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1 Introduction

Twelf is the current version of a succession of implementations of the logical framework
LF. Previous systems include Elf (which provided type reconstruction and the operational
semantics reimplemented in Twelf) and MLF (which implemented module-level constructs
loosely based on the signatures and functors of ML still missing from Twelf).

Twelf should be understood as research software. This means comments, suggestions,
and bug reports are extremely welcome, but there are no guarantees regarding response
times. The same remark applies to these notes which constitute the only documentation
on the present Twelf implementation.

For current information including download instructions, publications, and mailing list,
see the Twelf home page at http://www.cs.cmu.edu/~twelf/. This User’s Guide is pub-
lished as

Frank Pfenning and Carsten Schuermann
Twelf User’s Guide
Technical Report CMU-CS-98-173, Department of Computer Science,
Carnegie Mellon University, November 1998.

Below we state the typographic conventions in this manual.

code for Twelf or ML code

‘samp’ for characters and small code fragments

metavar for placeholders in code

keyboard for input in verbatim examples

〈key〉 for keystrokes

math for mathematical expressions

emph for emphasized phrases

File names for examples given in this guide are relative to the main directory of the
Twelf installation. For example ‘examples/guide/nd.elf’ may be found in
‘/usr/local/twelf/examples/guide/nd.elf’ if Twelf was installed into the
‘/usr/local/’ directory.

1.1 New Features

The current version 1.4 from December 27, 2002 incorporates the following major changes
from Twelf 1.3 from September 13, 2000.

World Checking (see Section 9.1 [Regular Worlds], page 47).
World checking verifies regularity of the parameters and hypothesis that can
be introduced by terms in a signature. The new declarations are %block and
%worlds. This formally checks part of the adequacy theorem that is usually
left implicit in the encoding and is is used centrally by the coverage checker.

Coverage and Totality Checking (see Chapter 9 [Coverage], page 47, see Section 9.3
[Totality], page 50).

Proofs of meta-theorems given in relational form can now be verified if they are
of order 2 or less. The new relevant declarations are %covers and %total. The
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former can also be used to check that sets of patterns in the arguments of a
type family are exhaustive.

Mode Checking (see Chapter 7 [Modes], page 37)
Mode checking has been extended so that multiple modes can be checked for the
same predicate, even though not simultaneously. This allows certain relations
to serve as proofs for biconditional meta-theorems. Also, some predicates in
constraint domains can have multiple modes simultaneously in effect.

Tabled Search (see Section 5.9 [Tabled Logic Programming], page 26)
An experimental logic programming engine for tabled logic programming is
available in this release. The corresponding declarations are %tabled a (to
declare a type family to be tabled) and %querytabled to start tabled search.

Deterministic Search (see Section 5.8 [Deterministic Type Families], page 25)
Type families can be declared deterministic for search, which means that af-
ter the first solution has been found, backtracking will not find any further
solutions. The relevant declaration is %deterministic a.

Family-Level Definitions (see Section 5.7 [Clause Definitions], page 25)
Twelf now permits family-level definitions that are opaque to logic programming
execution. However, not all aspects of the present release handle them properly,
so they should be considered an experimental feature. Furthermore, defined
constants will now be used for logic programming search when prefixed with
%clause.

Tracing Term Reconstruction (see Section 4.7 [Tracing Reconstruction], page 17)
Term reconstruction can print each typing judgment it establishes in order to
help diagnose subtle type errors or ambiguities.

Portability (see Chapter 14 [Installation], page 83)
Twelf has been ported to be compliant with the Definition of Standard ML in
its 1997 revision. As a result, it now supports Poly/ML and MLton in addition
to Standard ML of New Jersey (SML/NJ).

1.2 Quick Start

Assuming you are running on a Unix system with SML of New Jersey 110.0.3 already
installed (see Chapter 14 [Installation], page 83) you can build Twelf as follows. Here ‘%’
is assumed to be the shell prompt. You may need to edit the file ‘Makefile’ to give the
proper location for sml.

% gunzip twelf-1-4.tar.gz
% tar -xf twelf-1-4.tar
% cd twelf
% make
% bin/twelf-server
Twelf 1.4, Dec 27 2002
%% OK %%

For SML/NJ version 110.20 or greater, use make -f smlnj/Makefile. For Poly/ML use
make -f polyml/Makefile. For MLton use make -f mlton/Makefile.
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You can now load the examples used in this guide and pose an example query as shown
below. The prompt from the Twelf top-level is ‘?-’. To drop from the Twelf top-level to
the ML top-level, type C-c (〈CTRL〉 c). To exit the Twelf server you may issue the quit
command or type C-d (〈CTRL〉 c).

make examples/guide/sources.cfg
top
?- of (lam [x] x) T.
Solving...
T = arrow T1 T1.
More? y
No more solutions
?- C-c
interrupt
%% OK %%
quit
%
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2 Lexical Conventions

Lexical analysis of Twelf has purposely been kept simple, with few reserved characters
and identifiers. As a result one may need to use more whitespace to separate identifiers
than in other languages. For example, ‘A->B’ or ‘A+B’ are single identifiers, while ‘A -> B’
and ‘A + B’ both consist of 3 identifiers.

During parsing, identifiers are resolved as reserved identifiers, constants, bound variables,
or free variables, following the usual rules of static scoping in lambda-calculi.

2.1 Reserved Characters

The following table lists the reserved characters in Twelf.

‘:’ colon, constant declaration or ascription

‘.’ period, terminates declarations

‘(’ ‘)’ parentheses, for grouping terms

‘[’ ‘]’ brackets, for lambda abstraction

‘{’ ‘}’ braces, for quantification (dependent function types)

whitespace
separates identifiers; one of space, newline, tab, carriage return, vertical tab or
formfeed

‘%’ introduces comments or special keyword declarations

‘%whitespace’ ‘%%’
comment terminated by the end of the line, may contain any char-
acters

‘%{’ ‘}%’ delimited comment, nested ‘%{’ and ‘}%’ must match

‘%keyword’
various declarations

‘%.’ end of input stream

‘"’ doublequote, disallowed

other printing characters
identifier constituents

2.2 Identifiers

All printing characters that are not reserved can be included in identifiers, which are
separated by whitespace or reserved characters. In particular, A->B is an identifier, whereas
A -> B stands for the type of functions from A to B.

An uppercase identifier is one which begins with an underscore ‘_’ or a letter in the range
‘A’ through ‘Z’. A lowercase identifier begins with any other character except a reserved
one. Numbers also count as lowercase identifiers and are not interpreted specially. Free
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variables in a declaration must be uppercase, bound variables and constants may be either
uppercase or lowercase identifiers.

There are also a small number of reserved identifiers with a predefined meaning which
cannot be changed. Keep in mind that these can be constituents of other identifers which
are not interpreted specially.

‘->’ function type

‘<-’ reverse function type

‘_’ hole, to be filled by term reconstruction

‘=’ definition

‘type’ the kind type

Constants have static scope, which means that they can be shadowed by subsequent
declarations. A shadowed identifier (which can no longer be referred to in input) is printed
as %id%. The printer for terms renames bound variables so they do not shadow constants.

Free uppercase identifiers in declarations represent schematic variables. In order to
distinguish them from other kinds of variables and constants they are printed as ‘’id’
(backquote, followed by the identifer name) in error messages.
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3 Syntax

In LF, deductive systems are represented by signatures consisting of constant declara-
tions. Twelf implements declarations in a straightforward way and generalizes signatures by
also allowing definitions, which are semantically transparent. Twelf currently does not have
module-level constructs so that, for example, signatures cannot be named. Instead, multiple
signatures can be manipulated in the programming environment using configurations (see
Section 11.1 [Configurations], page 61).

The LF type theory which underlies LF is stratified into three levels: objects M and
N , types A and B, and kinds K. Twelf does not syntactically distinguish these levels and
simply uses one syntactic category of term. Similarly, object-level constants c and type-level
constants a as well as variables share one name space of identifiers.

In explanations and examples we will use letters following the mathematical conventions
above to clarify the roles of various terms. We also use U and V to stand for arbitrary
terms.

3.1 Grammar

The grammar below defines the non-terminals sig, decl, term and uses the terminal
id which stands for identifers (see Section 2.2 [Identifiers], page 5). The comments show
the meaning in LF. There are various special declarations %keyword such as %infix or
%theorem which are omitted here and detailed in the appropriate sections.
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sig ::= % Empty signature
| decl sig % Constant declaration

decl ::= id : term. % a : K or c : A
| defn. % definition, usually d : A = M
| %abbrev adecl. % abbreviation
| %infix ixdecl. % operator declaration
| %prefix pxdecl. % operator declaration
| %postfix pxdecl. % operator declaration
| %name namepref. % name preference declaration
| %query qdecl. % query declaration
| %clause defn. % clause definition
| sdecl. % solve declaration
| %tabled id. % table declaration
| %querytabled qtdecl % tabled query declaration
| %deterministic ddecl. % deterministic declaration
| %mode mdecl. % mode declaration
| %terminates tdecl. % termination declaration
| %reduces rdecl. % reduction declaration
| %block id : bdecl. % block declaration
| %worlds wdecl. % worlds declaration
| %total tdecl. % totality declaration
| %freeze ids. % freeze declaration
| %theorem thdecl. % theorem declaration
| %prove pdecl. % prove declaration
| %establish pdecl. % prove declaration, do not use as lemma later
| %assert callpats. % assert theorem (requires Twelf.unsafe)
| %use domain. % installs constraint domain

defn ::= id : term = term % d : A = M or d : K = A
| id = term % d = M or d = A
| _ : term = term % anonymous definition, for type-checking
| _ = term % anonymous definition, for type-checking

sdecl ::= %define binding sdecl % term binding
| %solve id : term % solve with proof term
| %solve _ : term % solve without proof term

ids ::= % empty sequence
| id ids % identifier follwed by more
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term ::= type % type
| id % variable x or constant a or c
| term -> term % A -> B
| term <- term % A <- B, same as B -> A
| {id : term} term % Pi x : A. K or Pi x : A. B
| [id : term] term % lambda x : A. B or lambda x : A. M
| term term % A M or M N
| term : term % explicit type ascription
| _ % hole, to be filled by term reconstruction
| {id} term % same as {id:_} term
| [id] term % same as [id:_] term

The constructs {x:U} V and [x:U] V bind the identifier x in V, which may shadow other
constants or bound variables. As usual in type theory, U -> V is treated as an abbreviation
for {x:U} V where x does not appear in V. However, there is a subtlety in that the latter
allows an implicit argument (see Section 4.2 [Implicit Arguments], page 13) to depend on
x while the former does not.

In the order of precedence, we disambiguate the syntax as follows:

1. Juxtaposition (application) is left associative and has highest precedence.

2. User declared infix, prefix, or postfix operators (see below).

3. ‘->’ is right and ‘<-’ left associative with equal precedence.

4. ‘:’ is left associative.

5. ‘{}’ and ‘[]’ are weak prefix operators.

For example, the following are parsed identically:

d : a <- b <- {x} c x -> p x.
d : ({x} c x -> p x) -> b -> a.
d : ((a <- b) <- ({x:_} ((c x) -> (p x)))).

3.2 Constructor Declaration

New type families or object constructors can be introduced with

condec ::= id : term. % a : K or c : A

Here a stands for a type family and K for its kind, whereas c is an objects constructor
and A its type. Identifiers are resolved as follows:

1. Any identifier x may be bound by the innermost enclosing binder for x of the form
{x:A} or [x:A].

2. Any identifer which is not explicitly bound may be a declared or defined constant.

3. Any uppercase identifier, that is, identifier starting with ‘_’ (underscore) or an upper
case letter, may be a free variable. Free variables are interpreted universally and their
type is inferred from their occurrences (see Chapter 4 [Term Reconstruction], page 13).

4. Any other undeclared identifier is flagged as an error.
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3.3 Definitions

Twelf supports notational definitions and abbreviations. Semantically, both are com-
pletely transparent, that is, both for type checking and the operational semantics, definitions
may be expanded.

adecl ::= id : term = term % d : A = M
| id = term % d = M

defn ::= adecl. % definition
| %abbrev adecl. % abbreviation

where the second form of declaration is equivalent to id : _ = term. Definitions or abbre-
viations at the level of type families are permitted, but are somewhat experimental in the
present release.

In order to avoid the expansion of defined constants as much as possible, declarations id
: term = term. must be strict (see Section 4.4 [Strict Definitions], page 15). A definition
of a constant c is strict if all arguments to c (implicit or explicit) have at least one strict
occurrence (see Section 4.3 [Strict Occurrences], page 14) in the right-hand side of the defi-
nition, and the right-hand side contains at least one constant. In practice, most notational
definitions are strict. For some examples, see Section 3.6 [Sample Signature], page 11 and
Section 4.4 [Strict Definitions], page 15. Twelf tries to preserve strict definitions as much
as possible, instead of expanding them.

The %abbrev declaration defines an abbreviation which need not be strict. However, it
will be expanded immediately upon parsing and will not be used in output.

The power of definitions in Twelf, however, is severely limited by the lack of recursion.
It should only be thought of as notational definition, not as a computational mechanism.
Complex operations need to be defined as logic programs, taking advantage of the opera-
tional semantics assigned to signatures (see Chapter 5 [Logic Programming], page 19).

