
|
Go to the first, previous, next, last section, table of contents.
- gcd(poly1,poly2[,mod])
-
- gcdz(poly1,poly2)
-
:: poly1 ¤È poly2 ¤Î gcd.
- return
-
¿¹à¼°
- poly1,poly2
-
¿¹à¼°
- mod
-
ÁÇ¿ô
-
Æó¤Ä¤Î¿¹à¼°¤ÎºÇÂç¸øÌó¼° (GCD) ¤òµá¤á¤ë.
-
gcd() ¤ÏÍÍý¿ôÂξå¤Î¿¹à¼°¤È¤·¤Æ¤Î GCD ¤òÊÖ¤¹.
¤¹¤Ê¤ï¤Á, ·ë²Ì¤ÏÀ°¿ô·¸¿ô¤Ç, ¤«¤Ä·¸¿ô¤Î GCD
¤¬ 1 ¤Ë¤Ê¤ë¤è¤¦¤Ê¿¹à¼°, ¤Þ¤¿¤Ï, ¸ß¤¤¤ËÁǤξì¹ç¤Ï 1 ¤òÊÖ¤¹.
-
gcdz() ¤Ï poly1, poly2 ¤È¤â¤ËÀ°¿ô·¸¿ô¤Î¾ì¹ç¤Ë,
À°¿ô´Ä¾å¤Î¿¹à¼°¤È¤·¤Æ¤Î GCD ¤òÊÖ¤¹.
¤¹¤Ê¤ï¤Á, gcd() ¤ÎÃͤË, ·¸¿ôÁ´ÂΤÎÀ°¿ô GCD¤ÎÃͤò³Ý¤±¤¿¤â¤Î¤òÊÖ¤¹.
-
°ú¿ô mod ¤¬¤¢¤ë»þ,
gcd() ¤Ï GF(mod) ¾å¤Ç¤Î GCD ¤òÊÖ¤¹.
-
gcd() , gcdz() Extended Zassenhaus ¥¢¥ë¥´¥ê¥º¥à¤Ë¤è¤ë.
͸ÂÂξå¤Î GCD ¤Ï PRS ¥¢¥ë¥´¥ê¥º¥à¤Ë¤è¤Ã¤Æ¤¤¤ë¤¿¤á, Â礤ÊÌäÂê,
GCD ¤¬ 1 ¤Î¾ì¹ç¤Ê¤É¤Ë¤ª¤¤¤Æ¸úΨ¤¬°¤¤.
[0] gcd(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
x^3+3*x^2+3*x+1
[1] gcdz(12*(x^2+2*x+1)^2,18*(x^2+(y+1)*x+y)^3);
6*x^3+18*x^2+18*x+6
[2] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y));
x^2-y^2
[3] gcd((x+y)*(x-y)^2,(x+y)^2*(x-y),2);
x^3+y*x^2+y^2*x+y^3
- »²¾È
-
section
igcd ,igcdcntl .
Go to the first, previous, next, last section, table of contents.
|