Algorithm I (Treap Insertion). Given a set of nodes which form a treap \(T \), and a key to insert \(K \), this algorithm will insert the node into the treap while maintaining it’s heap properties. Each node is assumed to contain \(\text{KEY} \), \(\text{PRIO} \), \(\text{LLINK} \), \(\text{RLINK} \), and \(\text{PARENT} \) fields. For any given node \(N \), \(\text{KEY}(N) \) gives the key field of \(N \), \(\text{PRIO}(N) \) gives the priority field of \(N \), \(\text{LLINK}(N) \) and \(\text{RLINK}(N) \) are pointers to \(N \)’s left and right subtrees, respectively, and \(\text{PARENT}(N) \) is a pointer to the node of which \(N \) is a subtree. Any or all of these three link fields may be \(\Lambda \), which for \(\text{LLINK}(N) \) respectively, and \(\text{PARENT}(N) \) is a pointer to the node of which \(N \) is a subtree. You can find an implementation of this algorithm, as well as many others, in libdict, which is available on the web at http://www.crazycoder.org/libdict.html.

1. [Initialize.] Set \(N \leftarrow \text{ROOT}(T) \), \(P \leftarrow \Lambda \).
2. [Find insertion point.] If \(N = \Lambda \), go to step I3. If \(K = \text{KEY}(N) \), the key is already in the treap and the algorithm terminates with an error. Set \(P \leftarrow N \); if \(K < \text{KEY}(N) \), then set \(N \leftarrow \text{LLINK}(N) \), otherwise set \(N \leftarrow \text{RLINK}(N) \). Repeat this step.
3. [Insert.] Set \(N \leftarrow \text{AVAIL} \). If \(N = \Lambda \), the algorithm terminates with an out of memory error. Set \(\text{KEY}(N) \leftarrow K \), \(\text{LLINK}(N) \leftarrow \text{RLINK}(N) \leftarrow \Lambda \), and \(\text{PARENT}(N) \leftarrow P \). Set \(\text{PRIO}(N) \) equal to a random integer. If \(P = \Lambda \), set \(\text{ROOT}(T) \leftarrow N \), and go to step I5. If \(K < \text{KEY}(P) \), set \(\text{LLINK}(P) \leftarrow N \); otherwise, set \(\text{RLINK}(P) \leftarrow N \).
4. [Sift up.] If \(P = \Lambda \) or \(\text{PRIO}(P) < \text{PRIO}(N) \), go to step I5. If \(\text{LLINK}(P) = N \), rotate \(P \) right; otherwise, rotate \(P \) left. Then set \(P \leftarrow \text{PARENT}(N) \), and repeat this step.
5. [All done.] The algorithm terminates successfully.

Rotations

Algorithm R (Right Rotation). Given a treap \(T \) and a node in the treap \(N \), this routine will rotate \(N \) right.

1. [Do the rotation.] Set \(L \leftarrow \text{LLINK}(N) \) and \(\text{LLINK}(N) \leftarrow \text{RLINK}(L) \). If \(\text{RLINK}(L) \neq \Lambda \), then set \(\text{PARENT}(ext{RLINK}(L)) \leftarrow N \). Set \(P \leftarrow \text{PARENT}(N) \), \(\text{PARENT}(L) \leftarrow P \). If \(P = \Lambda \), then set \(\text{ROOT}(T) \leftarrow L \); if \(P \neq \Lambda \) and \(\text{LLINK}(P) = N \), set \(\text{LLINK}(P) \leftarrow L \), otherwise set \(\text{RLINK}(P) \leftarrow L \). Finally, set \(\text{RLINK}(L) \leftarrow N \), and \(\text{PARENT}(N) \leftarrow L \).

The code for a left rotation is symmetric. At the risk of being repetitive, it appears below.

Algorithm L (Left Rotation). Given a treap \(T \) and a node in the treap \(N \), this routine will rotate \(N \) left.

1. [Do the rotation.] Set \(R \leftarrow \text{RLINK}(N) \) and \(\text{RLINK}(N) \leftarrow \text{LLINK}(R) \). If \(\text{LLINK}(R) \neq \Lambda \), then set \(\text{PARENT}(\text{LLINK}(R)) \leftarrow N \). Set \(P \leftarrow \text{PARENT}(N) \), \(\text{PARENT}(R) \leftarrow P \). If \(P = \Lambda \), then set \(\text{ROOT}(T) \leftarrow R \); if \(P \neq \Lambda \) and \(\text{LLINK}(P) = N \), set \(\text{LLINK}(P) \leftarrow R \), otherwise set \(\text{RLINK}(P) \leftarrow R \). Finally, set \(\text{LLINK}(R) \leftarrow N \), and \(\text{PARENT}(N) \leftarrow R \).