3.4 Operator Declaration

The user may declare constants to be infix, prefix, or postfix operators. Operator prece-
dence properties are associated with constants, which must therefore already have been
declared with a type or kind and a possible definition. It is illegal to shadow an infix,
prefix, or postfix operator with a bound variable. We use nat for the terminal natural
numbers.

assoc ::= none % not associative
| left % left associative
| right % right associative

prec ::= nat % 0 <= prec < 10000
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ixdecl ::= assoc prec id

pxdecl ::= prec id

decl ::= ...
| %infix ixdecl.
| %prefix pxdecl.
| %postfix pxdecl.

During parsing, ambiguous successive operators of identical precedence such as a <- b
-> c are flagged as errors. Note that it is not possible to declare an operator with equal or
higher precedence than juxtaposition or equal or lower precedence than ‘->’ and ‘<-’.

3.5 Name Preferences

During printing, Twelf frequently has to assign names to anonymous variables. In order
to improve readability, the user can declare a name preference for anonymous variables
based on their type. Thus name preferences are declared for type family constants. Note
that name preferences are not used to disambiguate the types of identifiers during parsing.

namepref ::= id % existential variables
| id id % existential variables, parameters

decl ::= ...
| %name id namepref.

Following our same conventions, a name preference declaration has the form %name a id,
that is, the first identifier must be a type family already declared and the second is the
name preference for variables of type a. The second identifier must be uppercase, that is,
start with a letter from ‘A’ through ‘Z’ or an underscore ‘_’. Anonymous variables will then
be named id1, id2, etc.

In the second form, we can give a separate name preference for free (existential) variables
and parameters. The second one will typically be lowercase, as in %name exp E x.

3.6 Sample Signature

Below is a signature for intuitionistic first-order logic over an unspecified domain of
individuals and atomic propositions. It illustrates constant declarations and definitions and
the use of operator precedence and name preference declarations. It may be found in the
file ‘examples/guide/nd.elf’.
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%%% Individuals
i : type. %name i T

%%% Propositions
o : type. %name o A

imp : o -> o -> o. %infix right 10 imp
and : o -> o -> o. %infix right 11 and
true : o.
or : o -> o -> o. %infix right 11 or
false : o.
forall : (i -> o) -> o.
exists : (i -> o) -> o.

not : o -> o = [A:o] A imp false.

%%% Natural Deductions

nd : o -> type. %name nd D

impi : (nd A -> nd B) -> nd (A imp B).
impe : nd (A imp B) -> nd A -> nd B.
andi : nd A -> nd B -> nd (A and B).
ande1 : nd (A and B) -> nd A.
ande2 : nd (A and B) -> nd B.
truei : nd (true).
% no truee
ori1 : nd A -> nd (A or B).
ori2 : nd B -> nd (A or B).
ore : nd (A or B) -> (nd A -> nd C) -> (nd B -> nd C) -> nd C.
% no falsei
falsee : nd false -> nd C.
foralli : ({x:i} nd (A x)) -> nd (forall A).
foralle : nd (forall A) -> {T:i} nd (A T).
existsi : {T:i} nd (A T) -> nd (exists A).
existse : nd (exists A) -> ({x:i} nd (A x) -> nd C) -> nd C.

noti : (nd A -> nd false) -> nd (not A)
= [D:nd A -> nd false] impi D.

note : nd (not A) -> nd A -> nd false
= [D:nd (not A)] [E:nd A] impe D E.
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4 Term Reconstruction

Representations of deductions in LF typically contain a lot of redundant information.
In order to make LF practical, Twelf gives the user the opportunity to omit redundant
information in declarations and reconstructs it from context. Unlike for functional lan-
guages, this requires recovering objects as well as types, so we refer to this phase as term
reconstruction.

There are criteria which guarantee that the term reconstruction problem is decidable,
but unfortunately these criteria are either very complicated or still force much redundant
information to be supplied. Therefore, the Twelf implementation employs a reconstruction
algorithm which always terminates and gives one of three answers:
1. yes, and here is the most general reconstruction;
2. no, and here is the problem; or
3. maybe.

The last characterizes the situations where there is insufficient information to guarantee
a most general solution to the term reconstruction problem. Because of the decidable nature
of type-checking in LF, the user can always annotate the term further until it falls into one
of the definitive categories.

4.1 Implicit Quantifiers

The model of term reconstruction employed by Twelf is straightforward, although it
employs a relatively complex algorithm. The basic principle is a duality between quantifiers
omitted in a constant declaration and implicit arguments where the constant is used. Re-
call some definitions in the signature defining natural deductions (see Section 3.6 [Sample
Signature], page 11).

o : type.
and : o -> o -> o. %infix right 10 and
nd : o -> type.
andi : nd A -> nd B -> nd (A and B).

The last declaration contains A and B as free variables. Type reconstruction infers most
general types for the free variables in a constant declaration and adds implicit quantifiers.
In the example above, A and B must both be of type o. The internal form of the constant
thus has one of the following two forms.

andi : {A:o} {B:o} nd A -> nd B -> nd (A and B).
andi : {B:o} {A:o} nd A -> nd B -> nd (A and B).

These forms are printed during type reconstruction, so the user can examine if the result
of reconstruction matches his expectations.

4.2 Implicit Arguments

The quantifiers on A and B in the declaration
andi : nd A -> nd B -> nd (A and B).

were implicit. The corresponding arguments to andi are also implicit. In fact, since the
order of the reconstructed quantifiers is arbitrary, we cannot know in which order to supply
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the arguments, so they must always be omitted. Thus a constant with n implicit quantifiers
is supplied with n implicit arguments wherever it is seen. These implicit arguments are
existential variables whose value may be determined from context by unification.

For example, using also
true : o.
truei: nd (true).

we have
(andi truei truei) : nd (true and true).

During parsing, the expression (andi truei truei) is interpreted as
(andi _ _ truei truei)

where the two underscores stand for the implicit A and B arguments to andi. They are
replaced by existential variables whose value will be determined during type reconstruction.
We call them A1 and A2 and reason as follows.

|- andi : {A:o} {B:o} nd A -> nd B -> nd (A and B)
|- andi A1 : {B:o} nd A1 -> nd B -> nd (A1 and B)
|- andi A1 A2 : nd A1 -> nd A2 -> nd (A1 and A2)

At this point, we need a to infer the type of the application (andi A1 A2) truei. This
equates the actual type of the argument with the expected type of the argument.

|- andi A1 A2 : nd A1 -> nd A2 -> nd (A1 and A2)
|- truei : nd true
------------------------------------------------
|- andi A1 A2 truei : nd A2 -> nd (A1 and A2)

where nd true = nd A1

The equation can be solved by instantiating A1 to true and we continue:
|- andi true A2 truei : nd A2 -> nd (true and A2)
|- truei : nd true
------------------------------------------------
|- andi true A2 truei truei : nd (true and A2)

where nd true = nd A2
|- andi true true truei truei : nd (true and true)

The last line is the expected result. In this way, term reconstruction can always be
reduced to solving equations such that every solution to the set of equations leads to a valid
typing and vice versa.

4.3 Strict Occurrences

Both for type reconstruction and the operational semantics, Twelf must solve equations
between objects and types. Unfortunately, it is undecidable if a set of equations in the LF
type theory has a solution. Worse yet, even if it has solutions, it may not have a most
general solution. Therefore, Twelf postpones difficult equations as constraints and solves
only those within the pattern fragment (see Miller 1991, Journal of Logic and Computation
and Pfenning 1991, Logical Frameworks). In this fragment, principal solutions always
exist and can be computed efficiently. If constraints remain after term reconstruction, the
constant declaration is rejected as ambiguous which indicates that the user must supply
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more type information. We illustrate this phenomenon and a typical solution in our natural
deduction example.

A central concept useful for understanding the finer details of type reconstruction is the
notion of a strict occurrence of a free variable. We call a position in a term rigid if it is not
in the argument of a free variable. We then call an occurrence of a free variable strict if the
occurrence is in a rigid position and all its arguments (possibly none) are distinct bound
variables.

If all free variable occurrences in all declarations in a signature are strict, then term
reconstruction will always either fail or succeed with a principal solution, provided no further
terms are omitted (that is, replaced by an underscore).

If a free variable in a declaration of a constant c has no strict occurrence at all, then its
type can almost never be inferred and most uses of c will lead to a constraint.

If a free variable has strict and non-strict occurrences then in most cases term recon-
struction will provide a definitive answer, but there is no guarantee. Mostly this is because
most general answers simply do not exist, but sometimes because the algorithm generates,
but cannot solve constraints with unique solutions.

We use some advanced examples from the natural deduction signature to illustrate these
concepts and ideas. In the declarations

foralli : ({x:i} nd (A x)) -> nd (forall A).
foralle : nd (forall A) -> {T:i} nd (A T).

all free variables have a strict occurrence. However, if we had decided to leave T as an
implicit argument,

foralle : nd (forall A) -> nd (A T).

then T has no strict occurrence. While this declaration is accepted as unambiguous (with
A:i -> o and T:i), any future use of foralle most likely leads to constraints on T which
cannot be solved.

4.4 Strict Definitions

Definitions are currently restricted so that each argument to the defined constant, may
it be implicit or explicit, must have at least one strict occurrence in the right-hand side.
For example, the definition of not in the signature for natural deduction (see Section 3.6
[Sample Signature], page 11)

not : o -> o = [A:o] A imp false.

is strict since the only argument A has a strict occurrence in A imp false. On the other
hand, the definition

noti : ({p:o} nd A -> nd p) -> nd (not A)
= [D] impi ([u:nd A] D false u).

which gives a possible derived introduction rule for negation is not strict: the argument D
has only one occurrence, and this occurrence is not strict since the argument false is not
a variable bound in the body, but a constant.

However, the definitions
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noti : (nd A -> nd false) -> nd (not A)
= [D:nd A -> nd false] impi D.

note : nd (not A) -> nd A -> nd false
= [D:nd (not A)] [E:nd A] impe D E.

are both strict since arguments D and E both have strict occurrences. Type-checking these
definitions requires that the definition of not A is expanded to A imp false.

Note that free variables in the type and the right-hand side of a definition are shared.
In the above example, A occurs both in the types and the right hand side and it should
be thought of as the same A. With the implicit quantifiers and abstractions restored, the
definitions above have the following form.

noti : {A:o} (nd A -> nd false) -> nd (not A)
= [A:o] [D:nd A -> nd false] impi D.

note : {A:o} nd (not A) -> nd A -> nd false
= [A:o] [D:nd (not A)] [E:nd A] impe D E.

4.5 Type Ascription

In some circumstances it is useful to directly ascribe a type in order to disambiguate
declarations. For example, the term ori1 truei has principal type nd (true or B) for a
free variable B. If we want to constrain this to a derivation of nd (true or false) we can
write ori1 truei : nd (true or false).

Explicit type ascription sometimes helps when the source of a type error is particularly
hard to discern: we can ascribe an expected type to a subterm, thus verifying our intuition
about constituent terms in a declaration.

4.6 Error Messages

When term reconstruction fails, Twelf issues an error message with the location of the
declaration in which the problem occurred and the disagreement encountered. A typical
message is

examples/nd/nd.elf:37.35-37.41 Error: Type mismatch
Expected: o
Found: (i -> o) -> o
Expression clash

which points to an error in the file ‘examples/nd/nd.elf’, line 37, characters 35 through
41 where an argument to a function was expected to have type o, but was found to have
type (i -> o) -> o.

If constraints remain, the error location is the whole declaration with the message
filename:location Error: Typing ambiguous -- unresolved constraints

The filename and location information can be used by Emacs (see Chapter 13 [Emacs In-
terface], page 73) to jump to the specified location in the given file for editing of the incorrect
declaration for the constant c. The location has the form line1.column1-line2.column2
and represent Twelf’s best guess as to the source of the error. Due to the propagation
of non-trivial constraints the source of a type reconstruction failure can sometimes not be
pinpointed very precisely.
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4.7 Tracing Reconstruction

Sometimes it is quite difficult to determine the real source of a type error. On such
occasion there are three standard techniques that sometimes help. The first is to enable the
printing of implicit arguments with Twelf.Print.implicit := true and try again. The
second is to insert explicit type annotations to limit the flexibility of reconstruction. The
third is to trace type reconstruction.

Tracing of term reconstruction is enabled with
Twelf.Recon.trace := true;

It then prints, during reconstruction, the typing and kinding judgments it infers in the
form |- M : A or |- A : K.

There are two modes for tracing reconstruction that can be set with
Twelf.Recon.traceMode := Twelf.Recon.Omniscient;
Twelf.Recon.traceMode := Twelf.Recon.Progressive;

where Twelf.Recon.Omnisicient is the default. In omnisicent mode, it first solves all
typing constraints, and then prints the typing judgments. In progressive mode, it prints the
typing judgments as they are encountered. Both have their uses, depending on the form of
the problem with reconstruction.
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5 Logic Programming

Twelf gives an operational interpretation to signatures under the computation-as-proof-
search paradigm. The fundamental idea is to fix a simple search strategy and then search
for a derivation of a query according to this strategy. The result may be a substitution for
the free variables in a query and a derivation, or explicit failure. It is also possible that the
computation does not terminate.

