sync method is auto-
matically invoked with a NetCDFFile object is closed. In Scientific.IO.NetCDF, the sync()
method flushes the data to disk.

http://opendap.org
http://opendap.oceanografia.org
http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml


136 Chapter 7. NetCDF - a PyTables NetCDF3 emulation API

5. The tables.NetCDF createVariable() method has three extra optional keyword arguments not
found in the Scientific.IO.NetCDF interface, least_significant_digit (see item (2) above), expect-
edsize and filters. The expectedsize keyword applies only to variables with an unlimited dimension, and
is an estimate of the number of entries that will be added along that dimension (default 1000). This
estimate is used to optimize HDF5 file access and memory usage. The filters keyword is a PyTables
filters instance that describes how to store the data on disk. The default corresponds to complevel=6,
complib=’zlib’, shuffle=1 and fletcher32=0.

6. tables.NetCDF data can be saved to a true netCDF file using the NetCDFFile class method
h5tonc (if Scientific.IO.NetCDF is installed). The unlimited dimension must be the first (for all
variables in the file) in order to use the h5tonc method. Data can also be imported from a true netCDF
file and saved in an HDF5 tables.NetCDF file using the nctoh5 class method.

7. In tables.NetCDF a list of attributes corresponding to global netCDF attributes defined in the file
can be obtained with the NetCDFFile ncattrs method. Similarly, netCDF variable attributes can
be obtained with the NetCDFVariable ncattrs method. These functions are not available in the
Scientific.IO.NetCDF API.

8. You should not define tables.NetCDF global or variable attributes that start with _NetCDF_. Those
names are reserved for internal use.

9. Output similar to ’ncdump -h’ can be obtained by simply printing a tables.NetCDF NetCDFFile
instance.



137

Part III

Appendixes





139

Appendix A

Supported data types in PyTables

The Table, Array, CArray, VLArray and EArray classes can all handle the complete set of data types supported
by the numarray package (see Greenfield et al.), NumPy (see Oliphant et al.) and Numeric (see Ascher
et al.) in Python. The data types for table fields can be set via the constructor for the Col class and its
descendants (see 4.16.2) while array elements can be set through the use of the Atom class and its descendants
(see 4.16.3).

In addition to those data types, PyTables’ Table, VLArray and EArray classes do support some aliasing
data types for their columns and atoms. Each one of these aliasing types corresponds to one numarray type,
but they also have special meanings for PyTables. They can be seen as the ordinary types they are associated
with, plus some additional meaning. Since they do not exist as numarray types, they can only be specified
to PyTables using strings.

Currently, the only supported aliasing data type is Time. Two kinds of time values can be handled: 4-byte
signed integer and 8-byte double precision floating point. Both of them reflect the number of seconds since
the Unix Epoch, i.e. Jan 1 00:00:00 UTC 1970. Their types correspond to numarray’s Int32 and Float64,
respectively. Time values are stored in the HDF5 file using the H5T_TIME class. Integer times are stored as
is, while floating point times are split into two signed integer values representing seconds and microseconds
(beware: smaller decimals will be lost!).

PyTables also supports HDF5 H5T_ENUM enumerations (restricted sets of unique name and unique value
pairs). The numarray representation of an enumerated value depends on the concrete base type used to store
the enumeration in the HDF5 file. Enumerations are similar to aliasing data types in the sense that enumerated
data is handled as regular numarray data. Enumerations are also specified to PyTables using a string type,
with an additional Enum (see 4.17.4) instance.

Currently, only scalar integer values (both signed and unsigned) are supported in enumerations. This
restriction may be lifted when HDF5 supports other kinds on enumerated values.

A quick reference to the complete set of data types supported by PyTables is given in table A.



140 Appendix A. Supported data types in PyTables

Table A.1: Data types supported for array elements and tables columns in PyTables.

Type Code Description C Type Size (in bytes) Python Counterpart

Bool boolean unsigned char 1 Boolean
Int8 8-bit integer signed char 1 Integer
UInt8 8-bit unsigned integer unsigned char 1 Integer
Int16 16-bit integer short 2 Integer
UInt16 16-bit unsigned integer unsigned short 2 Integer
Int32 integer int 4 Integer
UInt32 unsigned integer unsigned int 4 Long
Int64 64-bit integer long long 8 Long
UInt64 unsigned 64-bit integer unsigned long long 8 Long
Float32 single-precision float float 4 Float
Float64 double-precision float double 8 Float
Complex32 single-precision complex struct {float r, i;} 8 Complex
Complex64 double-precision complex struct {double r, i;} 16 Complex
CharType arbitrary length string char[] * String
Time32 integer time POSIX’s time_t 4 Integer
Time64 floating point time POSIX’s struct timeval 8 Float
Enum enumerated value enum - -



141

Appendix B

Using nested record arrays

B.1 Introduction

Nested record arrays are a generalization of the record array concept. Basically, a nested record array is a
record array that supports nested datatypes. It means that columns can contain not only regular datatypes but
also nested datatypes.

Each nested record array is a NestedRecArray object in the tables.nestedrecords module.
Nested record arrays are intended to be as compatible as possible with ordinary record arrays (in fact the
NestedRecArray class inherits from RecArray). As a consequence, the user can deal with nested record
arrays nearly in the same way that he does with ordinary record arrays.

The easiest way to create a nested record array is to use the array() function in the
tables.nestedrecords module. The only difference between this function and its non-nested capable
analogous is that now, we must provide an structure for the buffer being stored. For instance:

>>> from tables.nestedrecords import array
>>> nra1 = array(
... [(1, (0.5, 1.0), (’a1’, 1j)), (2, (0, 0), (’a2’, 1+.1j))],
... formats=[’Int64’, ’(2,)Float32’, [’a2’, ’Complex64’]])

will create a two rows nested record array with two regular fields (columns), and one nested field with two
sub-fields.

