[index] [finite-set] Algebra::Map
Map Class
The class which represents maps.
::[[x0 => y0, [x1 => y1, [x2 => y2, ...]]]]Returns the map which has values y0 at x0, y1 at x1, y2 at x2...
Exampel:
require "finite-map"
include Algebra
p Map[0 => 10, 1 => 11, 2 => 12] #=> {0 => 10, 1 => 11, 2 => 12}
p Map[{0 => 10, 1 => 11, 2 => 12}] #=> {0 => 10, 1 => 11, 2 => 12}
p Map.new(0 => 10, 1 => 11, 2 => 12) #=> {0 => 10, 1 => 11, 2 => 12}
p Map.new({0 => 10, 1 => 11, 2 => 12}) #=> {0 => 10, 1 => 11, 2 => 12}
p Map.new_a([0, 10, 1, 11, 2, 12]) #=> {0 => 10, 1 => 11, 2 => 12}::new([x0 => y0, [x1 => y1, [x2 => y2, ...]]])::new_a(a)::phi([t])Return the empty map (having empty set as domain). If t is given, target= is set by t.
Exampel:
p Map.phi #=> {}
p Map.phi(Set[0, 1]) #=> {}
p Map.phi(Set[0, 1]).target #=> {0, 1}::empty_set::singleton(x, y){x} and having value y
on it.target=(s)codomain=(s)targetcodomainsourceReturns the domain of self.
Example:
require "finite-map"
include Algebra
m = Map[0 => 10, 1 => 11, 2 => 12]
p m.source #=> {0, 1, 2}
p m.target #=> nil
m.target = Set[10, 11, 12, 13]
p m.target #=> {10, 11, 12, 13}domainphi([t])empty_setnullcall(x)act[]eachIterates for each [point, image] of the map.
Example:
require "finite-map" include Algebra Map[0 => 10, 1 => 11, 2 => 12].each do |x, y| p [x, y] #=> [1, 11], [0, 10], [2, 12] end
compose(other)Returns the composition map of self and other.
Example:
require "finite-map"
include Algebra
f = Map.new(0 => 10, 1 => 11, 2 => 12)
g = Map.new(10 => 20, 11 => 21, 12 => 22)
p g * f #=> {0 => 20, 1 => 21, 2 => 22}*dupappend!(x, y)Let the value of x be y.
Example:
require "finite-map"
include Algebra
m = Map[0 => 10, 1 => 11]
m.append!(2, 12)
p m #=> {0 => 10, 1 => 11, 2 => 12}[x] = yappend(x, y)include?(x)contains?(x)member?(a)Returns true if there is [x, y] s.t. the value of x
is y and [x, y] == a.
Example:
require "finite-map" include Algebra m = Map[0 => 10, 1 => 11] p m.include?(1) #=> true p m.member?([1, 11]) #=> true
has?image([s])inv_image(s)map_sReturns the set given by evaluation of the block, iterating over each pair
of [point, image].
Example:
require "finite-map"
include Algebra
p Map.new(0 => 10, 1 => 11, 2 => 12).map_s{|x, y| y - 2*x}
#=> Set[10, 9, 8]map_mReturns the map given by evaluation of the block, iterating over each pair
of [point, image]. The value of the block must be
the two-dimensional array [x, y].
Example:
require "finite-map"
include Algebra
p Map.new(0 => 10, 1 => 11, 2 => 12).map_m{|x, y| [y, x]}
#=> {10 => 0, 11 => 1, 12 => 2}inverseinv_cosetReterns the map corresponding each point to its set of inverse images.
Examepe:
require "finite-map"
include Algebra
m = Map[0=>0, 1=>0, 2=>2, 3=>2, 4=>0]
p m.inv_coset #=> {0=>{0, 1, 4}, 2=>{2, 3}}
m.codomain = Set[0, 1, 2, 3]
p m.inv_coset #=> {0=>{0, 1, 4}, 1=>{}, 2=>{2, 3}, 3=>{}}identity?surjective?injective?bijective?