A query can be posed in three different ways: as a %query declaration, as a %solve
declaration, or interactively, using a top-level invoked from ML with Twelf.top which
prompts with ‘?-’ (see Section 5.3 [Interactive Queries], page 20).

query ::= id : term % X : A, X a free variable
| term % A

bound ::= nat % number of solutions
| * % unbounded number

qdecl ::= bound bound query % expected solutions, try limit, query

qtdecl ::= bound bound query % number of stages, query

sdecl ::= %define binding sdecl % term binding
| %solve id : term % solve with proof term
| %solve _ : term % solve

binding ::= id = id % c = X, X a free variable
| id = id : term % c = X : A

decl ::= ...
| %tabled id. % a, table family a
| %query qdecl. % execute query
| %querytabled qtdecl. % execute query with tabled logic programming
| sdecl. % solve

In all of these cases, the free variables in a query are interpreted existentially, which is in
contrast to constant declarations where free variables are interpreted universally. In partic-
ular, free variables might be instantiated during type reconstruction and during execution
of the query.

5.1 Query Declaration

The query form
%query expected try A.

will try to solve the query A and verify that it gives the expected number of solutions, but
it will never try to find more than indicated by try. It succeeds and prints a message,
whose precise form depends on the value of Twelf.chatter if A has the expected number
of solutions; otherwise it either fails with an error message or does not terminate. ‘%query’
has no other effect on the state of Twelf. Here are some examples.
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%query 1 * A. % check that A has exactly one solution
%query 1 1 A. % check that A has at least one solution
%query * 3 A. % A has infinitely many solutions, check 3
%query * * A. % fails if A has finitely many solutions
%query 1 0 A. % skip this query

5.2 Solve Declaration

The query form
%solve c : A.

will search for the first solution M of A and then define
c : A = M.

Optionally, it is possible to perform additional binding for the free variables in A. Let
X a variable of type family B appearing in A, and let us assume that in the solution M this
variable has been substituted with the term N; the query form

%define d = X : B
%solve c : A.

will also define
d : B = N.

If there are any free variables remaining in M, N or A after search, they will be implicitly
quantified in the new definitions.

This form of definition is particularly useful to compute and name inputs to future
queries. An example of this feature from the file ‘examples/nd/lam.elf’ can be found in
Section 10.5 [Proof Realizations], page 58.

5.3 Interactive Queries

An interactive top-level can be invoked using the SML expression Twelf.top ();. The
top-level prompts with ‘?- ’ and awaits the input of a query, terminated by a period ‘.’ and
a 〈RET〉.

After the query has been parsed, Twelf reconstructs implicit type information, issuing a
warning if constraints remain. The result is executed as a query. At any point during the
processing of a query the user may interrupt with C-c (that is, 〈CTRL〉 and c) to drop back
into ML’s interactive top-level.

When Twelf has found a solution, it prints the answer substitution for all free variables
in the query, including the proof term variable if one was given. It also notes if there are
remaining equational constraints, but currently does not print them.

The top-level then waits for input, which is interpreted as follows

y, Y, or ; backtrack and search for another solution

q or Q quit Twelf’s top-level and return to ML

n, N, or anything else
return to prompt for another query
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5.4 Sample Trace

As an example we consider lists of propositions and some simple operations on them, as
they might be used when programming a theorem prover.

list : type.
nil : list.
cons : o -> list -> list.

First, we want to write a program to append two lists to obtain their concatenation.
This is expressed as a relation between the three lists, which in turn is implemented as a
type family

append : list -> list -> list -> type.

appNil : append nil K K.
appCons : append (cons X L) K (cons X M)

<- append L K M.

Here, we use the synonym A <- B for B -> A to improve readability. We say A if B.
The first sample query concatenates the singleton lists containing true and false. We

proceed as if we had loaded the appropriate files and started a top-level with Twelf.top
();.

?- append (cons true nil) (cons false nil) L.

Here, L is a free existential variable. We search for an object M : append (cons true
nil) (cons false nil) L, even though this object will not be shown in this form or query.
Each constant declaration in the signature is tried in turn, unifying the head with the goal
above. In this manner, we obtain the following sequence of goals and actions. Note that
the intermediate forms and comments are not printed when this is run. They are added
here to illustrate the behavior.

% original goal after parsing and type reconstruction
?- append (cons true nil) (cons false nil) L.
[try appNil:

append nil K1 K1
= append (cons true nil) (cons false nil) L

unification fails with constant clash: nil <> cons
]
[try appCons:

append (cons X1 L1) K2 (cons X1 M1)
= append (cons true nil) (cons false nil) L

unification succeeds with
X1 = true, L1 = nil, K2 = cons false nil, L = cons true M1
]
% subgoal
?- append nil (cons false nil) M1.
[try appNil:

append nil K3 K3
= append nil (cons false nil) M1

unification and subgoal succeeds with
K3 = cons false nil, M1 = cons false nil
]
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At this point the overall goal succeeds and we read off the answer substitution for the
only free variable in the query, namely L. It was first determined to be cons true M1 and
then M1 was instantiated to cons false nil, leading to the instantiation

L = cons true (cons false nil).

If instead we pose the query
?- X : append (cons true nil) (cons false nil) L.

we also obtain the proof term
L = cons true (cons false nil);
X = appCons appNil.

As another example we consider a query with several solutions which are enumerated
when we ask for further results. This time we do not trace the steps of the execution, but
show the interaction verbatim.

?- append L K (cons true (cons false nil)).
Solving...
K = cons true (cons false nil);
L = nil.
More? y
K = cons false nil;
L = cons true nil.
More? y
K = nil;
L = cons true (cons false nil).
More? y
No more solutions

5.5 Operational Semantics

The operational semantics of Twelf is a form of typed constraint logic programming. We
will use standard terminology from this area. A type family which is used in a program or
goal is called a predicate. A constant declaration in a signature which is available during
search is called a clause. A clause typically has the form c : a M1 ... Mm <- A1 <- ... <-
An, where a M1 ... Mm is the head of the clause and A1 through An are the subgoals. A
clause is used to reduce a goal to subgoals by a process called backchaining. Backchaining
unifies the head of the clause with the current goal to generate subgoals. Next, we select
one of the subgoals as a current goal and continue the search process. Actually, instead of
unification (which is undecidable in LF), Twelf employs constraint simplification and carries
along equational constraints in a normal form.

A hypothesis which is introduced during search is a local assumption; a parameter is a
local parameter. Parameters act like constants in unification, except that their occurrences
might be restricted due to parameter dependency.

Without going into a formal description, here are the central ideas of the operational
semantics.

Clause selection.
The clauses are tried in the following order: from most recent to least recent
local assumption, then from first to last clause in the global signature.
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Subgoal selection.
Subgoals are solved from the inside out. For example, when a clause c : A <-
B <- C. is applied to solve the goal ?- A. then the first subgoal is B and the
second subgoal C. Truly dependent variables will only be subject to unification
and never give rise to a subgoal. For example c : {X:b} a X <- a c is a clause
with head a X, subgoal a c, and existential variable X.

Unification.
An atomic goal is unified with the clause head using higher-order pattern uni-
fication. All equations outside this fragment are postponed and carried along
as constraints.

Local assumptions.
A goal of the form ?- A -> B. introduces a local assumption A and then solves
B under this assumption. To solve atomic goals, local assumptions are tried
before global clauses, using the most recently made assumption first. Note that
this is different from Prolog assert in that A is available only for solving B.

Local parameters.
Parameters are introduced into proof search by goals of the form ?- {x:A} B.
which generates a new parameter a and then solves the result of substituting
a for x in B. Parameters are also called universal variables since they are not
subject to instantiation during unification. Local parameters will never be used
as local assumptions during search.

When a signature is read, some minimal amount of syntactic translation may be applied
to it in order to speed up execution. We refer to this process as compilation, in an abuse
of the ordinary use of the term. Compilation will try to eliminate expensive appeals to
unification with assignment where this optimization is sound. This can be disabled by
setting the parameter Twelf.Compile.optimize to false.

5.6 Sample Program

As an example, we consider simple type inference for the pure lambda-calculus. An ex-
tension of this example to Mini-ML is given in the course notes Pfenning 1992, Computation
and Deduction. The code below can be found in the file ‘examples/guide/lam.elf’.
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% Simple types
tp : type. %name tp T.

arrow : tp -> tp -> tp. % T1 => T2

% Expressions
exp : type. %name exp E.

lam : (exp -> exp) -> exp. % lam x. E
app : exp -> exp -> exp. % (E1 E2)

% Type inference
% |- E : T (expression E has type T)

of : exp -> tp -> type. %name of P.

tp_lam : of (lam E) (arrow T1 T2) % |- lam x. E : T1 => T2
<- ({x:exp} % if x:T1 |- E : T2.

of x T1 -> of (E x) T2).

tp_app : of (app E1 E2) T1 % |- E1 E2 : T1
<- of E1 (arrow T2 T1) % if |- E1 : T2 => T1
<- of E2 T2. % and |- E2 : T2.

Again, we have used the notation A <- B to emphasize the interpretation of constant
declarations as clauses. We now trace the query which infers the most general type of the
identity function, represented as lam [x:exp] x. We indicate the scope of hypotheses which
are introduced during search by indentation.

% original query, T free
?- of (lam [x:exp] x) T.
% use tp_lam with E = ([x:exp] x) and T = arrow T1 T2
% subgoal
?- {x:exp} of x T1 -> of x T2.
% introduce parameter e
?- of e T1 -> of e T2.
% introduce hypothesis labeled p
p:of e T1
?- of e T2.
% succeed by hypothesis p with T1 = T2

At this point the query succeeds and prints the answer substitution.
T = arrow T1 T1.
More? y
No more solutions

We requested more solution by typing y, but there are no further possibilities. The free
variable T1 in the answer substitution means that every instance of arrow T1 T1 provides
a solution to the original query. In other words, lam [x:exp] x has type arrow T1 T1 for
all types T1.

As a second example we verify that self-application is not well-typed in the simply-typed
lambda-calculus.
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?- of (lam [x:exp] app x x) T.
% use tp_lam with T = arrow T1 T2
% subgoal
?- {x:exp} of x T1 -> of (app x x) T2.
% introduce parameter e
?- of e T1 -> of (app e e) T2.
% introduce hypothesis p:of a T1
p:of e T1
?- of (app e e) T2.
% use tp_app
% first subgoal
?- of e (arrow T3 T2).
% succeed by hypothesis p with T1 = arrow T3 T2
% second subgoal
?- of e T3.
% fail, since T3 = arrow T3 T2 has no solution

At the point where the second subgoals fails we backtrack. However, all other alternatives
fail immediately, since the clause head does not unify with the goal and the overall query
fails.

5.7 Clause Definitions

Definitions interact with the logic programming interpretation of signatures in two ways.

At present family-level definitions are transparent for type-checking, but opaque for proof
search. This means, if a : type = b, the constants defining a and b are not mixed.

Disclaimer: This is use type-level definitions is still under consideration and is discour-
aged because it might change in future releases. Moreover, type-level definitions at present
do not interact correctly with coverage checking and can lead to unsoundness.

The second interaction is that defined object-level constants are generally not used for
the logic programming interpretation. However, they can be forced to be used with a
declaration

%clause d : A = M.

For search, it will be treated exactly as if it were d : A. except that the resulting proof
term will contain a defined constant instead of a declared constant.

5.8 Deterministic Type Families

In general, a solvable goal may admit several (and possibly countably infinite) solutions.
Through backtracking, Twelf will generate all of them. There are circumstances, however,
where only the only one of them is correct, or interesting. Consider, for example, list
membership:



26 Twelf User’s Guide

element : type. %name element X.

a : element.
b : element.
c : element.

list : type. %name list L.

nil : list.
cons : element -> list -> list.

member : element -> list -> type.

member1 : member X (cons X L).
member2 : member X (cons Y L) <- member X L.

the query
?- member a (cons a (cons b (cons a nil)))

will succeed twice. Since all we are interested in is whether a is contained in the list or
not, it may suffice for it to succeed once.

Discarding unwanted solutions in Twelf is accomplished through the %deterministic
directive. Declaring a type family deterministic will cause all queries involving it to succeed
at most once: if there are several solutions, only the first one will be found. So for example
declaring

%deterministic member.

will have the effect of preventing backtracking in any query involving the type family
member, once one solution has been found:

?- member a (cons a (cons b (cons a nil))).
Solving...
Empty Substitution.
More? y
No more solutions

In other logic programming languages like Prolog, pruning of unwanted solutions is
usually accomplished by using the extra-logical operator cut. In general, %deterministic
is less powerful than cut: in a language with cut, a deterministic predicate can be modeled
by adding a cut at the end of all of its clauses. However, in most practical uses the two are
equivalent, and the semantics of %deterministic families is cleaner and better understood.

5.9 Tabled Logic Programming

Logic programming uses a simple depth-first search strategy to search for a proof of
a given query. This strategy is incomplete, that is, there are queries that are true, but
the logic programming engine will not find a proof due to non-termination. In addition,
performance may be hampered by redundant computation.