The field structure of the nested record array is specified by the keyword argument formats. This
argument only supports sequences of strings and other sequences. Each string defines the shape and type of
a non-nested field. Each sequence contains the formats of the sub-fields of a nested field. Optionally, we can
also pass an additional names keyword argument containing the names of fields and sub-fields:

>>> nra2 = array(
... [(1, (0.5, 1.0), (’a1’, 1j)), (2, (0, 0), (’a2’, 1+.1j))],
... names=[’id’, ’pos’, (’info’, [’name’, ’value’])],
... formats=[’Int64’, ’(2,)Float32’, [’a2’, ’Complex64’]])

The names argument only supports lists of strings and 2-tuples. Each string defines the name of a non-
nested field. Each 2-tuple contains the name of a nested field and a list describing the names of its sub-fields.
If the names argument is not passed then all fields are automatically named (c1, c2 etc. on each nested field)
so, in our first example, the fields will be named as [’c1’, ’c2’, (’c3’, [’c1’, ’c2’])].

Another way to specify the nested record array structure is to use the descr keyword argument:

>>> nra3 = array(
... [(1, (0.5, 1.0), (’a1’, 1j)), (2, (0, 0), (’a2’, 1+.1j))],
... descr=[(’id’, ’Int64’), (’pos’, ’(2,)Float32’),
... (’info’, [(’name’, ’a2’), (’value’, ’Complex64’)])])
>>>



142 Appendix B. Using nested record arrays

>>> nra3
array(
[(1L, array([ 0.5, 1. ], type=Float32), (’a1’, 1j)),
(2L, array([ 0., 0.], type=Float32), (’a2’, (1+0.10000000000000001j)))],
descr=[(’id’, ’Int64’), (’pos’, ’(2,)Float32’), (’info’, [(’name’, ’a2’),
(’value’, ’Complex64’)])],
shape=2)
>>>
]

The descr argument is a list of 2-tuples, each of them describing a field. The first value in a tuple is
the name of the field, while the second one is a description of its structure. If the second value is a string, it
defines the format (shape and type) of a non-nested field. Else, it is a list of 2-tuples describing the sub-fields
of a nested field.

As you can see, the descr list is a mix of the names and formats arguments. In fact, this argument is
intended to replace formats and names, so they cannot be used at the same time.

Of course the structure of all three keyword arguments must match that of the elements (rows) in the
buffer being stored.

Sometimes it is convenient to create nested arrays by processing a set of columns. In these cases the
function fromarrays comes handy. This function works in a very similar way to the array function, but the
passed buffer is a list of columns. For instance:

>>> from tables.nestedrecords import fromarrays
>>> nra = fromarrays([[1, 2], [4, 5]], descr=[(’x’, ’f8’),(’y’, ’f4’)])
>>>
>>> nra
array(
[(1.0, 4.0),
(2.0, 5.0)],
descr=[(’x’, ’f8’), (’y’, ’f4’)],
shape=2)

Columns can be passed as nested arrays, what makes really straightforward to combine different nested
arrays to get a new one, as you can see in the following examples:

>>> nra1 = fromarrays([nra, [7, 8]], descr=[(’2D’, [(’x’, ’f8’), (’y’, ’f4’)]),
>>> ... (’z’, ’f4’)])
>>>
>>> nra1
array(
[((1.0, 4.0), 7.0),
((2.0, 5.0), 8.0)],
descr=[(’2D’, [(’x’, ’f8’), (’y’, ’f4’)]), (’z’, ’f4’)],
shape=2)
>>>
>>> nra2 = fromarrays([nra1.field(’2D/x’), nra1.field(’z’)], descr=[(’x’, ’f8’),
(’z’, ’f4’)])
>>>
>>> nra2
array(
[(1.0, 7.0),
(2.0, 8.0)],
descr=[(’x’, ’f8’), (’z’, ’f4’)],
shape=2)



B.2. NestedRecArray methods 143

Finally it’s worth to mention a small group of utility functions, makeFormats, makeNames and
makeDescr, that can be useful to obtain the structure specification to be used with array and fromarrays
functions. Given a description list, makeFormats gets the corresponding formats list. In the same way mak-
eNames gets the names list. On the other hand the descr list can be obtained from formats and names lists
using the makeDescr function. For example:

>>> from tables.nestedrecords import makeDescr, makeFormats, makeNames
>>> descr =[(’2D’, [(’x’, ’f8’), (’y’, ’f4’)]),(’z’, ’f4’)]
>>>
>>> formats = makeFormats(descr)
>>> formats
[[’f8’, ’f4’], ’f4’]
>>> names = makeNames(descr)
>>> names
[(’2D’, [’x’, ’y’]), ’z’]
>>> d1 = makeDescr(formats, names)
>>> d1
[(’2D’, [(’x’, ’f8’), (’y’, ’f4’)]), (’z’, ’f4’)]
>>> # If no names are passed then they are automatically generated
>>> d2 = makeDescr(formats)
>>> d2
[(’c1’, [(’c1’, ’f8’), (’c2’, ’f4’)]),(’c2’, ’f4’)]

B.2 NestedRecArray methods

To access the fields in the nested record array use the field() method:

>>> print nra2.field(’id’)
[1, 2]
>>>

The field() method accepts also names of sub-fields. It will consist of several field name components
separated by the string ’/’, for instance:

>>> print nra2.field(’info/name’)
[’a1’, ’a2’]
>>>

Eventually, the top level fields of the nested recarray can be accessed passing an integer argument to the
field() method:

>>> print nra2.field(1)
[[ 0.5 1. ] [ 0. 0. ]]
>>>

An alternative to the field() method is the use of the fields attribute. It is intended mainly for
interactive usage in the Python console. For example:

>>> nra2.fields.id
[1, 2]
>>> nra2.fields.info.fields.name
[’a1’, ’a2’]
>>>



144 Appendix B. Using nested record arrays

Rows of nested recarrays can be read using the typical index syntax. The rows are retrieved as
NestedRecord objects:

>>> print nra2[0]
(1L, array([ 0.5, 1. ], type=Float32), (’a1’, 1j))
>>>
>>> nra2[0].__class__
<class tables.nestedrecords.NestedRecord at 0x413cbb9c>

Slicing is also supported in the usual way:

>>> print nra2[0:2]
NestedRecArray[
(1L, array([ 0.5, 1. ], type=Float32), (’a1’, 1j)),
(2L, array([ 0., 0.], type=Float32), (’a2’, (1+0.10000000000000001j)))
]
>>>

Another useful method is asRecArray(). It converts a nested array to a non-nested equivalent array.
This method creates a new vanilla RecArray instance equivalent to this one by flattening its fields. Only

bottom-level fields included in the array. Sub-fields are named by pre-pending the names of their parent fields
up to the top-level fields, using ’/’ as a separator. The data area of the array is copied into the new one. For
example, calling nra3.asRecArray() would return the same array as calling:

>>> ra = numarray.records.array(
... [(1, (0.5, 1.0), ’a1’, 1j), (2, (0, 0), ’a2’, 1+.1j)],
... names=[’id’, ’pos’, ’info/name’, ’info/value’],
... formats=[’Int64’, ’(2,)Float32’, ’a2’, ’Complex64’])

Note that the shape of multidimensional fields is kept.

