The Dialog Model in the DeViSorGrid 2 Application

Dominik Goddeke
September 19th, 2001

This document describes the model we designed and implemented for the dialogs in the DeViSoRGrid
2 application. After a short introduction, we describe the docking mechanism we implemented for our
dialogs. Special focus is set on implementational details to make sure the reader is able to add his own
dialogs to the application whenever neccessary.

Contents

1 Motivation 2

2 Structure of the Docking Functionality 2
2.1 The Docking Model 2
2.2 The Abstract Superclass 2
2.3 Subclass Structure 3

3 The DialogManager class 3
3.1 General Idea e 3
3.2 Methods Provided by the DialogManager Explained in Detail 3

4 Including Dialogs into the Application 3

1 MOTIVATION 2
1 Motivation

When we designed the new version of the DeViSoRGrid 2 application, we had three goals in mind
concerning dialogs:

e Dialogs should be dockable, this means it should be possible to "glue” dialogs to the border of
the MainFrame so that they trail the MainFrame’s movements on the screen. Additionally, dialogs
should reappear at their last position whenever they are displayed again.

e The whole application should provide a pluggable look and feel, thus the visible dialogs should
change their look and feel whenever the main window does so.

e Dialogs should be displayed fast, we didn’t want to wait all day while the GUI of the dialogs is
dynamically created every time the dialog is displayed.

So, it appeared only naturally that we needed a dialog model which allows for easy access to all dialogs
at any time. In a preliminary version, we implemented all dialogs as static, but this approach resulted
in a lot of redundant code, thus not following the object oriented programming paradigm. The model
now implemented uses one central storage class for all dialogs, only through which dialogs are accessible.
Operations which apply to all dialogs are implemented only once in this class. For example, all dialog
initialisation is collected in one method of this class, allowing for fast displaying time at the cost of a
slightly longer startup time and slightly higher memory requirements, as all dialogs are stored in memory
at all times. But this proved to be no major disadvantage.

2 Structure of the Docking Functionality

The idea behind our Dockable Dialogs is the following: Some functions require a dialog to be displayed
at all times, for example when you are setting edge stati, you click on an edge, then change something
in the dialog, click on another edge and so on. If the dialog would just be displayed centered on the
MainFrame, it would disappear behind the MainFrame every time you click somewhere in the MainFrame,
and if it were modal, this functionality would be impossible to achive. So, we wanted the dialog to appear
at one fixed position (which the user can change of course), even after restarting the program. Resizing
and moving of the MainFrame should result in a trailing movement of the dialog.

2.1 The Docking Model

When a dialog is displayed for the first time, it appears at a fixed initial position. When the user moves
the dialog, it can be docked (or ”glued”) to the border of the MainFrame. To do so, the center of the dialog
has to be moved anywhere near the border, the default dock margin is ten per cent of the MainFrame’s
size in each direction. When the dialog is docked, all MainFrame movements result in a corresponding
movement of the dialog as well, so that the relative position of the dialog to the MainFrame does not
change. When a dialog is docked, it is even moved when it is not visible. Its last position is stored
when the user saves his default options file and restored when it is displayed again. When a dialog is not
docked, it will appear at its initial position, and it won’t trail the MainFrame’s movements.

2.2 The Abstract Superclass

The trailing mechanism is implemented in an abstract superclass called DockableDialog. This class
provides the neccessary methods which only need to be called from the MoveListener of the MainFrame.
Technically, these methods are pretty straight-forward, although the implementation proved to be a
bit tricky. We recommend taking a look at the code if you want to know more: First, the necces-
sary attributes are declared, followed by a couple of getters and setters. The actual docking meth-
ods are called calcDockable() and calcPosition(), and of course some functionality is put in the

3 THE DIALOGMANAGER CLASS 3

DockableDialogMoveListener, an anonymous inner class. For usability reasons, we also added a method
called rePosition(), which basically moves the dialog to its newly calculated position.