Tabled logic programming uses memoization to alleviate these problems by avoiding
infinite and redundant paths of computation. The central data structure is a table in which
we store encountered subgoals and corresponding solutions. When we solve a subgoal G,
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then we check whether G is in the table. If it is not in the table, then it will be added. If
it is in the table and there are solutions available, then we can re-use them. If it is in the
table and no solutions are available, then we suspend the computation. This basic idea is
combined with global stages. In each stage, a depth-first search strategy is used to derive
answers from the program. If no more answers can be derived, computation terminates. It
is important to note that for each answer only one proof is generated, although multiple
different proofs may exist.

Tabled and non-tabled execution can be freely mixed. This is achieved by requiring an
explicit declaration

%tabled a.

for every type family a that is to be tabled. In addition, at present tabling must be explicitly
enabled by invoking

%querytabled expected stages A.

where expected is the expected number of answers and stages bounds the number of
stages to use before terminating while searching for a proof of A. If expected is *, it will
find all distinct solutions. If there are finitely many solutions, search will terminate, after
enumerating all of them. If stages is *, then arbitrarily many stages may be explored, which
can lead to non-termination over infinite domains.

To illustrate, here is a small simple example that computes reachability in a cyclic graph.
First we declare the nodes in the graph and the edge relation.

node : type.

a : node.
b : node.
c : node.
d : node.

edge: node -> node -> type.

e_ab : edge a b.
e_ac : edge a c.
e_ba : edge b a.
e_bd : edge b d.

Next we declare the reachability relation and declare it tabled in order to avoid an infinite
loop.

reach: node -> node -> type.
%tabled reach.

r_refl: reach X X.

r_cl : reach X Y
<- edge X Z
<- reach Z Y.

%querytabled 4 * (reach a X).

Note that, at present, tables will be completely ignored for ordinary queries, so that
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%query * * reach a X.

will not terminate, despite the fact that reach has been declared as tabled.
In the example above we can also give an explicit bound on the number of stages during

tabled evaluation with
%querytabled 4 3 (reach a X).

Additional examples using tabling can be found in the directory ‘examples/tabled/’ of
the distribution.

One key question in tabled search is how to detect that a subgoal is similar to another
sub-goal which is already in the table. There are two critical parameters which influence
table lookup during search.

Twelf.Table.strengthen which defaults to false. If true it eliminates dependencies
based on subordination during tabling. This is more expensive, but can lead to increased
re-use of prior subgoals in some cases.

Twelf.Table.strategy which defaults to Twelf.Table.Variant. When at its default
setting, Twelf.Table.Variant, then subgoals are compared for equality modulo renaming
of existential and bound variables. When set to Twelf.Table.Subsumption, then compar-
ison of subgoals with table entries allows instantiation of the table entries. This is slower,
but may lead to increased sharing and better termination properties.

It is also possible (in analogy with Twelf.top ();, explained in Section 5.3 [Interactive
Queries], page 20, to start an interactive top level that executes the tabling logic program-
ming interpreter with the command

Twelf.Table.top ();

Furthermore, it should be noted that tracing does not work for the tabled logic program-
ming engine, and that other analyses such as termination checking do not take the tabling
into account. This is conservative, but means that many terminating tabled programs can
at present not be verified.
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6 Constraint Domains

Constraints-based extensions are highly experimental and under active development. Use
of extensions other than the ones pertaining rational arithmetic is strongly discouraged. We
refer to extension by constraint domains as Twelf(X), where X refers different domains.

Twelf(X) extensions allow Twelf to deal more efficiently with some specific domains (e.g.
numbers). They do so by

1. modifying type reconstruction to accommodate other equivalences beyond those en-
tailed by traditional beta-eta-conversion;

2. defining special types, on which proof search is performed using ad-hoc decision proce-
dures rather than traditional depth-first strategy;

3. adding countably many new symbols to the language, signifying all the elements of the
domain.

6.1 Installing an Extension

Extensions are installed using the declaration

%use extension name

For example,

%use equality/rationals.

loads the extension dealing with equality over the rationals. Typically, an extension intro-
duces new symbols in the signature. For example, equality/rationals adds a type for
rational numbers:

rational : type.

In addition to these symbols, a countably infinite set of “special” ones may be also
accepted by the system as the result of loading one extension. In our example, after loading
equality/rationals the symbols

135 5/13 ~1/4

become valid constants of type rational.

Finally, it is possible for an extension to be built on top of others, and therefore to
depend on them. Hence, loading an extension usually causes all the others it depends
upon to be loaded as well, if they have not been already. For example, the extension
inequality/rationals requires equality/rationals, and hence the declaration

%use inequality/rationals.

subsumes

%use equality/rationals.

Extensions must be installed prior to their use. For this reason, it is a safe practice to
put all the %use declarations at the beginning of the program.
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6.2 Equalities over Rational Numbers

As mentioned before, the extension presiding equality over the rational numbers is called
equality/rationals, and it is therefore installed by the declaration

%use equality/rationals.

This causes the declarations
rational : type.

~ : rational -> rational. %prefix 9999 ~.
+ : rational -> rational -> rational. %infix left 9997 +.
- : rational -> rational -> rational. %infix left 9997 -.
* : rational -> rational -> rational. %infix left 9998 *.

to be included in the current global signature.
Note that We do not add an equality predicate for rationals. This is unnecessary, since

the extension modifies standard type checking so that arithmetic identities are taken into
account. However, one can always define an equality predicate by declaring

== : rational -> rational -> type. %infix none 100 ==.
id : X == X.

This extension is also responsible for defining special constants for all the rational num-
bers. These follow the syntax

<rational> ::= ~<unsigned> | <unsigned>
<unsigned> ::= <digits> | <digits>/<digits>
<digits> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

| <digits> <digits>

It is important to notice the difference between ~ 10 and ~10. The former is the object
obtained applying the unary minus operator to the positive number 10; the second stands
for the number −10. The difference is, however, just syntactical, since the former is auto-
matically evaluated into the latter by Twelf(X). In general, one should keep in mind that
Twelf(X) extensions do not modify the behavior of the lexer; hence, for example, multipli-
cation of a variable X by two still needs to be written as X * 2 (note the spaces preceding
and following the multiplication symbol), while X*2 will be interpreted by the system as a
single variable named “X*2”.

Unification of arithmetic expressions is done by Gaussian elimination. Thus, unification
problems that can be reduced to linear equations over existentially quantified variables
are immediately solved; other problems not falling in this class are likely to be delayed as
unificational constraints.

6.3 Inequalities over Rational Numbers

Arithmetical inequalities are handled by the extension inequality/rationals. This
relies on equality/rationals for the definition of rational number, so a declaration of

%use inequality/rationals.

implicitly entails one of
%use equality/rationals.

This extension adds the following to the signature:
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> : rational -> rational -> type. %infix none 0 >.
>= : rational -> rational -> type. %infix none 0 >=.

+> : {Z:rational} X > Y -> (X + Z) > (Y + Z).
+>= : {Z:rational} X >= Y -> (X + Z) >= (Y + Z).

>>= : X > Y -> X >= Y.
0>=0 : 0 >= 0.

It also adds countably many proof objects such as
45>0 : 45 > 0.

witnessing that positive numbers are greater than zero.
Goals of the form

M > N or M >= N

are evaluated using a modified version of the simplex algorithm, rather than the usual proof-
search mechanism. This will incrementally collect inequalities, assigning them incomplete
(i.e. partially instantiated) proof objects, until either an inconsistency is discovered (gen-
erating failure) or they can be shown to be satisfied a unique solution (causing the proof
objects to be finally completed).

6.4 Integer Constraints

The extensions equality/integers and inequality/integers deal with equalities and
inequalities over the ring of integer numbers, respectively. Since these two extensions are
very similar to their rationals counterparts, we will limit ourselves to outlining the differ-
ences.

The signature introduced by equality/integers resembles equality/rationals. The
only difference lies in the name of the main type:

integer : type.

~ : integer -> integer. %prefix 9999 ~.
+ : integer -> integer -> integer. %infix left 9997 +.
- : integer -> integer -> integer. %infix left 9997 -.
* : integer -> integer -> integer. %infix left 9998 *.

Like before, countably many special constants are added to the signature. They follow
the syntax

<integer> ::= ~<digits> | <digits>

The extension equality/integers takes advantage of the fact that (unlike the rationals)
the integers are not a dense ordering to considerably shorten the set of symbols needed:

>= : integer -> integer -> type. %infix none 0 >=.

+>= : {Z:integer} X >= Y -> (X + Z) >= (Y + Z).

It also declares countably many proof objects such as
37>=0 : 37 >= 0.

for all non-negative integers.
Notice that strict inequality > can be easily defined in this case:
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> : integer -> integer -> type. %infix none 0 >.

>=> : X >= (Y + 1) -> X > Y.

For solving linear inequalities over the integers, we again use the simplex method, but
we add special routines that implement branch-and-bound search. Specifically, inequalities
are internally interpreted over rationals, and a check is performed regularly (whenever a
new inequality is added) to ensure the rational solution space contains integral points.

Note that all known methods for solving systems of integral linear inequations are noto-
riously inefficient. In the branch-and-bound method we adopted, the number of branches to
consider is potentially exponential with respect to the size of the problem. We recommend
using the inequality/rationals extension instead, whenever the situation allows the two
to be used interchangeably.

6.5 Equalities over Strings

A third domain currently supported by the Twelf(X) extensions are strings of (printable)
characters. The only operator provided is string concatenation. Installing

%use equality/strings.

causes the following signature to be loaded:
string : type.

++ : string -> string -> string. %infix right ++ 9999.

String constants are sequences of printable characters enclosed by double quotes:
"foobar" : string

Under these conventions, strings cannot therefore contain the double quote character ".
Escape sequences, such as "\n" have no special meaning; moreover, we do not currently
provide input/output primitives.

Finally, it is required that string constants occupy a single line. The declaration
mystring : string = "foo

bar".

is not considered syntactically correct.

6.6 32-bit Integers

Another supported domain are 32-bit integers. This domain is used mainly in Proof
Carrying Code applications, and because of this, it has fairly different structure and features
than the extension for (unrestricted) integers (see Section 6.4 [Integer Constraints], page 31).
First of all, the algorithms used were kept short and simple, so that they can be easily read
and verified to be correct. Secondly, the set of arithmetic operators provided has been kept
to a minimum. Also, each of these is implemented as a type family instead of a function
symbol, so that unification of arithmetic expressions follows the same rule as that of regular
terms. Finally, for each arithmetic operator, we also provide a type family which, in addition
to carry out the computation, also provides a proof object for it.

Declaring
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%uses word32.

causes the following signature to be loaded into the system:

word32 : type.
+ : word32 -> word32 -> word32 -> type.
* : word32 -> word32 -> word32 -> type.
/ : word32 -> word32 -> word32 -> type.
prove+ : {X:word32} {Y:word32} {Z:word32} {P:+ X Y Z} type.
proof+ : {X:word32} {Y:word32} {Z:word32} {P:+ X Y Z} prove+ X Y Z P.
prove* : {X:word32} {Y:word32} {Z:word32} {P:* X Y Z} type.
proof* : {X:word32} {Y:word32} {Z:word32} {P:* X Y Z} prove* X Y Z P.
prove/ : {X:word32} {Y:word32} {Z:word32} {P:+ X Y Z} type.
proof/ : {X:word32} {Y:word32} {Z:word32} {P:+ X Y Z} prove/ X Y Z P.

Goals involving + and * are immediately solved if at least two of the arguments are
ground objects (i.e. numbers), and delayed as constraints otherwise. In particular

?- + 3 X 9.

is solved immediately and can be used to compute 9− 3. Goals involving / are delayed
unless both the first and the second argument are known. The type families prove+, prove*,
prove/ can be used to obtain proof object for the arithmetic operation, and use them in
the remaining part of the computation:

?- P : + 3 X 9.
Solving...
X = 6.
P = 3+6.
More? n
?- prove+ 3 X 9 P.
Solving...
P = 3+6;
X = 6.
More? n

It is important to stress that the domain modeled here is not the ring of integers modulo
32 but rather the restriction of the integer ring to the interval 0...4294967295, so that for
example the query:

?- + 1 X 0.

will not admit a solution.

6.7 Sample Constraint Programs

Using Twelf(X), we can write a modified version of append that takes into account the
size of the list involved:
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%use equality/rationals.

item : type.
list : rational -> type.

a : type.
b : type.
...

nil : list 0.
cons : item -> list N -> list (N + 1).

append : list M -> list N -> list (M + N).

append_nil : append nil L L.
append_cons : append (cons X L1) L2 (cons X L3)

<- append L1 L2 L3.

Type checking the definition of append requires some algebraic manipulation. For ex-
ample, validity of append_nil depends on the identity 0 + M = M .

Most classic Constraint Logic Programming (CLP) examples found in the literature can
be easily translated to Twelf(X). We present here a simple mortgage calculator:

%use inequality/rationals.

%% equality
== : rational -> rational -> type. %infix none 1000 ==.
id : X == X.

%% mortgage payments
mortgage : rational -> rational -> rational

-> rational -> rational -> type.

m0 : mortgage P T I MP B
<- T > 0
<- 1 >= T
<- Interest == T * P * I * 1/1200
<- B == P + Interest - (T * MP).

m1 : mortgage P T I MP B
<- T > 1
<- MI == P * I * 1/1200
<- mortgage (P + MI - MP) (T - 1) I MP B.