B.3 NestedRecord objects

Each element of the nested record array is a NestedRecord, i.e. a Record with support for nested
datatypes. As said before, we can do indexing as usual:

>>> print nra1[0]
(1, (0.5, 1.0), (’a1’, 1j))
>>>

Using NestedRecord objects is quite similar to using Record objects. To get the data of a field we use
the field() method. As an argument to this method we pass a field name. Sub-field names can be passed
in the way described for NestedRecArray.field(). The fields attribute is also present and works as
it does in NestedRecArray.

Field data can be set with the setField() method. It takes two arguments, the field name and its value.
Sub-field names can be passed as usual. Finally, the asRecord() method converts a nested record into a
non-nested equivalent record.



145

Appendix C

Utilities

PyTables comes with a couple of utilities that make the life easier to the user. One is called ptdump and
lets you see the contents of a PyTables file (or generic HDF5 file, if supported). The other one is named
ptrepack that allows to (recursively) copy sub-hierarchies of objects present in a file into another one,
changing, if desired, some of the filters applied to the leaves during the copy process.

Normally, these utilities will be installed somewhere in your PATH during the process of installation of
the PyTables package, so that you can invoke them from any place in your file system after the installation
has successfully finished.

C.1 ptdump

As has been said before, ptdump utility allows you look into the contents of your PyTables files. It lets
you see not only the data but also the metadata (that is, the structure and additional information in the form
of attributes).

C.1.1 Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptdump -h

to see the message usage:

usage: ptdump [-R start,stop,step] [-a] [-h] [-d] [-v] file[:nodepath]
-R RANGE -- Select a RANGE of rows in the form "start,stop,step"
-a -- Show attributes in nodes (only useful when -v or -d are active)
-c -- Show info of columns in tables (only useful when -v or -d are active)
-i -- Show info of indexed columns (only useful when -v or -d are active)
-d -- Dump data information on leaves
-h -- Print help on usage
-v -- Dump more meta-information on nodes

C.1.2 A small tutorial on ptdump

Let’s suppose that we want to know only the structure of a file. In order to do that, just don’t pass any flag,
just the file as parameter:

$ ptdump vlarray1.h5
Filename: ’vlarray1.h5’ Title: ’’ , Last modif.: ’Fri Feb 6 19:33:28 2004’ ,
rootUEP=’/’, filters=Filters(), Format version: 1.2



146 Appendix C. Utilities

/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

we can see that the file contains a just a leaf object called vlarray1, that is an instance of VLArray, has 4
rows, and two filters has been used in order to create it: shuffle and zlib (with a compression level of 1).

Let’s say we want more meta-information. Just add the -v (verbose) flag:

$ ptdump -v vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’

so we can see more info about the atoms that are the components of the vlarray1 dataset, i.e. they are
scalars of type Int32 and with Numeric flavor.

If we want information about the attributes on the nodes, we must add the -a flag:

$ ptdump -va vlarray1.h5
/ (Group) ’’

children := [’vlarray1’ (VLArray)]
/._v_attrs (AttributeSet), 5 attributes:
[CLASS := ’GROUP’,
FILTERS := None,
PYTABLES_FORMAT_VERSION := ’1.2’,
TITLE := ’’,
VERSION := ’1.0’]

/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’
atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:
[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Let’s have a look at the real data:

$ ptdump -d vlarray1.h5
/ (Group) ’’
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

Data dump:
[array([5, 6]), array([5, 6, 7]), array([5, 6, 9, 8]), array([ 5, 6, 9, 10, 12])]

we see here a data dump of the 4 rows in vlarray1 object, in the form of a list. Because the object is a VLA,
we see a different number of integers on each row.

Say that we are interested only on a specific row range of the /vlarray1 object:



C.2. ptrepack 147

ptdump -R2,4 -d vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

Data dump:
[array([5, 6, 9, 8]), array([ 5, 6, 9, 10, 12])]

Here, we have specified the range of rows between 2 and 4 (the upper limit excluded, as usual in Python). See
how we have selected only the /vlarray1 object for doing the dump (vlarray1.h5:/vlarray1).

Finally, you can mix several information at once:

$ ptdump -R2,4 -vad vlarray1.h5:/vlarray1
/vlarray1 (VLArray(4,), shuffle, zlib(1)) ’ragged array of ints’

atom = Atom(type=Int32, shape=1, flavor=’Numeric’)
nrows = 4
flavor = ’Numeric’
byteorder = ’little’
/vlarray1.attrs (AttributeSet), 4 attributes:
[CLASS := ’VLARRAY’,
FLAVOR := ’Numeric’,
TITLE := ’ragged array of ints’,
VERSION := ’1.0’]

Data dump:
[array([5, 6, 9, 8]), array([ 5, 6, 9, 10, 12])]

C.2 ptrepack

This utility is a very powerful one and lets you copy any leaf, group or complete subtree into another file.
During the copy process you are allowed to change the filter properties if you want so. Also, in the case
of duplicated pathnames, you can decide if you want to overwrite already existing nodes on the destination
file. Generally speaking, ptrepack can be useful in may situations, like replicating a subtree in another
file, change the filters in objects and see how affect this to the compression degree or I/O performance,
consolidating specific data in repositories or even importing generic HDF5 files and create true PyTables
counterparts.