2.3 Subclass Structure

The subclasses which actually implement some application functionality must extend the DockableDialog
abstract superclass. The only methods they must implement are getInitialPosition() which returns
the dialog’s initial position, and refreshGUI(), which might not even be neccessary. We added this
method nonetheless, because we needed one central method to be called when a dynamic change of the
dialog becomes neccessary. A little example will explain this: Assume that a dialog containing a combo
box to select boundaries from is visible, and that the user presses the new boundary button in the toolbar.
As a result, the combo box in the dialog would no longer contain valid data, so it has to be refreshed. By
putting this ”refreshment code” into the mentioned method, all that has to be done in the event handler
of the new boundary operation is call this method for all dialogs affected.

3 The DialogManager class

In this section, the central dialog managing and storing class be be explained in full detail. After this
section, you will be able to follow the full-scale example presenting in the last section of this paper.

3.1 General Idea

To avoid redundant code at multiple locations throughout the application, we decided to implement one
central storage and management class for all dialogs of the application. In this class, methods for the
following tasks are provided: initialising the dialogs, extracting the docking information from the Options
class, writing back docking information to the Options class, accessing single dialogs through a unique
ID, and refreshing the GUI of all dialogs if neccessary.

3.2 Methods Provided by the DialogManager Explained in Detail

Constructor The constructor just initialises the array the dialogs are stored in and sets several ref-
erences correctly. It is extremely important that the DialogManager is created only after the
ControlCenter and Mainframe have already been created.

initDialogs() This method creates an instance of each dialog registered with the DialogManager and
stores it in the array. Afterwards, the docking information is extracted from the Options class and
each dialog’s position is restored accordingly.

hide(int) and hideAl1() These methods are the counterpart to the initDialogs () method, the dock-
ing information of a single or of all dialogs are written back to the Options instance.

refreshA11GUI() This method is pure convenience: It just broadcasts the refresh call to all dialogs
registered with the DialogManager.

refreshDialogs() This method again is pure convenience: It hides all dialogs (thus storing docking
information), recreates their GUI, and displays those dialogs again on the screen that were visible
before. This is extremely practical when the look&feel of the application is changed.

4 Including Dialogs into the Application

In this final section, we will work through a full-scale example of creating a new dockable dialog and
adding it to the application:

4 INCLUDING DIALOGS INTO THE APPLICATION 4

1.

Create a new class (in the devisor2.grid.GUI.dialogs package). Without loss of generality, let
us assume this class is called ExampleDialog. Make sure this class extends the DockableDialog
superclass. Implement the two methods getInitialPosition() (note that the position is given
relative to the MainFrame’s top left corner) and refreshGUI (), for which in this example an empty
implementation will suffice. Feel free to create as much GUI as you want. Note that you have access
to the MainFrame and the ControlCenter of the application via the parent and cc attributes
respectively.

. To register your new dialog with the DialogManager, there is not much to do:

e Increment the DIALOGCOUNT variable by one.
e Create a unique ID for the dialog by adding the following line of code:
public static final int EXAMPLEDIALQOG = xyz;
where xyz is the successor of the last integer already used as an ID for a dialog.
e Use this ID to add the initialisation of your dialog to the initDialogs() method:
dialogs [EXAMPLEDIALOG] = new ExampleDialog(parent);

e That’s it, the dialog manager will take care of creating the neccessary entries in the Options
class during runtime.

. Whenever you want to display your new dialog, all you need is a method call like this:

cc.dm.get (cc.dm.EXAMPLEDIALOG).setVisible (true);

where dm is a reference to the global DialogManager instance of the application.

. Hiding the dialog is just as easy:

cc.dm.hide (cc.dm.EXAMPLEDIALQOG) ;

. If you need to access methods from the dialog, it should be obvious that this can be accomplished

just like the call to the setVisible () method above. If you need to call methods unique in your
dialog and not part of the DockableDialog interface, use a class cast like this:

ExampleDialog dialog = (ExampleDialog)cc.dm.get (cc.dm.EXAMPLEDIALQG);
dialog.myMethod (myParameter);

. Last but not least, compile the application. Make sure to display the dialog once to check if it

complies to your expectations. The docking information of the new dialog will automatically be
saved to disk when you shut down the application.