This CLP program takes four parameters: the principal P, the life of the mortgage in
months T, the annual interest rate (%) I, the monthly payment MP, and the outstanding
balance B.

Finally, we use the string extensions to write a simple parser. Consider the following
syntax for simple arithmetic expressions:
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<expr> ::= <number> | <expr>+<expr>
| <expr>-<expr>
| <expr>*<expr>
| (<expr>)

<number> ::= <digit> | <digit><number>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This can be translated quite directly into Twelf by constructing parsing predicates digit,
number, expression as follows:

digit : string -> type.

d0 : digit "0".
d1 : digit "1".
d2 : digit "2".
d3 : digit "3".
d4 : digit "4".
d5 : digit "5".
d6 : digit "6".
d7 : digit "7".
d8 : digit "8".
d9 : digit "9".

number : string -> type.

nd : number X
<- digit X.

n++ : number (X ++ Y)
<- digit X
<- number Y.

expression : string -> type.

en : expression X
<- number X.

e* : expression (X ++ "*" ++ Y)
<- expression X
<- expression Y.

e+ : expression (X ++ "+" ++ Y)
<- expression X
<- expression Y.

e- : expression (X ++ "-" ++ Y)
<- expression X
<- expression Y.

ep : expression ("(" ++ X ++ ")")
<- expression X.
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6.8 Restrictions and Caveats

To ensure the consistency of the calculus, use of types defined by Twelf(X) extensions
is restricted. Specifically, we do not allow them to be used as dynamic assumptions. This
rules out meaningless (under the current operating semantics) goals like

?- 0 > 1 -> foo.

as well as meaningful, but intractable ones, such as
?- {X : rational} X * X >= 0

One important thing to keep in mind when using arithmetic is that this currently is
defined over the rationals, rather than the integers or the set of natural numbers. While in
many applications this is of no consequence, it might generate in some cases surprising re-
sults. While it is certainly possible to define the characteristic function of the integer subset
(see the content of clp-examples/integers/ in the distribution) and use this to enforce
all computations to take place in the intended domains, this introduces a big performance
penalty and should in general be avoided.
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7 Modes

In most cases, the correctness of the algorithmic interpretation of a signature as a logic
program depends on a restriction to queries of a certain form. Often, this is a restriction
of some arguments to inputs which must be given as ground objects, that is, objects not
containing any existential variables. In return, one often obtains outputs which will also be
ground. In the logic programming terminology, the information about which arguments to
a predicate should be considered input and output is called mode information.

Twelf supports a simple system of modes. It checks explicit mode declarations by the
programmer against the signature and signals errors if the prescribed information flow is
violated. Currently, queries are not checked against the mode declaration.

Mode checking is useful to uncover certain types of errors which elude the type-checker.
It can also be used to generate more efficient code, although the compiler currently does
not take advantage of mode information.

There are two forms of mode declarations: a short form which is adequate and appro-
priate most of the time, and a long form which is sometimes necessary to ascribe the right
modes to implicit arguments

mdecl ::= smdecl % short mode declaration
| fmdecl % full mode declaration

decl ::= ...
| %mode mdecl.

7.1 Short Mode Declaration

There are two forms of mode declarations: a short and a full form. The short form is an
abbreviation which is expanded into the full form when it is unambiguous.

mode ::= + % input
| * % unrestricted
| - % output

mid ::= mode id % named mode identifier, one token

smdecl ::= id % type family a
| smdecl mid % argument mode

Mode declarations for a predicate a must come before any clauses defining a. Note that
the mode followed with the identifier must be one token, such as ‘+L’ and not ‘+ L’. The
short form is most convenient in typical situations. For example, we can declare that the
append program (see Section 5.4 [Sample Trace], page 21) takes the first two arguments as
input and produces the the third as output.

append : list -> list -> list -> type.
%mode append +L +K -M.

If we wanted to use append to split a list into two sublists, we would instead declare
append : list -> list -> list -> type.
%mode append -L -K +M.

where the clauses appNil and appCons remain unchanged.
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In the lambda-calculus type checker (see Section 5.6 [Sample Program], page 23), the
type must be an unrestricted argument.

of : exp -> tp -> type.
%mode of +E *T.

If we declare it as an input argument, %mode of +E +T, we obtain an error pointing to
the first occurrence of T2 in the clause tp_app reproduced below.

examples/nd/lam.elf:27.20-27.22 Error:
Occurrence of variable T2 in input (+) argument not necessarily ground

tp_app : of (app E1 E2) T1
<- of E1 (arrow T2 T1)
<- of E2 T2.

If we declare it as an output argument, %mode of +E -T, we obtain an error pointing to
the second occurrence of T1 in the clause tp_lam reproduced below.

examples/nd/lam.elf:25.8-25.10 Error:
Occurrence of variable T1 in output (-) argument not necessarily ground

tp_lam : of (lam E) (arrow T1 T2)
<- ({x:exp}

of x T1 -> of (E x) T2).

In general, for a mode declaration in short form the arguments are specified exactly
as they would look in the program. This means one cannot specify the modes of implicit
arguments which are filled in by term reconstruction. These modes are reconstructed as
follows: each implicit argument which appears in the type of an input argument is considered
input ‘+’, those among the remaining which appear in an output argument are considered
output ‘-’, the rest are unrestricted. The mode declaration is echoed in full form, so the
user can verify the correctness of the modes assigned to implicit arguments. If the inferred
full mode declaration is incorrect, or if one wants to be explicit about modes, one should
use full mode declarations (see Section 7.2 [Full Mode Declaration], page 38).

7.2 Full Mode Declaration

To specify modes for implicit arguments one must use the full form of mode declaration.
A mode can be one of ‘+’, ‘*’, or ‘-’ (see Section 7.1 [Short Mode Declaration], page 37).

fmdecl ::= mode {id : term} fmdecl
| mode {id} fmdecl
| term

The term following the mode prefix in a full mode declaration must always have the
form a x1 ... xn where x1 through xn are variables declared in the mode prefix. As an
example, we give an alternative specification of the append predicate.

append : list -> list -> list -> type.
%mode +{L:list} +{K:list} -{M:list} append L K M.
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7.3 Mode Checking

Mode checking for input, output, and unrestricted arguments examines each clause as
it is encountered. The algorithm performs a kind of abstract interpretation of the clause,
keeping track of a list of the existential variables for which it knows that they will be ground.
1. We assume each existential variable with a strict occurrence (see Section 4.3 [Strict

Occurrences], page 14) in an input argument to the clause head to be ground.
2. We traverse the subgoals in evaluation order (see Section 5.5 [Operational Semantics],

page 22). For each subgoal we first verify that all input arguments will be ground,
using the information about the existential variables collected so far. If this check
succeeds we add all variables which have a strict occurrence in an output argument of
the subgoal to the list of variables with known ground instantiations.

3. After the last subgoal has been examined, we verify that the output arguments in the
clause head are now also ground.

Arguments whose mode is unrestricted are ignored: they do no need to be checked, and
they do not contribute any information about the instantiations of existential variables.
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8 Termination

Besides checking types and modes, Twelf can also verify if a given type family, when
interpreted as a logic program, always terminates on well-moded goals. In many cases this
means that the program implements a decision procedure. Of course, in general termination
is undecidable, so we only check a simple sufficient condition.

Checking termination presupposes that the program is well-typed and guarantees ter-
mination only when the arguments involved in the termination order are ground. This
will always be true for well-moded goals, since mode and termination declarations must be
consistent.

Termination is different from checking types and modes in that it is not checked incre-
mentally as the signature is read. Instead, termination of a predicate is a global property
of the program once it has been read. Thus termination declarations came after the pred-
icate has been fully defined; further extensions of the predicate are not checked and may
invalidate termination.

The termination checker is rather rudimentary in that it only allows lexicographic and
simultaneous extensions of the subterm ordering. Moreover, it does not take into account
if a result returned by a predicate is smaller than an input argument. Nonetheless, for the
style of programs written in Twelf, the termination of many decision procedures can be
verified.

8.1 Termination Declaration

The termination orders we construct are lexicographic or simultaneous extensions of the
subterm ordering explained in Section 8.3 [Subterm Ordering], page 44. The termination
declaration associates the termination order with argument positions of predicates via call
patterns.

The case of mutually recursive predicates is particularly complex and requires mutual
call patterns and mutual arguments. Their syntax is given below; they are explained in
Section 8.6 [Mutual Recursion], page 46.

args ::=
| id args % named argument
| _ args % anonymous argument

callpat ::= id args % a x1 . . . xn

callpats ::=
| (callpat) callpats

% mutual call patterns



42 Twelf User’s Guide

ids ::=
| id ids % argument name

marg ::= id % single argument
| ( ids ) % mutual arguments

orders ::=
| order orders % component order

order ::= marg % subterm order
| { orders } % lexicographic order
| [ orders ] % simultaneous order

tdecl ::= order callpats % termination order

decl ::= ...
| %terminates tdecl. % termination declaration

All identifiers in the order specification of a termination declaration must be upper
case, must occur in the call patterns, and no variable may be repeated. Furthermore, all
arguments participating in the termination order must occur in the call patterns in input
positions.

The most frequent form of termination declaration is
%terminates Xi (a X1 ... Xn).

which expresses that predicate a terminates because recursive calls decrease the input argu-
ment Xi according to the subterm ordering (see Section 8.3 [Subterm Ordering], page 44).

As an example, we consider a proof that simple type inference (see Section 5.6
[Sample Program], page 23) terminates. Recall the relevant program fragment (see
‘examples/guide/lam.elf’).

of : exp -> tp -> type. %name of P.
%mode of +E *T.

tp_lam : of (lam E) (arrow T1 T2) % |- lam x. E : T1 => T2
<- ({x:exp} % if x:T1 |- E : T2.

of x T1 -> of (E x) T2).

tp_app : of (app E1 E2) T1 % |- E1 E2 : T1
<- of E1 (arrow T2 T1) % if |- E1 : T2 => T1
<- of E2 T2. % and |- E2 : T2.

The typability of an expression is always reduced to the typability of its subexpressions.
Therefore any call to the of predicate with a ground expression should terminate. In general,
termination can only be checked for input arguments, and all calls must be well-moded (see
Section 7.3 [Mode Checking], page 39). Twelf verifies termination with the declaration

%terminates E (of E T).

Here, E specifies the decreasing argument, namely the first argument of the typing judg-
ment as expressed in the call pattern (of E T).

A corresponding attempt to show that evaluation always terminates,
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%terminates E (eval E V).

fails for the clause ev_app with the message

examples/guide/lam.elf:1053-1068 Error:
Termination violation:
(E1’ V2) < (app E1 E2)

indicating that in a recursive call the term E1’ V2 could not be shown to be smaller than app
E1 E2. In our example, of course, evaluation need not terminate for precisely this reason.

Termination checking plays a crucial role in checking meta-programs. The meta-program
represents a proof that some relation about programs holds. The recursive calls in the meta-
program correspond to applications of the induction hypothesis in the proof. Termination
checking of meta-programs corresponds to checking that the application of the induction
hypothesis is valid, i.e. we apply the induction hypothesis to a smaller argument.

8.2 Reduction Declaration

A reduction predicate specifies a relation between input and output arguments of a
program. The reduction checker is rather restrictive and allows only relations based on
subterm ordering. For example, we cannot reason about the length of a list or term.
Moreover, reduction checking presupposes that the right side of the reduction predicate
corresponds to the input arguments and the left side of the predicate corresponds to the
output arguments. The declaration %reduces checks if the specified reduction predicate
holds for a given program. To check whether the predicate also terminates, one needs
to check termination of the predicate separately. The syntax for order can be found in
Chapter 8 [Termination], page 41.

pdecl ::= order < order % strictly smaller than
| order <= order % smaller or equal than
| order = order % equal

rdecl ::= pdecl callpats % reduction predicate

decl ::= ...
| %reduces rdecl. % reduction declaration

A pdecl requires that both orders specified are of the same variety. For example, if one
is lexicographic, the other one must be as well.

For example,

%reduces Z <= X (minus X Y Z).

expects X to be the input and Z to be the output of the goal (minus X Y Z). The declaration
checks whether the output argument Z is smaller than the input argument X, and if the
program terminates in X.

As a simple example of reduction checking we consider the greatest common
divisor. This is an excerpt from the signature for unary arithmetic in the file
‘example/guide/arith.elf’.
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gcd: nat -> nat -> nat -> type. %name gcd G.
%mode gcd +X +Y -Z.

gcd_z1: gcd z Y Y.
gcd_z2: gcd X z X.

gcd_s1: gcd (s X) (s Y) Z
<- less (s X) (s Y) true
<- rminus (s Y) (s X) Y’
<- gcd (s X) Y’ Z.

gcd_s1: gcd (s X) (s Y) Z
<- less (s X)(s Y) false
<- rminus (s X) (s Y) X’
<- gcd X’ (s Y) Z.

rminus: nat -> nat -> nat -> type. %name rminus M.
%mode rminus +X +Y -Z.
rmin : rminus (s X) (s Y) Z
<- sub X Y Z.