C.2.1 Usage

For instructions on how to use it, just pass the -h flag to the command:

$ ptrepack -h

to see the message usage:

usage: ptrepack [-h] [-v] [-o] [-R start,stop,step] [--non-recursive]
[--dest-title=title] [--dont-copyuser-attrs] [--overwrite-nodes]
[--complevel=(0-9)] [--complib=lib] [--shuffle=(0|1)]
[--fletcher32=(0|1)] [--keep-source-filters]
sourcefile:sourcegroup destfile:destgroup

-h -- Print usage message.
-v -- Show more information.
-o -- Overwite destination file.
-R RANGE -- Select a RANGE of rows (in the form "start,stop,step")

during the copy of *all* the leaves.
--non-recursive -- Do not do a recursive copy. Default is to do it.
--dest-title=title -- Title for the new file (if not specified,



148 Appendix C. Utilities

the source is copied).
--dont-copy-userattrs -- Do not copy the user attrs (default is to do it)
--overwrite-nodes -- Overwrite destination nodes if they exist. Default is

to not overwrite them.
--complevel=(0-9) -- Set a compression level (0 for no compression, which

is the default).
--complib=lib -- Set the compression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active

if complevel>0).
--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not

active by default).
--keep-source-filters -- Use the original filters in source files. The

default is not doing that if any of --complevel, --complib, --shuffle
or --fletcher32 option is specified.

C.2.2 A small tutorial on ptrepack

Imagine that we have ended the tutorial 1 (see the output of examples/tutorial1-1.py), and we want
to copy our reduced data (i.e. those datasets that hangs from the /column group) to another file. First, let’s
remember the content of the examples/tutorial1.h5:

$ ptdump tutorial1.h5
Filename: ’tutorial1.h5’ Title: ’Test file’ , Last modif.: ’Fri Feb 6

19:33:28 2004’ , rootUEP=’/’, filters=Filters(), Format version: 1.2
/ (Group) ’Test file’
/columns (Group) ’Pressure and Name’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/detector (Group) ’Detector information’
/detector/readout (Table(10L,)) ’Readout example’

Now, copy the /columns to other non-existing file. That’s easy:

$ ptrepack tutorial1.h5:/columns reduced.h5

That’s all. Let’s see the contents of the newly created reduced.h5 file:

$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:26:47 2004’ ,
rootUEP=’/’, filters=Filters(), Format version: 1.2

/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’

so, you have copied the children of /columns group into the root of the reduced.h5 file.
Now, you suddenly realized that what you intended to do was to copy all the hierarchy, the group

/columns itself included. You can do that by just specifying the destination group:

$ ptrepack tutorial1.h5:/columns reduced.h5:/columns
ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:39:15 2004’ ,
rootUEP=’/’, filters=Filters(), Format version: 1.2



C.2. ptrepack 149

/ (Group) ’’
/name (Array(3,)) ’Name column selection’
/pressure (Array(3,)) ’Pressure column selection’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

OK. Much better. But you want to get rid of the existing nodes on the new file. You can achieve this by adding
the -o flag:

$ ptrepack -o tutorial1.h5:/columns reduced.h5:/columns
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:41:57 2004’ ,
rootUEP=’/’, filters=Filters(), Format version: 1.2

/ (Group) ’’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where you can see how the old contents of the reduced.h5 file has been overwritten.
You can copy just one single node in the repacking operation and change its name in destination:

$ ptrepack tutorial1.h5:/detector/readout reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’ , Last modif.: ’Fri Feb 20 15:52:22 2004’,
rootUEP=’/’, filters=Filters(), Format version: 1.2

/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

where the /detector/readout has been copied to /rawdata in destination.
We can change the filter properties as well:

$ ptrepack --complevel=1 tutorial1.h5:/detector/readout reduced.h5:/rawdata
Problems doing the copy from ’tutorial1.h5:/detector/readout’ to
’reduced.h5:/rawdata’
The error was --> exceptions.ValueError: The destination
(/rawdata (Table(10L,)) ’Readout example’) already exists.
Assert the overwrite parameter if you really want to overwrite it.

The destination file looks like:
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 15:52:22 2004’;
rootUEP=’/’; filters=Filters(), Format version: 1.2

/ (Group) ’’
/rawdata (Table(10L,)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

Traceback (most recent call last):
File "../utils/ptrepack", line 358, in ?

start=start, stop=stop, step=step)
File "../utils/ptrepack", line 111, in copyLeaf



150 Appendix C. Utilities

raise RuntimeError, "Please, check that the node names are not
duplicated in destination, and if so, add the --overwrite-nodes flag
if desired."

RuntimeError: Please, check that the node names are not duplicated in
destination, and if so, add the --overwrite-nodes flag if desired.

ooops!. We ran into problems: we forgot that /rawdata pathname already existed in destination file. Let’s
add the --overwrite-nodes, as the verbose error suggested:

$ ptrepack --overwrite-nodes --complevel=1 tutorial1.h5:/detector/readout
reduced.h5:/rawdata
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:02:20 2004’;
rootUEP=’/’; filters=Filters(), Format version: 1.2

/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’

you can check how the filter properties has been changed for the /rawdata table. Check as the other nodes
still exists.

Finally, let’s copy a slice of the readout table in origin to destination, under a new group called
/slices and with the name, for example, aslice:

$ ptrepack -R1,8,3 tutorial1.h5:/detector/readout reduced.h5:/slices/aslice
$ ptdump reduced.h5
Filename: ’reduced.h5’ Title: ’’; Last modif.: ’Fri Feb 20 16:17:13 2004’;
rootUEP=’/’; filters=Filters(); Format version: 1.2

/ (Group) ’’
/rawdata (Table(10L,), shuffle, zlib(1)) ’Readout example’
/columns (Group) ’’
/columns/name (Array(3,)) ’Name column selection’
/columns/pressure (Array(3,)) ’Pressure column selection’
/slices (Group) ’’
/slices/aslice (Table(3L,)) ’Readout example’

note how only 3 rows of the original readout table has been copied to the new aslice destination. Note
as well how the previously inexistent slices group has been created in the same operation.

