fastdep manual

Bart Vanhauwaert

bvh-cplusplus@irule.be
http://lwww.irule.be/bvh/

fastdep manual
by Bart Vanhauwaert

This document can be freely translated and distributed. It is released-under the LDP License.

Revision History

Revision 1 2002-10-28 Revised by: bvh
Initial version

Table of Contents

1. About fastdep and this MANUAL..........c..cceiiiiiicice e e s 1
B 2 T o U Y- Vo - SR 2
3. Writing a make-rule to generate dependency information.............ccccvvveeieiniiienecce s 3
4. Automatically regenerating dependency informationcccccveevvieiineiniene e 4
5. Adding an external dEPENUENCYcccovieirieiriieiree ettt 6
6. LINKS QNG FEFEIBINCES.i ettt ettt e et sb e bbb b eneeresbe e nans 7

List of Examples

3-1. Makefile fragment to generate dependencies from a number of SOUICES........ccccvvvveiviievieieiecieseniens 3
4-1. Makefile fragment to generate dependencies each time a source file changes (wrong)..........cccccevnee. 4
4-2. Makefile fragment to generate dependencies each time a source or included file changes (right).4
5-1. Adding an extra dependency t0 all targetS........ccoiriiiereieciesiercr e 6

Chapter 1. About fastdep and this manual

Fastdep generates dependency information for C of C++ files suitable for inclusion in makefiles. There
are two main advantages in using it instead of the normal programs.

- It’s fast due to a unique parse-once technology.
- It has special provision for robust dependency regeneration.
This manual assumes basic knowledge of make and the build process for C or C++ programs.

I am not a native English speaker, nor an experienced documentation writer. Thus it should not come as a
surprise to you if this text contains: typographical, grammatical or even simple spelling errors. To
overcome this problem | am actively looking for help, suggestions or improvements to this document
from my readers. If you are willing to do so, send email to bvh-cplusplus@irule.be
(mailto:bvh-cplusplus@irule.be)- to make this guide a great resource for everyone trying to learn fastdep.

Chapter 2. Basic usage

The commandline synopsis for basic usage is

fastdep [--version] sourcefile...

fastdep --version will show version information and a short copyright statement and exit immediatly.

To produce dependency information for two files named filel.cc and file2.cc, execute fastdep filel.cc
file2.cc from the shell.

The result will be written to standard output. For example it could be

filel.o: filel.cc \
header 1. h \
header2. h \
header 3. h

file2.0: file2.cc \
header 1. h \
header 3. h \
header 4. h

To save the output, use your shell to redirect standard output to a file which you can include in a makefile.

Chapter 3. Writing a make-rule to generate
dependency information

In general it is much more convenient to let your makefiles generate their own dependency information
instead of doing it by hand as described in the previous chapter.

Let’s say we have a variable in our makefile that lists all source files, SOURCES. We also want to save
dependency information to a file named . depend. Here is how to write a make rule to accomplish just
that.

Example 3-1. Makefile fragment to generate dependencies from a number of sources

. depend:
fastdep $(SOURCES) > . depend

-include . depend

It adds a new target . depend, which is file to hold the dependency information generated by fastdep for
all files listed in SOURCES. The fragment also includes this file in the Makefile itself when it exist. If not
make will generate it first (using the rule we specified), restart itself and include it next.

Now each time we want to regenerate dependencies, all we have to do is delete the . depend file and
launch make.

Chapter 4. Automatically regenerating
dependency information

Every time you change a dependency relationship (for example when you include an extra header in
some source file), you have to regenerate the dependency information manually by executing make
.depend (as mentioned in the previous chapter deleting . depend also works)

Off course this is very error-prone. Why don’t we let make regenerate the dependencies everytime one of
the source files changes? Easy enough :

Example 4-1. Makefile fragment to generate dependencies each time a source file changes (wrong).

. depend: $(SOURCES)
fastdep $(SOURCES) > . depend

-include . depend

This seems to work fine, but in fact doesn’t. Suppose one (or more) of our source files in SOURCES
includes a certain header f oo. h. Now imagine that during an edit-compile cycle we don’t change
anything in the source files, but we added a new include of bar . h in f 0o. h. This means that the
dependencies for each source file that includes f oo. h must change. However since none of the source
files themself change, make will find that . depend is still up to date and not regenerate it. The end result
is incorrect dependency information.

To summarize, the dependency information of a source file not only depends on the source file itself, but
also on all files it includes. Hence the earlier makefile fragment is incorrect.

To solve this problem, the info manual of GNU make proposes a solution where the output of the
dependency generator is modified by piping it through sed. While this works for normal dependency
generators like the GNU C/C++ compiler (and still works with fastdep), there is a much more elegant
solution in fastdep. By adding the --remakedeptarget=file command line option fastdep will also emit a
suitable dependency line for its own output.

Example 4-2. Makefile fragment to generate dependencies each time a source or included file
changes (right).

. depend:
fastdep --renakedept arget=. depend $(ALLSOURCES) > . depend

-include dependi nfo

The . depend file will now look like this :

filel.o: filel.cc \
header 1. h \
header2. h \
header 3. h

file2.0: file2.cc \
header 1. h \
header 3. h \

Chapter 4. Automatically regenerating dependency Information

header4. h \
.depend: \
filel.cc \
header 1. h \
header2. h \
header 3. h \
file2.cc \
header4. h \

which is exactly how we want it to be.

Chapter 5. Adding an external dependency

Suppose you change your Makefile. For example you add -O2 to the CFLAGS variable, because finally
it’s release time. Of course all object files have to be regenerated. The classical way to do that is

meke cl ean
make

But isn’t it easier to let all .o files depend on the Makefile itself? So that once you touch the makefile, all
objects are immediatly out of date and thus regenerated. That’s what the --extraremakedep= option is for.

Example 5-1. Adding an extra dependency to all targets

. depend:
fastdep --extraremakedep=Makefile \
- -renakedept ar get =. depend $(SOURCES) > . depend

-include . depend

Here is a possible result

filel.o: filel.cc \
header 1. h \
header2. h \
header 3. h

file2.0: file2.cc \
header 1. h \

header 3. h \
header4. h \
.depend: \

filel.cc \
header 1. h \
header2. h \
header 3. h \
file2.cc \
header4. h \
Makefile

Chapter 6. Links and references

fastdep

Homepage (news and download) : http://www.irule.be/bvh/c++/fastdep/

GNU compiler collection (gcc)
Homepage : http://www.gnu.org/software/gcc/gee.html

Manual : http://www.gnu.org/software/gcc/onlinedocs/

GNU make
Homepage : http://www.gnu.org/software/make/make.html

Manual : http://www.gnu.org/manual/make/html_chapter/make_toc.html