%reduces Z < X (rminus X Y Z).
%terminates [X Y] (gcd X Y _).

In order to verify that the definition of gcd terminates, we need to show that the ar-
guments in the recursive call are decreasing, i.e. we need to show Y’ < (s Y) and X’ < (s
X). To check that these properties hold, we need the fact that the output argument Y’ of
rminus (s Y) (s X) Y’ is always smaller than the input argument (s Y) (i.e. rminus (s Y)
(s X) Y’ always satisfies the reduction predicate Y’ < (s Y)). We verify that rminus (s Y)
(s X) Y’ always reduces its output argument by checking the declaration %reduces Z < X
(rminus X Y Z). While checking termination of gcd we use this information and prove Y’ <
(s Y) (termination condition of gcd) under the assumption Y’ < (s Y) (reduction predicate
of rminus).

8.3 Subterm Ordering

On first-order terms, that is, terms not containing lambda-abstraction, the subterm
ordering is familiar: M < N if M is a strict subterm of N , that is, M is a subterm N and
M is different from N .

On higher-order terms, the relation is slightly more complicated because we must allow
the substitution of parameters for bound variables without destroying the subterm relation.
Consider, for example, the case of the typing rule

of : exp -> tp -> type. %name of P.
%mode of +E *T.

tp_lam : of (lam E) (arrow T1 T2) % |- lam x. E : T1 => T2
<- ({x:exp} % if x:T1 |- E : T2.

of x T1 -> of (E x) T2).
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from the signature for type inference (see Section 5.6 [Sample Program], page 23) in the file
‘example/guide/lam.elf’. We must recognize that

(E x) < (lam E)

according to the subterm ordering. This is because E stands for a term [y:exp] E’ and so
E x has the same structure as E’ except that y (a bound variable) has been replaced by x
(a parameter). This kind of pattern arises frequently in Twelf programs.

On the other hand, the restriction to parameter arguments of functions is critical. For
example, the lax rule

tp_applam : of (app (lam E1) E2) T2
<- of (E1 E2) T2.

which applies E1 to E2 which is not a parameter, is indeed not terminating. This can be
seen from the query

?- of (app (lam [x:exp] app x x) (lam [y:exp] app y y)) T.

The restriction of the arguments to parameters can be lifted when the type of the ar-
gument is not mutually recursive with the result type of the function. For example, the
signature for natural deduction (see Section 3.6 [Sample Signature], page 11, contains no
constructor which allows propositions to occur inside individual terms. Therefore

(A T) < (forall A)

where A : i -> o and T : i is an arbitrary term (not just a parameter). Intuitively, this
is correct because the number of quantifiers and logical connectives is smaller on the left,
since T cannot contain such quantifiers or connectives.

This kind of precise analysis is important, for example, in the proof of cut elimination
or the termination of polymorphic type reconstruction.

8.4 Lexicographic Orders

Lexicographic orders are specified as

{O1 ... On}

Using vi and wi for corresponding argument structures whose order is already defined,
we compare them lexicographically as follows:

{v1 . . . vn} < {w1 . . . wn}, if
v1<w1, or

v1 = w1 and v2<w2, or
. . .

v1 = w1, v2 = w2, . . . , and vn<wn.
A lexicographic order is needed, for example, to show termination of Ackermann’s func-

tion, defined in ‘examples/arith/arith.elf’ with the termination declaration in
‘examples/arith/arith.thm’.
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8.5 Simultaneous Orders

Simultaneous orders require that one of its elements decreases while all others remain
the same. This is strictly weaker than a lexicographic ordering built from the same compo-
nents. Technically speaking it is therefore is redundant for termination checking, since the
corresponding lexicographic ordering could be used instead. However, for inductive theorem
proving it is quite useful, since the search space for simultaneous induction is much smaller
than for lexicographic induction.

Simultaneous orders are specified as
[O1 ... On]

Using vi and wi for corresponding argument structures whose order is already defined,
we compare them simultaneously as follows:

[v1 . . . vn] < [w1 . . . wn], if
v1<w1, v2< = w2, . . . , and vn< = wn, or
v1< = w1, v2<w2, . . . , and vn< = wn, or
. . .

v1< = w1, v2< = w2, . . . , and vn<wn.
A combination of simultaneous and lexicographic order is used, for example, in the

admissibility of cut found in ‘examples/cut-elim/int.thm’, where either the cut formula
A gets smaller, or if A stays the same, either the derivation of the left or right premise get
smaller while the other stays the same.

8.6 Mutual Recursion

Mutually recursive predicates present a challenge to termination checking, since decreas-
ing arguments might appear in different positions. Moreover, mutually recursive predicates
a and a’ might be prioritized so that when a calls a’ all termination arguments remain the
same, but when a’ calls a the arguments are smaller according to the termination order.

To handle the association of related argument in mutually recursive predicates, so-called
mutual arguments can be specified in a termination order. They are given as

(X1 ... Xn)

The priority between predicates is indicated by the order of the call patterns. If we
analyze call patterns

(a1 args1)
(a2 args2)
...
(an argsn)

then ai may call aj for i < j with equal termination arguments, but calls of ai from aj
must decrease the termination order.

Mutual arguments are used, for example, in the proofs of soundness (file
‘examples/lp-horn/uni-sound.thm’) and completeness (file
‘examples/lp-horn/uni-complete.thm’) of uniform derivations for Horn logic.
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9 Coverage

Coverage checking can verify that no cases in the definition of a type family have omitted.
In combination with mode and termination checking, it is a powerful tool for analysing
signatures. Its primary use in Twelf is for verifying totality of higher-level judgments,
which can thereby be seen to represent proofs of meta-theorems.

There are several features of LF and its use as a logical framework which make coverage
checking a complex problem.

The first is that higher-order representations often require us to consider classes of con-
texts. For example, in the program for type inference (see Section 5.6 [Sample Program],
page 23) we introduce parameters x:exp together with a typing assumption u:of x T for
some T. This means the type exp of expressions is dynamically extended with new param-
eters, and coverage must take these into account.

The second are indexed types. While it easy to see if all cases for a simple data type
such as the natural numbers (either zero or successor) are covered, it is more difficult to
verify whether all cases for indexed types, such as possible deductions of A implies A, are
covered.

The third is the higher-order nature of encodings. We may have to verify that all
functions of a given type have been covered, not just values of atomic type. The fact that
functions in LF must be parametric makes this possible, but it can be subtle.

Coverage addresses all three of these problems in different ways. The programmer can
specify the kinds of parameters and hypotheses considered valid for an encoding. World
checking verifies that this specification is respected. The programmer can also specify
which arguments of a given type family should cover all possibilities exhaustively. Coverage
checking verifies that this is indeed the case, or produces a list of missing cases. Coverage
checking is always relative to a world declaration. Finally, totality checking verifies both
coverage and termination, thereby ensuring that any mode-correct invocation of the type
family considered as a logic program will succeed. Hence, a total type family represents
a total, possibly non-deterministic, function and can thus be often seen to realize a meta-
theoretic proof.

9.1 Regular Worlds

The adequacy of an encoding using higher-order abstract syntax usually relies on a char-
acterization of the possible parameters and hypotheses that may be introduced. They often
occur in blocks of assumptions that have to be made together in order for a representation
to be correct. We refer to the total collection of assumptions as regular worlds consisting
of blocks.

In Twelf, we first declare names for such blocks with %block, then we check if a given
type family respects this block structure with %worlds.
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decs ::= % Empty parameter declaration
| {id:term} decs % x : A for parameter x
| {id} decs % x : A with type A omitted

bdecl ::= some decs block decs % Blocks with indeterminate variables
| block decs % Closed blocks

worlds ::= % Empty world
| id % Block label b
| id | worlds % Block label b and alternatives

wdecl ::= (worlds) callpats. % Worlds declaration

decl ::= ...
| %block id : bdecl. % Block declaration with label b
| %worlds wdecl. % Regular world declaration

The syntactic category of call patterns (callpats) was in introduced in Section 8.1 [Ter-
mination Declaration], page 41.

Consider the typing judgment from Section 5.6 [Sample Program], page 23 which can
also be found in file ‘examples/guide/lam.elf’. We show only the last three declarations
here.

of : exp -> tp -> type.

tp_lam : of (lam E) (arrow T1 T2)
<- ({x:exp} of x T1 -> of (E x) T2).

tp_app : of (app E1 E2) T1
<- of E1 (arrow T2 T1)
<- of E2 T2.

Note that every time the clause tp_lam is invoked, it introduces a new parameter x:exp
and also a new assumption of x T for some T. In order for type inference to work correctly,
it is important that those two hypotheses always occur together. So, in general, the con-
text consisting of all hypotheses should have the form x1:exp, u1:of x1 T1, ..., xn:exp,
un:of xn Tn. We call this a regular context. It consists of blocks of the form x:exp, u:of
x T for some T.

We declare this block, labeled tp_var, and then verify that any hypotheses introduced
by the type family of will have this form.

%block tp_var : some {T:tp} block {x:exp} {u:of x T}.
%worlds (tp_var) (of E T).

Our encoding of natural deduction (see see Section 3.6 [Sample Signature], page 11 and
file ‘examples/guide/nd.elf’) shows that regular worlds also arise when a signature does
not have an immediate operational interpretation. In this case, we may generate either
a new parameter x:i (in foralli and existse) or a new assumption u:nd A for some
proposition A (in impi, ore, and existse). This can be verified with

%block nd_hyp : some {A:o} block {u:nd A}.
%block nd_parm : block {x:i}.
%worlds (nd_hyp | nd_parm) (nd A).
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There are several subtleties in world checking.

Weakening.
The blocks listed in the worlds declaration need not actually be used anywhere
in the type family that is checked. That is, we can always weaken blocks.

Duplication.
Arbitrarily many blocks may be introduced before each call to a type family.
That is, we can always duplicate blocks.

No exchange.
No exchange of declarations, either within a block or between different blocks
is allowed. This simplifies world checking and improves error messages, but
occasionally suggest some minor rewriting, such as using

... <- ({x:exp} of x T -> {y:exp} of y S -> ...)

instead of
... <- ({x:exp} {y:exp} of x T -> of y S -> ...).

Strengthening.
The worlds declared for a type family a cannot anticipate all possible future
uses of a. It is therefore legal to use a in an extended regular world, as long as it
is clear that the additional hypotheses cannot interfere with a. This condition
of non-interference is verified via subordination.

As a special case of regular world declaration, the form
%worlds () callpats.

declares that the type families in callpats do not introduce any new parameters or hypothe-
ses.

9.2 Input Coverage

Once a set of regular worlds has been declared for a type family, Twelf can determine if
all the possible cases for a given collection of input arguments are covered.

decl ::= ...
| %covers mdecl. %coverage declaration

This form reuses the mode declaration mdecl introduced in Chapter 7 [Modes], page 37
which comes in a short form (see Section 7.1 [Short Mode Declaration], page 37) and long
form (see Section 7.2 [Full Mode Declaration], page 38). The coverage checker selects the
arguments declared as input (+) and verifies that the given family provides a clause for any
combination of ground input arguments. The term input coverage emphasizes that we only
verify the status of input arguments to a family, but not indefinite or output arguments.

For example, in order to check that there is a typing rule for every expression in the type
inference code for Mini-ML (see Section 5.6 [Sample Program], page 23), we first declare
the regular world and then check input coverage.

%block tp_var : some {T:tp} block {x:exp} {u:of x T}.
%worlds (tp_var) (of E T).
%covers of +E *T.
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Coverage checking takes dependent types and subordination into account, but it is a
decidable, syntactic test rather than a semantic criterion. This means that it can list the
missing cases when it fails. For example, if we comment out the typing rule for application,
we obtain the following error message:

Coverage error --- missing cases:
{E1:exp} {E2:exp} {T1:tp} |- of (app E1 E2) T1.

The format of the missing cases is G |- A, where A is a form of goal for which does
not unify with the head of any clause and G is a context declaring the types for the free
(existential) variables in A.

A more subtle error occurs, if we forget the typing assumption for a new variable.
...
tp_lam : of (lam E) (arrow T1 T2)

<- ({x:exp} of (E x) T2).

%block tp_var : some {T:tp} block {x:exp}. % {u:of x T}.
%worlds (tp_var) (of E T).
%covers of +E *T.

Clearly, coverage has to fail since there is no typing assumption for bound variables. In
this case we get the error message

Coverage error --- missing cases:
{T1:tp} {#tp_var:{x:exp}} {T2:tp} |- of #tp_var_x T2.

Here we see the notation for parameters in context blocks. The goal of #tp_var_x T2
refers to a parameter called x in the context block tp_var. The hypotheses available with
this block are listed in the declaration {#tp_var:{x:exp}}. This block contains no typing
assumption for x and coverage is violated. Note that this notation can never be an input
to Twelf; it is only used for error messages.

One of the most difficult errors to analyse occurs when coverage is violated due to
argument transposition and dependencies. In that situation the error is often reflected in
implicit arguments which may not be easy to discern. An example of this form is given
below in the next section.