C.3 nctoh5

This tool is able to convert a file in NetCDF format to a PyTables file (and hence, to a HDF5 file).
However, for this to work, you will need the NetCDF interface for Python that comes with the excellent
Scientific Python (see Hinsen) package. This script was initially contributed by Jeff Whitaker. It has
been updated to support selectable filters from the command line and some other small improvements.

If you want other file formats to be converted to PyTables, have a look at the SciPy (see Jones et al.)
project (subpackage io), and look for different methods to import them into NumPy/Numeric/numarray
objects. Following the SciPy documentation, you can read, among other formats, ASCII files
(read_array), binary files in C or Fortran (fopen) and MATLAB (version 4, 5 or 6) files (loadmat). Once
you have the content of your files as NumPy/Numeric/numarray objects, you can save them as regular
(E)Arrays in PyTables files. Remember, if you end with a nice conversor, do not forget to contribute it
back to the community. Thanks!

http://www.unidata.ucar.edu/packages/netcdf/


C.3. nctoh5 151

C.3.1 Usage

For instructions on how to use it, just pass the -h flag to the command:

$ nctoh5 -h

to see the message usage:

usage: nctoh5 [-h] [-v] [-o] [--complevel=(0-9)] [--complib=lib]
[--shuffle=(0|1)] [--fletcher32=(0|1)] [--unpackshort=(0|1)]
[--quantize=(0|1)] netcdffilename hdf5filename
-h -- Print usage message.
-v -- Show more information.
-o -- Overwite destination file.
--complevel=(0-9) -- Set a compression level (0 for no compression, which

is the default).
--complib=lib -- Set the compression library to be used during the copy.

lib can be set to "zlib", "lzo", "ucl" or "bzip2". Defaults to "zlib".
--shuffle=(0|1) -- Activate or not the shuffling filter (default is active

if complevel>0).
--fletcher32=(0|1) -- Whether to activate or not the fletcher32 filter (not

active by default).
--unpackshort=(0|1) -- unpack short integer variables to float variables

using scale_factor and add_offset netCDF variable attributes
(not active by default).

--quantize=(0|1) -- quantize data to improve compression using
least_significant_digit netCDF variable attribute (not active by default).
See http://www.cdc.noaa.gov/cdc/conventions/cdc_netcdf_standard.shtml
for further explanation of what this attribute means.

If you have followed the small tutorial on the ptrepack utility (see C.2), you should easily realize what
most of the different flags would mean.





153

Appendix D

PyTables File Format

PyTables has a powerful capability to deal with native HDF5 files created with another tools. However,
there are situations were you may want to create truly native PyTables files with those tools while retaining
fully compatibility with PyTables format. That is perfectly possible, and in this appendix is presented the
format that you should endow to your own-generated files in order to get a fully PyTables compatible file.

We are going to describe the 1.6 version of PyTables file format (introduced in PyTables version
1.3). At this stage, this file format is considered stable enough to do not introduce significant changes during
a reasonable amount of time. As time goes by, some changes will be introduced (and documented here) in
order to cope with new necessities. However, the changes will be carefully pondered so as to ensure backward
compatibility whenever is possible.

A PyTables file is composed with arbitrarily large amounts of HDF5 groups (Groups in PyTables
naming scheme) and datasets (Leaves in PyTables naming scheme). For groups, the only requirements
are that they must have some system attributes available. By convention, system attributes in PyTables are
written in upper case, and user attributes in lower case but this is not enforced by the software. In the case of
datasets, besides the mandatory system attributes, some conditions are further needed in their storage layout,
as well as in the datatypes used in there, as we will see shortly.

As a final remark, you can use any filter as you want to create a PyTables file, provided that the filter is a
standard one in HDF5, like zlib, shuffle or szip (although the last one can not be used from within PyTables
to create a new file, datasets compressed with szip can be read, because it is the HDF5 library which do the
decompression transparently).

D.1 Mandatory attributes for a File

The File object is, in fact, an special HDF5 group structure that is root for the rest of the objects on the
object tree. The next attributes are mandatory for the HDF5 root group structure in PyTables files:

CLASS This attribute should always be set to ’GROUP’ for group structures.

PYTABLES_FORMAT_VERSION It represents the internal format version, and currently should be set to
the ’1.6’ string.

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string ’1.0’.

D.2 Mandatory attributes for a Group

The next attributes are mandatory for group structures:

CLASS This attribute should always be set to ’GROUP’ for group structures.



154 Appendix D. PyTables File Format

TITLE A string where the user can put some description on what is this group used for.

VERSION Should contains the string ’1.0’.

D.3 Mandatory attributes, storage layout and supported data types
for Leaves

This depends on the kind of Leaf. The format for each type follows.

D.3.1 Table format

Mandatory attributes

The next attributes are mandatory for table structures:

CLASS Must be set to ’TABLE’.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string ’2.6’.

FLAVOR This is meant to provide the information about the kind of object kept in the Table, i.e. when the
dataset is read, it will be converted to the indicated flavor. It can take one the next string values:

"numarray" The read operations will return a numarray object.

"numpy" The read operations will be return as a NumPy object.

FIELD_X_NAME It contains the names of the different fields. The X means the number of the field, zero-
based (beware, order do matter). You should add as many attributes of this kind as fields you have in
your records.

FIELD_X_FILL It contains the default values of the different fields. All the datatypes are suported natively,
except for complex types that are currently serialized using Pickle. The X means the number of the
field, zero-based (beware, order do matter). You should add as many attributes of this kind as fields
you have in your records. These fields are meant for saving the default values persistently and their
existence is optional.

NROWS This should contain the number of compound data type entries in the dataset. It must be an int data
type.

Storage Layout

A Table has a dataspace with a 1-dimensional chunked layout.

Datatypes supported

The datatype of the elements (rows) of Table must be the H5T_COMPOUND compound data type, and each
of these compound components must be built with only the next HDF5 data types classes:

H5T_BITFIELD This class is used to represent the Bool type. Such a type must be build using a
H5T_NATIVE_B8 datatype, followed by a HDF5 H5Tset_precision call to set its precision to
be just 1 bit.

