[index] Algebra::PermutationGroup / Algebra::Permutation
This is the class of permutations. The elements are assumed to be the instances of Permutation.
::new(u, [g0, [g1, ...]])::unit_group(d)::unity(n)::perm(a)::symmetric(n)::alternate(n)::new(x)::[[n0, [n1, [n2, ..., ]]]]Returns the permutation [n0, n1, n2, ..., ].
Example:
a = Permutation[1, 2, 0] p a**2 #=> [2, 0, 1] p a**3 #=> [0, 1, 2]
::unity(d)::cyclic2perm(c, n)Returns the Permutation represented by c : the array of arrays of cyclic permutations, where n is the degree. This method is the inverse of decompose_cyclic.
Example:
Permutation.cyclic2perm([[1,6,5,4], [2,3]], 7) #=> [0, 6, 3, 2, 1, 4, 5] Permutation[0, 6, 3, 2, 1, 4, 5].decompose_cyclic #=> [[1,6,5,4], [2,3]]
unitypermdegreesizeeacheql?(other)==hash[i]callindex(i)right_act(other)(g.right_act(h))[x] == h[g[x]].*left_act(other)(g.left_act(h))[x] == g[h[x]].inverseinvsignconjugate(g)g * self * g.inv.decompose_cyclicto_mapdecompose_transposition