9.3 Totality

The most advanced application of coverage checking is verifying the totality of a given
type family. This is usually used to ascertain that a given higher-level type family imple-
ments a meta-theoretic proof. Checking that a type family is total requires, in this order,
mode checking, world checking, termination checking, and coverage checking. Mode and
world declarations have to be made separately, while termination and coverage checking are
folded into a single declaration.

decl ::= ...
| %total tdecl. %totality declaration

Here tdecl is a termination declaration introduced in Section 8.1 [Termination Declara-
tion], page 41. A totality declaration is processed in the following steps.

Modes. Twelf verifies that the type families in tdecl all have declared modes. Indefinite
modes (*) are not allowed.
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Worlds. Twelf verifies that the type families in tdecl all have declared worlds.

Termination.
Twelf executes the termination checker using the tdecl. If it passes this test, it
means that any well-moded query for the given families terminates, either with
success or failure.

Input Coverage.
Twelf then executes coverage checking according on the input arguments to the
families based on the prior mode declarations. If the family passes this test,
it means that a clause applies to any well-moded query with free existential
variables as output arguments.

Output Coverage.
Twelf finally checks all subgoals in the given program in a final pass If the output
arguments to the subgoal cover all the possible values that may be returned in
these position, we say that output coverage succeeds. In the simplest and most
frequent case the output argument is an existential variable of most general
type, which automatically covers all possibilities for closed terms of the given
type.

As an example, we use type preservation, a continuation of the sample programs for type
inference and evaluation in Mini-ML (see see Section 5.6 [Sample Program], page 23 and
file ‘examples/guide/lam.elf’). This can be proven automatically (see see Section 10.2
[Sample Theorems], page 56), but we can also give the proof by hand and have Twelf verify
it via totality checking.

First, the correct program and verification. The type preservation theorem states that
for any closed evaluation D:eval E V and typing derivation P:of E T there exists a typing
derivation Q:of V T.

tps : eval E V -> of E T -> of V T -> type.

tps_lam : tps (ev_lam) (tp_lam P) (tp_lam P).
tps_app : tps (ev_app D3 D2 D1) (tp_app P2 P1) Q

<- tps D1 P1 (tp_lam Q1’)
<- tps D2 P2 Q2
<- tps D3 (Q1’ V2 Q2) Q.

%mode tps +D +P -Q.
%worlds () (tps D P _).
%total D (tps D P _).

The mode declaration specifies that the evaluation and typing derivation for E are input,
while the typing derivation for V is output. The worlds declaration expresses that expres-
sions and types must be closed, that is, not depend on any parameters. The final totality
declaration claims that the logic programming execution of tps D P Q for ground D and P
and free existential variable Q terminates because tps is inductively defined based on the
structure of D. Note that this implies that the meta-theorem of type preservation holds,
because the type family cps realizes the proof: it can always compute a typing derivation
Q:of V T when given arbitrary evaluation D:eval E V and typing derivation P:of E T.
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The signature above passes all three tests. The main subtlety in this example lies in the
output coverage of the first subgoal

<- tps D1 P1 (tp_lam Q1’)

How does Twelf know that any typing derivation Q1 returned by a call tps D1 P1 Q1
must in fact have the form tp_lam Q1’ for some Q1’? Here, this follows by the structure
of the indexed types: Q1 : of (lam [x] E1’ x) (arrow T2 T1) for some E1’, T1, and T2.
Hence there remains only one applicable top-level constructor for Q1, namely tp_lam, which
corresponds to the typing rule lambda-abstraction. In informal proofs, we refer to this as
inversion or genericity.

For the sake of illustration, we introduce two bugs into our proof and analyse the error
message. In the first, we reverse the arguments D2 and D3 in rule tps_app.

tps_app : tps (ev_app D2 D3 D1) (tp_app P2 P1) Q
<- tps D1 P1 (tp_lam Q1’)
<- tps D2 P2 Q2
<- tps D3 (Q1’ V2 Q2) Q.

The resulting clause still passes all test up to input coverage, which fails with the message

Coverage error --- missing cases:
{E1:exp} {E2:exp} {E3:exp} {T1:tp} {E4:exp -> exp} {E5:exp}

{D1:eval (E4 E5) E3} {D2:eval E2 E5}
{D3:eval E1 (lam ([e:exp] E4 e))} {T2:tp} {P1:of E2 T2}
{P2:of E1 (arrow T2 T1)} {P3:of E3 T1}
|- tps (ev_app D1 D2 D3) (tp_app P1 P2) P3.

This clearly identifies the missing case, but it does not help much in identifying which
the rule tps_app fails to cover the given case. If look back at the declaration for tps_app
after reconstruction

tps_app :
{E1:exp -> exp} {V2:exp} {T1:tp} {D3:eval (E1 V2) V2} {T2:tp}

{Q1’:{e:exp} of e T2 -> of (E1 e) T1} {Q2:of V2 T2} {Q:of V2 T1}
{D2:eval (E1 V2) V2} {P2:of (E1 V2) T2} {E2:exp}
{D1:eval E2 (lam ([e:exp] E1 e))} {P1:of E2 (arrow T2 T1)}
tps D3 (Q1’ V2 Q2) Q -> tps D2 P2 Q2 -> tps D1 P1 (tp_lam Q1’)

-> tps (ev_app D2 D3 D1) (tp_app P2 P1) Q.

we see that {D3:eval (E1 V2) V2} which is clearly non-sensical and points to an argument
ordering problem (V and V2 have been identified).

As the second example of an intentional problem, we use an apparently correct imple-
mentation of a copy family implements the identity relation on expressions recursively (see
file ‘example/guide/lam.elf’).
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cp : exp -> exp -> type.
cp_app : cp (app E1 E2) (app F1 F2)

<- cp E1 F1
<- cp E2 F2.

cp_lam : cp (lam [x] E x) (lam [x] F x)
<- ({x:exp} {y:exp} cp x y -> cp (E x) (F y)).

%mode cp +E -F.
%block cp_var : block {x:exp} {y:exp} {u:cp x y}.
%worlds (cp_var) (cp E _).
%total E (cp E _).

This fails with the message

Coverage error --- missing cases:
{#cp_var:{x:exp} {y:exp} {u:cp x y}} {E1:exp} |- cp #cp_var_y E1.

because the parameter y:exp is not accompanied by an assumption on how to copy y. Twelf
does not perform the global analysis that would be necessary to show that y actually can
never occur as a first argument to cp. If we introduce such an assumption, for example, cp
y y,

cp : exp -> exp -> type.
cp_app : cp (app E1 E2) (app F1 F2)

<- cp E1 F1
<- cp E2 F2.

cp_lam : cp (lam [x] E x) (lam [x] F x)
<- ({x:exp} {y:exp} cp x y -> cp y y -> cp (E x) (F y)).

%mode cp +E -F.
%block cp_var : block {x:exp} {y:exp} {u:cp x y} {w:cp y y}.
%worlds (cp_var) (cp E _).
%total E (cp E _).

then totality checking still fails. The error message

Totality: Output of subgoal not covered
Output coverage error --- missing cases:
{E1:exp -> exp} {E2:exp -> exp -> exp}

|- {x:exp} {y:exp} cp x y -> cp y y -> cp (E1 x) (E2 x y).

shows that Twelf expected the output argument of the recursive call to possibly depend on
both x and y, while the corresponding pattern F y allowed dependency only on y. Again,
Twelf does not perform the global analysis necessary to show that x can never appear in
the output argument of cp.

A correct and checkable implementation of cp introduces only one new parameter,
thereby avoiding the problems above.
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cp : exp -> exp -> type.
cp_app : cp (app E1 E2) (app F1 F2)

<- cp E1 F1
<- cp E2 F2.

cp_lam : cp (lam [x] E x) (lam [x] F x)
<- ({x:exp} cp x x -> cp (E x) (F x)).

%mode cp +E -F.
%block cp_var : block {x:exp} {u:cp x x}.
%worlds (cp_var) (cp E _).
%total E (cp E _).

9.4 Subordination

An important component for termination checking and coverage checking is subordination
Virga 99, Ph.D. Thesis. We say that type family b subordinates type family a (written b
|> a) if a term of typ b ... might occur as a subterm of a term of type a .... From the
point of view of the application in Twelf, it is the contrapositive that is important: if b
does not subordinate a, then no subterm of type a ... can occur in a subterm of type b
.... The notion of occurrence here refers to terms in canonical form.

As Twelf performs type reconstruction, it incrementally keeps track of the subordination
relation. It can be viewed at any time with the

Twelf.Print.subord ();

command. For each type family it shows the families that it subordinates.
Subordination information is used in Chapter 8 [Termination], page 41 and Chapter 9

[Coverage], page 47.
Sometimes it is necessary to ensure that a given type family is not extended with addi-

tional constructors that might invalidate meta-theorems or add new (unwanted) axioms to
a theory represented in LF. In order to prohibit further extensions to some type families,
issue

%freeze a1 ... an.

to prevent further declarations of type a1 through an or any other type family subordi-
nated by one of the a’s.
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10 Theorem Prover

Disclaimer: The theorem proving component of Twelf is in an even more experimental stage
and currently under active development.

Nonetheless, it can prove a number of interesting examples automatically which illus-
trate our approach the meta-theorem proving which is described in Schuermann and Pfen-
ning 1998, CADE. These examples include type preservation for Mini-ML, one direction of
compiler correctness for different abstract machines, soundness and completeness for logic
programming interpreters, and the deduction theorem for Hilbert’s formulation of proposi-
tional logic. These and other examples can be found in the example directories of the Twelf
distribution (see Chapter 15 [Examples], page 85).

A theorem in Twelf is, properly speaking, a meta-theorem: it expresses a property of
objects constructed over a fixed LF signature. Theorems are stated in the meta-logic M2
whose quantifiers range over LF objects. In the simplest case, we may just be asserting the
existence of an LF object of a given type. This only requires direct search for a proof term,
using methods inspired by logic programming. More generally, we may claim and prove
forall/exists statements which allow us to express meta-theorems which require structural
induction, such as type preservation under evaluation in a simple functional language (see
Section 5.6 [Sample Program], page 23).

10.1 Theorem Declaration

The theorem proving component of Twelf is in an experimental stage and currently under
active development. This documentation describes the present intermediate state.

There are three forms of declarations related to the proving of theorems and meta-
theorems. The first, %theorem, states a theorem as a meta-formula (mform) in the meta-
logic M2 defined below. The second, %prove, gives a resource bound, a theorem, and
an induction ordering and asks Twelf to search for a proof. After a %prove declaration
succeeds, the theorem will be made available as a lemma to subsequent proofs. In order
to avoid that, Twelf offers the form %establish which is like %prove, but the established
theorem will never be used in subsequent proofs.

Note that a well-typed %theorem declaration always succeeds, while the %prove and
%establish declarations only succeed if Twelf can find a proof.
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dec ::= {id:term} % x : A
| {id} % x

decs ::= dec
| dec decs

ctx ::= some decs pi decs
| some decs pi decs | ctx

mform ::= forallG ctx mform % regular contexts
| forall* decs mform % implicit universal
| forall decs mform % universal
| exists decs mform % existential
| true % truth

thdecl ::= id : mform % theorem name a, spec

pdecl ::= nat order callpats % bound, induction order, theorems

decl ::= ...
| %theorem thdecl. % theorem declaration
| %prove pdecl. % prove declaration
| %establish pdecl. % prove declaration, do not use as lemma later
| %assert callpats. % assert theorem (requires Twelf.unsafe)

The prover only accepts quantifier alternations of the form forall* decs forall decs
exists decs true. Note that the implicit quantifiers (which will be suppressed when print-
ing the proof terms) must all be collected in front, but after the specification of the regular
contexts.

The syntax and meaning of order and callpats are explained in Chapter 8 [Termina-
tion], page 41, since they are also critical notions in the simpler termination checker.

10.2 Sample Theorems

As a first example, we use the theorem prover to establish a simple theorem in first-
order logic (namely that A implies A for any proposition A), using the signature for natural
deduction (see Section 3.6 [Sample Signature], page 11).

%theorem
trivI : exists {D:{A:o} nd (A imp A)}

true.

%prove 2 {} (trivI D).

The empty termination ordering {} instructs Twelf not to use induction to prove the the-
orem. The declarations above succeed, and with the default setting of 3 for Twelf.chatter
we see

%theorem trivI : ({A:o} nd (A imp A)) -> type.
%prove 2 {} (trivI D).
%QED
%skolem trivI#2 : {A:o} nd (A imp A).



Chapter 10: Theorem Prover 57

The line starting with %theorem shows the way the theorem will be realized as a logic pro-
gram predicate. In earlier versions this was such a logic program was actually constructed;
at present this feature has been disabled while the implementation has been improved to
allow regular contexts.

The second example is the type preservation theorem for evaluation in the lambda-
calculus. This is a continuation of the example in Section Section 5.6 [Sample Program],
page 23 in the file ‘examples/guide/lam.elf’. Type preservation states that if and ex-
pression E has type T and E evaluates to V, the V also has type T. This is expressed as the
following %theorem declaration.

%theorem
tpsa : forall* {E:exp} {V:exp} {T:tp}

forall {D:eval E V} {P:of E T}
exists {Q:of V T}
true.

The proof proceeds by structural induction on D, the evaluation from E to V. Therefore
we can search for the proof with the following declaration (where the size bound of 5 on
proof term size is somewhat arbitrary).