H5T_INTEGER This includes the next data types:

H5T_NATIVE_SCHAR This represents a signed char C type, but it is effectively used to represent
an Int8 type.



D.3. Mandatory attributes, storage layout and supported data types for Leaves 155

H5T_NATIVE_UCHAR This represents an unsigned char C type, but it is effectively used to repre-
sent an UInt8 type.

H5T_NATIVE_SHORT This represents a short C type, and it is effectively used to represent an
Int16 type.

H5T_NATIVE_USHORT This represents an unsigned short C type, and it is effectively used to rep-
resent an UInt16 type.

H5T_NATIVE_INT This represents an int C type, and it is effectively used to represent an Int32
type.

H5T_NATIVE_UINT This represents an unsigned int C type, and it is effectively used to represent
an UInt32 type.

H5T_NATIVE_LONG This represents a long C type, and it is effectively used to represent an Int32
or an Int64, depending on whether you are running a 32-bit or 64-bit architecture.

H5T_NATIVE_ULONG This represents an unsigned long C type, and it is effectively used to repre-
sent an UInt32 or an UInt64, depending on whether you are running a 32-bit or 64-bit archi-
tecture.

H5T_NATIVE_LLONG This represents a long long C type (__int64, if you are using a Windows
system) and it is effectively used to represent an Int64 type.

H5T_NATIVE_ULLONG This represents an unsigned long long C type (beware: this type does not
have a correspondence on Windows systems) and it is effectively used to represent an UInt64
type.

H5T_FLOAT This includes the next datatypes:

H5T_NATIVE_FLOAT This represents a float C type and it is effectively used to represent an
Float32 type.

H5T_NATIVE_DOUBLE This represents a double C type and it is effectively used to represent an
Float64 type.

H5T_TIME This includes the next datatypes:

H5T_UNIX_D32BE This represents a POSIX time_t C type and it is effectively used to represent a
’Time32’ aliasing type, which corresponds to an Int32 type.

H5T_UNIX_D64BE This represents a POSIX struct timeval C type and it is effectively used to repre-
sent a ’Time64’ aliasing type, which corresponds to a Float64 type.

H5T_STRING The datatype used to describe strings in PyTables is H5T_C_S1 (i.e. a string C type) followed
with a call to the HDF5 H5Tset_size() function to set their length.

H5T_ARRAY This allows the construction of homogeneous, multidimensional arrays, so that you can in-
clude such objects in compound records. The types supported as elements of H5T_ARRAY data types
are the ones described above. Currently, PyTables does not support nested H5T_ARRAY types.

H5T_COMPOUND This allows the support of complex numbers. Its format is described below:

The H5T_COMPOUND type class contains two members. Both members must have the H5T_FLOAT
atomic datatype class. The name of the first member should be "r" and represents the real part. The
name of the second member should be "i" and represents the imaginary part. The precision property of
both of the H5T_FLOAT members must be either 32 significant bits (e.g. H5T_NATIVE_FLOAT) or
64 significant bits (e.g. H5T_NATIVE_DOUBLE). They represent Complex32 and Complex64 types
respectively.

Currently, PyTables does not support nested H5T_COMPOUND types, the only exception being sup-
porting complex numbers in Table objects as described above.



156 Appendix D. PyTables File Format

D.3.2 Array format

Mandatory attributes

The next attributes are mandatory for array structures:

CLASS Must be set to ’ARRAY’.

FLAVOR This is meant to provide the information about the kind of object kept in the Array, i.e. when the
dataset is read, it will be converted to the indicated flavor. It can take one the next string values:

"numarray" The read operations will return a numarray object.

"numpy" The read operations will return a NumPy object.

"numeric" The read operations will return a Numeric object.

"python" The read operations will return a Python list object in case the dataset has dimensionality.
If the dataset is an scalar, then an appropriate Python scalar will be returned instead.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string ’2.3’.

Storage Layout

An Array has a dataspace with a N-dimensional contiguous layout (if you prefer a chunked layout see
EArray below).

Datatypes supported

The elements of Array must have either HDF5 atomic data types or a compound data type represent-
ing a complex number. The atomic data types can currently be one of the next HDF5 data type classes:
H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported
for reading existing Array objects, but not for creating them. See the Table format description in sec-
tion D.3.1 for more info about these types.

In addition to the HDF5 atomic data types, the Array format supports complex numbers with the
H5T_COMPOUND data type class. See the Table format description in section D.3.1 for more info about
this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

D.3.3 CArray format

Mandatory attributes

The next attributes are mandatory for carray structures:

CLASS Must be set to ’CARRAY’.

FLAVOR This is meant to provide the information about the kind of objects kept in the CArray, i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take the same values as the Array
object.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string ’1.0’.

Storage Layout

An CArray has a dataspace with a N-dimensional chunked layout.



D.3. Mandatory attributes, storage layout and supported data types for Leaves 157

Datatypes supported

The elements of CArray must have either HDF5 atomic data types or a compound data type represent-
ing a complex number. The atomic data types can currently be one of the next HDF5 data type classes:
H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT and H5T_STRING. The H5T_TIME class is also supported
for reading existing CArray objects, but not for creating them. See the Table format description in sec-
tion D.3.1 for more info about these types.

In addition to the HDF5 atomic data types, the CArray format supports complex numbers with the
H5T_COMPOUND data type class. See the Table format description in section D.3.1 for more info about
this special type.

You should note that H5T_ARRAY class datatypes are not allowed in Array objects.

D.3.4 EArray format

Mandatory attributes

The next attributes are mandatory for earray structures:

CLASS Must be set to ’EARRAY’.

EXTDIM (Integer) Must be set to the extensible dimension. Only one extensible dimension is supported
right now.

FLAVOR This is meant to provide the information about the kind of objects kept in the EArray, i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take the same values as the Array
object (see D.3.2), except "Int" and "Float".

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string ’1.3’.

Storage Layout

An EArray has a dataspace with a N-dimensional chunked layout.

Datatypes supported

The elements of EArray are allowed to have the same data types as for the elements in the Array format.
They can be one of the HDF5 atomic data type classes: H5T_BITFIELD, H5T_INTEGER, H5T_FLOAT,
H5T_TIME or H5T_STRING, see the Table format description in section D.3.1 for more info about these
types. They can also be a H5T_COMPOUND datatype representing a complex number, see the Table format
description in section D.3.1.

You should note that H5T_ARRAY class data types are not allowed in EArray objects.

D.3.5 VLArray format

Mandatory attributes

The next attributes are mandatory for vlarray structures:

CLASS Must be set to ’VLARRAY’.

FLAVOR This is meant to provide the information about the kind of objects kept in the VLArray, i.e. when
the dataset is read, it will be converted to the indicated flavor. It can take one of the next values:

"numarray" The dataset will be returned as a numarray object.

"numpy" The dataset will be returned as a NumPy object.

"numeric" The dataset will be returned as an Numeric object.



158 Appendix D. PyTables File Format

"python" The dataset will be returned as a Python List object in case the dataset has dimensionality.
If the dataset is an scalar, then an appropriate Python scalar will be returned instead.

"Object" The elements in the dataset will be interpreted as pickled (i.e. serialized objects through the
use of the Pickle Python module) objects and returned as Python generic objects. Only one of
such objects will be deserialized per entry. As the Pickle module is not normally available in
other languages, this flavor won’t be useful in general.

"VLString" The elements in the dataset will be returned as Python String objects of any length, with
the twist that Unicode strings are supported as well (provided you use the UTF-8 codification,
see below). However, only one of such objects will be deserialized per entry.

TITLE A string where the user can put some description on what is this dataset used for.

VERSION Should contain the string ’1.2’.

Storage Layout

An VLArray has a dataspace with a 1-dimensional chunked layout.

Data types supported

The data type of the elements (rows) of VLArray objects must be the H5T_VLEN variable-length (or VL
for short) datatype, and the base datatype specified for the VL datatype can be of any atomic HDF5 datatype
that is listed in the Table format description section D.3.1. That includes the classes:

• H5T_BITFIELD

• H5T_INTEGER

• H5T_FLOAT

• H5T_TIME

• H5T_STRING

• H5T_ARRAY

They can also be a H5T_COMPOUND data type representing a complex number, see the Table format
description in section D.3.1 for a detailed description.

You should note that this does not include another VL datatype, or a compound datatype that does not
fit the description of a complex number. Note as well that, for Object and VLString special flavors, the
base for the VL datatype is always a H5T_NATIVE_UCHAR. That means that the complete row entry in the
dataset has to be used in order to fully serialize the object or the variable length string.

In addition, if you plan to use a VLString flavor for your text data and you are using ascii-7 (7 bits
ASCII) codification for your strings, but you don’t know (or just don’t want) to convert it to the required
UTF-8 codification, you should not worry too much about that because the ASCII characters with values in
the range [0x00, 0x7f] are directly mapped to Unicode characters in the range [U+0000, U+007F] and the
UTF-8 encoding has the useful property that an UTF-8 encoded ascii-7 string is indistinguishable from a
traditional ascii-7 string. So, you will not need any further conversion in order to save your ascii-7 strings and
have an VLString flavor.



159

Bibliography

ALTET, Francesc and Ivan VILATA, : Optimization of file openings in PyTables. This document explores the
savings of the opening process in terms of both CPU time and memory, due to the adoption of a LRU cache
for the nodes in the object tree.
URL http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf 5, 113

ASCHER, David, Paul F. DUBOIS, Konrad HINSEN, Jim HUGUNIN, and Travis OLIPHANT, : Numerical
Python. Package to speed-up arithmetic operations on arrays of numbers.
URL http://sourceforge.net/projects/numpy/ 4, 9, 139

CÁRABOS, Coop. V., : Vitables. A GUI for PyTables/HDF5 files. It is a graphical tool for browsing and
editing files in both PyTables and HDF5, formats.
URL http://www.carabos.com/products/vitables.html 6

DAVIS, Glenn, Russ REW, Steve EMMERSON, John CARON, and Harvey DAVIES, : Netcdf. Network Common
Data Form. An interface for array-oriented data access and a library that provides an implementation of
the interface.
URL http://www.unidata.ucar.edu/packages/netcdf/ 127

EWING, Greg, : Pyrex. A Language for Writing Python Extension Modules.
URL http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex 9

GAILLY, JeanLoup and Mark ADLER, : zlib. A Massively Spiffy Yet Delicately Unobtrusive Compression
Library. A standard library for compression purposes.
URL http://www.gzip.org/zlib/ 9, 105

GREENFIELD, Perry, Todd MILLER, Richard L. WHITE, et al., : Numarray. Reimplementation of Numeric
which adds the ability to efficiently manipulate large numeric arrays in ways similar to Matlab and IDL.
Among others, Numarray provides the record array extension.
URL http://stsdas.stsci.edu/numarray/ 4, 9, 82, 139

HINSEN, Konrad, : Scientific Python. Collection of Python modules useful for scientific computing.
URL http://starship.python.net/~hinsen/ScientificPython/ 127, 150

JONES, Eric, Travis OLIPHANT, Pearu PETERSON, et al., : Scipy. Scientific tools for Python. SciPy sup-
plements the popular Numeric module, gathering a variety of high level science and engineering modules
together as a single package.
URL http://www.scipy.org 150

MERTZ, David, : Objectify. On the ’Pythonic’ treatment of XML documents as objects(II). Article describing
XML Objectify, a Python module that allows working with XML documents as Python objects. Some of
the ideas presented here are used in PyTables.
URL http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.
html 5

NCSA, : What is HDF5? Concise description about HDF5 capabilities and its differences from earlier
versions (HDF4).
URL http://hdf.ncsa.uiuc.edu/whatishdf5.html 3, 119

http://pytables.sourceforge.net/doc/NewObjectTreeCache.pdf
http://sourceforge.net/projects/numpy/
http://www.carabos.com/products/vitables.html
http://www.unidata.ucar.edu/packages/netcdf/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex
http://www.gzip.org/zlib/
http://stsdas.stsci.edu/numarray/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://www-106.ibm.com/developerworks/xml/library/xml-matters2/index.html
http://hdf.ncsa.uiuc.edu/whatishdf5.html


160 Bibliography

OBERHUMER, Markus F.X.J., : LZO. A data compression library which is suitable for data de-/compression
in real-time. It offers pretty fast compression and extremly fast decompression with reasonable compression
ratio.
URL http://www.oberhumer.com/opensource/ 9, 105

OLIPHANT, Travis et al., : Numpy. Scientific Computing with Numerical Python. The latest and most powerful
re-implementation of Numeric to date. It implements all the features that can be found in Numeric and
numarray, plus a bunch of new others. In general, is more efficient as well.
URL http://numeric.scipy.org/ 4, 9, 139

REW, Russ, Mike FOLK, et al., : Netcdf-4. Network Common Data Form version 4. Merging the NetCDF and
HDF5 Libraries.
URL http://www.unidata.ucar.edu/software/netcdf/netcdf-4/ 127

RIGO, Armin, : Psyco. A Python specializing compiler. Run existing Python software faster, with no change
in your source.
URL http://psyco.sourceforge.net 112

SEWARD, Julian, : bzip2. A high performance lossless compressor. It offers very high compression ratios
within reasonable times.
URL http://www.bzip.org/ 9, 105

WILKE, Alexis, Jerry S., Kees ZEELENBERG, and Mathias MICHAELIS, : Gnuwin32. GNU (and other) tools
ported to Win32. GnuWin32 provides native Win32-versions of GNU tools, or tools with a similar open
source licence.
URL http://gnuwin32.sourceforge.net/ 11, 12

http://www.oberhumer.com/opensource/
http://numeric.scipy.org/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://psyco.sourceforge.net
http://www.bzip.org/
http://gnuwin32.sourceforge.net/

	I The PyTables Core Library
	Introduction
	Main Features
	The Object Tree

	Installation
	Installation from source
	Prerequisites
	PyTables package installation 

	Binary installation (Windows)
	Windows prerequisites
	PyTables package installation 


	Tutorials
	Getting started
	Importing tables objects
	Declaring a Column Descriptor
	Creating a PyTables file from scratch
	Creating a new group
	Creating a new table
	Reading (and selecting) data in a table
	Creating new array objects
	Closing the file and looking at its content

	Browsing the object tree 
	Traversing the object tree
	Setting and getting user attributes
	Getting object metadata
	Reading data from Array objects

	Commiting data to tables and arrays
	Appending data to an existing table
	Modifying data in tables
	Modifying data in arrays
	And finally... how to delete rows from a table

	Multidimensional table cells and automatic sanity checks
	Shape checking
	Field name checking
	Data type checking

	Exercising the Undo/Redo feature
	A basic example
	A more complete example

	Using enumerated types
	Enumerated columns
	Enumerated arrays

	Dealing with nested structures in tables
	Nested table creation
	Reading nested tables: introducing NestedRecArray objects
	Using Cols accessor
	Accessing meta-information of nested tables

	Other examples in PyTables distribution

	Library Reference
	tables variables and functions
	Global variables
	Global functions

	The File class
	File instance variables
	File methods
	File special methods

	The Node class
	Node instance variables
	Node methods

	The Group class
	Group instance variables
	Group methods
	Group special methods

	The Leaf class
	Leaf instance variables
	Leaf methods

	The Table class
	Table instance variables
	Table methods 
	Table special methods 
	The Row class

	The Cols class
	Cols instance variables
	Cols methods

	The Description class
	Description instance variables 
	Description methods

	The Column class
	Column instance variables 
	Column methods 
	Column special methods 

	The Array class
	Array instance variables
	Array methods
	Array special methods

	The CArray class
	CArray instance variables
	Example of use

	The EArray class
	EArray instance variables
	EArray methods

	The VLArray class
	VLArray instance variables
	VLArray methods
	VLArray special methods

	The UnImplemented class
	The AttributeSet class
	AttributeSet instance variables
	AttributeSet methods

	Declarative classes 
	The IsDescription class
	The Col class and its descendants 
	The Atom class and its descendants. 

	Helper classes
	The Filters class 
	The IndexProps class 
	The Index class
	The Enum class


	Optimization tips
	Informing PyTables about expected number of rows in tables
	Accelerating your searches
	In-kernel searches
	Indexed searches

	Compression issues
	Shuffling (or how to make the compression process more effective)
	Using Psyco
	Getting the most from the node LRU cache
	Selecting an User Entry Point (UEP) in your tree
	Compacting your PyTables files 


	II Complementary modules
	FileNode - simulating a filesystem with PyTables
	What is FileNode?
	Finding a FileNode node
	FileNode - simulating files inside PyTables
	Creating a new file node
	Using a file node
	Opening an existing file node
	Adding metadata to a file node

	Complementary notes
	Current limitations
	FileNode module reference
	Global constants
	Global functions
	The FileNode abstract class
	The ROFileNode class
	The RAFileNode class


	NetCDF - a PyTables NetCDF3 emulation API
	What is NetCDF?
	Using the tables.NetCDF module 
	Creating/Opening/Closing a tables.NetCDF file 
	Dimensions in a tables.NetCDF file 
	Variables in a tables.NetCDF file 
	Attributes in a tables.NetCDF file 
	Writing data to and retrieving data from a tables.NetCDF variable 
	Efficient compression of tables.NetCDF variables 

	tables.NetCDF module reference
	Global constants
	The NetCDFFile class
	The NetCDFVariable class

	Converting between true netCDF files and tables.NetCDF files 
	tables.NetCDF file structure 
	Sharing data in tables.NetCDF files over the internet with OPeNDAP 
	Differences between the Scientific.IO.NetCDF API and the tables.NetCDF API 


	III Appendixes
	Supported data types in PyTables
	Using nested record arrays
	Introduction
	NestedRecArray methods
	NestedRecord objects

	Utilities
	ptdump
	Usage
	A small tutorial on ptdump 

	ptrepack
	Usage
	A small tutorial on ptrepack 

	nctoh5
	Usage


	PyTables File Format
	Mandatory attributes for a File
	Mandatory attributes for a Group
	Mandatory attributes, storage layout and supported data types for Leaves 
	Table format
	Array format
	CArray format
	EArray format
	VLArray format