%prove 5 D (tpsa D P Q).

Twelf finds and displays the proof easily. The resulting program is installed in the
global signature and can then be used to apply type preservation in subsequent proofs (see
Section 10.5 [Proof Realizations], page 58).

The third example illustrates the use of regular contexts. We use the theorem prover
to establish a simple theorem, namely that for every input to the copy predicate cp in
Section 9.3 [Totality], page 50 (see also file ‘examples/guide/lam.elf’) there exists a cor-
responding output. This essentially is just a reformulation of the totality checking question
for cp, except that we use the more heavyweight tool of the theorem prover.

%theorem cpt : forallG (pi {x:exp} {y:cp x x})
forall {D:exp}

exists {F:exp} {C:cp E F}
true.

%prove 5 E (cpt E _ _).

The termination ordering E instructs Twelf to do induction over E to prove the theorem.
The %prove command executes the proof search. In addition, if a proof has been found, the
lemma is made accessible to the proof search evoked by subsequent theorems and lemmas,
and which might slow it down accordingly. If a lemma is not used in subsequent proofs, the
user can use %establish instead of %prove and it will not be made available.

For certain theorems, the theorem prover will not be able to find a proof, even that it
should. This behavior could be caused by an incompleteness in the implementation (which
still exist, but which should be removed in the next release of Twelf), or a enormously
huge search space, which disallows the underlying LF theorem to construct a proof term.
In these situations, one can still try to prove subsequent theorem and lemmas by asserting
the correctness of the lemma in question. This is done by the %assert command. For the
theorem above, one could

%assert (cpt _ _ _).

after the Twelf.unsafe mode has been activated.
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10.3 Proof Steps

We expect the proof search component of Twelf to undergo major changes in the near
future, so we only briefly review the current state.

Proving proceeds using three main kinds of steps:

Filling Using iterative deepening, Twelf searches directly for objects to fill the exis-
tential quantifiers, given all the constants in the signature and the universally
quantified variables in the theorem. The number of constructors in the answer
substitution for each existential quantifier is bounded by the size which is given
as part of the %prove declaration, thus guaranteeing termination (in principle).

Recursion Based on the termination ordering, Twelf appeals to the induction hypothesis
on smaller arguments. If there are several ways to use the induction hypothesis,
Twelf non-deterministically picks one which has not yet been used. Since there
may be infinitely many different ways to apply the induction hypothesis, the
parameter Twelf.Prover.maxRecurse bounds the number of recursion steps in
each case of the proof.

Splitting Based on the types of the universally quantified variables, Twelf distinguishes
all possible cases by considering all constructors in the signatures. It never
splits a variable which appears as an index in an input argument, and if there
are several possibilities it picks the one with fewest resulting cases. Splitting
can go on indefinitely, so the parameter Twelf.Prover.maxSplit bounds the
number of times a variable may be split.

10.4 Search Strategies

The basic proof steps of filling, recursion, and splitting are sequentialized in a simple
strategy which never backtracks. First we attempt to fill all existential variables simul-
taneously. If that fails we recurse by trying to find new ways to appeal to the induction
hypothesis. If this is not possible, we pick a variable to distinguish cases and then prove
each subgoal in turn. If none of the steps are possible we fail.

This behavior can be changed with the parameter Twelf.Prover.strategy which
defaults to Twelf.Prover.FRS (which means Filling-Recursion-Splitting). When set to
Twelf.Prover.RFS Twelf will first try recursion, then filling, followed by splitting. This is
often faster, but fails in some cases where the default strategy succeeds.

10.5 Proof Realizations

Proofs of meta-theorems can be realized as logic programs. This is presently disabled.
We still describe the possibility below in anticipation of future versions. On the other
hand, theorems that have been proved will be skolemized and used in proof of subsequent
theorems. However, they will not be used for search.

A logic program is a relational representation of the constructive proof and can be
executed to generate witness terms for the existentials from given instances of the universal
quantifiers. As an example, we consider once more type preservation (see Section 10.2
[Sample Theorems], page 56).
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After the declarations,
%theorem
tpsa : forall* {E:exp} {V:exp} {T:tp}

forall {D:eval E V} {P:of E T}
exists {Q:of V T}
true.

%prove 5 D (tpsa D P Q).

Twelf answers
/tps/tp_lam/ev_lam/:

tps ev_lam (tp_lam ([x:exp] [P2:of x T1] P1 x P2))
(tp_lam ([x:exp] [P3:of x T1] P1 x P3)).

/tps/tp_app/ev_app/tp_lam/:
tps (ev_app D1 D2 D3) (tp_app P1 P2) P6

<- tps D3 P2 (tp_lam ([x:exp] [P4:of x T2] P3 x P4))
<- tps D2 P1 P5
<- tps D1 (P3 E5 P5) P6.

which is the proof of type preservation expressed as a logic program with two clauses: one for
evaluation of a lambda-abstraction, and one for application. Using the %solve declaration
(see Section 5.2 [Solve Declaration], page 20) we can, for example, evaluate and type-check
the identity applied to itself and then use type preservation to obtain a typing derivation
for the resulting value.

e0 = (app (lam [x] x) (lam [y] y)).
%solve p0 : of e0 T.
%solve d0 : eval e0 V.
%solve tps0 : tps d0 p0 Q.

Recall that %solve c : V executes the query V and defines the constant c to abbreviate
the resulting proof term.
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11 ML Interface

The Twelf implementation defines a number of ML functions embedded in structures
which can be called to load files, execute queries, and set environment parameters such as
the verbosity level of the interaction. These functions and parameters are available in the
Twelf structure. If you open the Twelf structure with

open Twelf

after compiling and loading Twelf, you do not have to type the ‘Twelf.’ to the functions
shown below.

Previous implementations of Elf offered a stand-alone command interpreter but this has
not yet been ported. To exit Twelf and ML call Twelf.OS.exit ();.

11.1 Configurations

Groups of Twelf files are managed in configurations. A configuration is defined by a file,
by convention called ‘sources.cfg’, which resides in the same directory as the Twelf source
files. The configuration file must contain at most one Twelf source file per line, and the
files must be listed in dependency order. A configuration config can then be defined from
the file by the ML declaration

val config = Twelf.Config.read "sources.cfg";

By convention, the filenames end in the extensions

‘.elf’ for constant declarations and definitions or mixed files,

‘.quy’ for files which contain query declarations,

‘.thm’ for files which contain %theorem and %proof declarations.

File names may not contain whitespace. They are interpreted relative to the current
working directory of ML, but resolved into absolute path names when the configuration file
is read. To change the current working directory call

Twelf.OS.getDir (); (* get working directory *)
Twelf.OS.chDir "directory"; (* change working directory *)

As an example, we show how the Mini-ML configuration is defined and loaded, assuming
your current working directory is the root directory of Twelf.

Twelf.make "examples/mini-ml/sources.cfg";

The call to Twelf.make returns either Twelf.OK or Twelf.ABORT. It reads each file
in turn, starting from an empty signature, printing the results of type reconstruction and
search based on the value of the Twelf.chatter variable (see Section 11.3 [Environment
Parameters], page 62). If another configuration or file has previously been read, all the
declarations will first be deleted so that Twelf.make always starts from the same state.

To load a configuration, use Twelf.Config.load config . This is will first reset the state
and then load config. In order to avoid resetting the state, use Twelf.Config.append
config instead.

Loading a configuration will stop at the first error encountered, issue an appropriate
message and return Twelf.ABORT. If there is an unexpected internal error (which indicates
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a bug in the Twelf implementation), it raises an uncaught exception instead and returns to
the ML top-level.

To explore the behavior of programs interactively, you may call the Twelf top-level with
Twelf.top ();

which is explained in Section 5.3 [Interactive Queries], page 20.

The default suffix for configuration files is ‘cfg’; it can be changed with
Twelf.Config.suffix := "suffix";

although this may confuse the Twelf server.

Twelf configurations can also be defined explicitly from a list of file names with
Twelf.Config.define ["file1, ..., filen"];

11.2 Loading Files

Twelf also allows direct management of the signature by loading individual files. This is
generally not recommended because successive declarations simply accumulate in the global
signature which may lead to unexpected behavior. The relevant function calls are

Twelf.reset ();
Twelf.loadFile "file";

where Twelf.reset () resets the current global signature to be empty and Twelf.readFile
"file" loads the given file whose name is interpreted relative to the current working directory.

Caution: Reading a file twice will not replace the declarations of the first pass by the
second, but simply add them to the current signature. If names are reused, old declarations
will be shadowed, but they are still in the global signature and might be used in the search
for a solution to a query or in theorem proving, leading to unexpected behavior. When in
doubt, use configurations (see Section 11.1 [Configurations], page 61) or call Twelf.reset
().

11.3 Environment Parameters

Various flags and parameters can be used to modify the behavior of Twelf and the
messages it issues. They are given below with the assignment of the default value.

Twelf.chatter := 3;
Controls the detail of the information which is printed when signatures are read.

0 Nothing.

1 Just file names.

2 File names and number of query solutions.

3 Each declarations after type reconstruction.

4 Debug information.

5 More debug information.

6 Even more debug information.



Chapter 11: ML Interface 63

Twelf.doubleCheck := false;
If true, each declaration is checked again for type correctness after type recon-
struction. This is expensive and useful only for your peace of mind, since type
checking is significantly simpler than type reconstruction.

Twelf.unsafe := false;
If true it will allow the %assert declaration to assert theorems without proof.

Twelf.Print.implicit := false;
If true, implicit arguments (normally elided) are printed. Sometimes this is
useful to track particularly baffling errors.

Twelf.Print.depth := NONE;
If SOME(d) then terms deeper than level d are printed as ‘%%’.

Twelf.Print.length := NONE;
If SOME(l) then argument lists longer than l are truncated with ‘...’.

Twelf.Print.indent := 3;
Controls the amount of indentation for printing nested terms.

Twelf.Print.width := 80;
The value used to decide when to break lines during printing of terms.

Twelf.Trace.detail := 1;
Controls the detail in information during tracing. See Section 11.5 [Tracing and
Breakpoints], page 64

Twelf.Compile.optimize := true;
Determines whether a minimal amount of optimization during translation from
signature to program is carried out. If set to false, unification can be traced
in more detail.

Twelf.Prover.strategy := Twelf.Prover.FRS;
Determines the strategy, where F=Filling, R=Recursion, and S=Splitting. Can
also be Twelf.Prover.RFS.

Twelf.Prover.maxSplit := 2;
The maximal number of generations of a variable introduced by splitting. Set-
ting is to 0 will prohibit proof by cases.

Twelf.Prover.maxRecurse := 10;
The maximal number of appeals to the induction hypothesis in any case during
a proof.

Twelf.Table.strategy := Twelf.Table.Variant;
Determines the subsumption strategy for tabled logic programming which is
either Twelf.Table.Variant or Twelf.Table.Subsumption.

Twelf.Table.strengthen := false;
Determines whether table entry lookup takes subordination into account or not.
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11.4 Signature Printing

Twelf provides two ways to print the current global signature.

Twelf.Print.sgn ();
Twelf.Print.prog ();

The first prints the signature, using only forward arrows ->, the second will print the
signature interpreted as a logic programming using backward arrows <-. Depending on
your goals, one or the other might be easier to use.

Output can also be generated in TeX format. The necessary library files can be found
in the ‘tex/’ subdirectory of the distribution. To print the current signature using TeX
format, use

Twelf.Print.TeX.sgn ();
Twelf.Print.TeX.prog ();

with the same interpretation as the plain text printing commands above.

11.5 Tracing and Breakpoints

Twelf no incorporates some rudimentary tracing facilities for the logic programming
interpreter of signatures. This is best used within the Emacs server, but it is also available
within the ML Interface. It is not available with the tabled logic programming interpreter.
Also, when optimizations are enabled (Twelf.Compile.optimize is true), unification can
not be traced.

A tracing specification may be associated with constants in a signature.

Twelf.Trace.None
Do not trace.

Twelf.Trace.Some ["c1",...,"cn"]
Trace clauses (object-level constants) or predicates (type families) named c1
through cn.

Twelf.Trace.All
Trace all clauses and predicates.

One can either suspend the execution when a specified clause or predicate is invoked, or
simply trace goals

Twelf.Trace.trace spec
Twelf.Trace.break spec

When a breakpoint is set, execution will halt and ask for an action from the user. This
consists of a (possible empty) line of input followed by 〈RET〉. Current, the following actions
are available.
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<newline> - continue --- execute with current settings
n - next --- take a single step
r - run --- remove all breakpoints and continue
s - skip --- skip until current subgoals succeeds, is retried, or fails
s n - skip to n --- skip until goal (n) is considered
t - trace --- trace all events
u - untrace --- trace no events
d n - detail --- set trace detail to n (0, 1, or 2)
h - hypotheses --- show current hypotheses
g - goal --- show current goal
i - instantiation --- show instantiation of variables in current goal
v X1 ... Xn - variables --- show instantiation of X1 ... Xn
? for help

The detail of the trace information can be set with the variable Trace.detail := n; to
one of

0 print no information

1 print standard information

2 print details of unification

Note that if Twelf.Compile.optimize is true, then details of unification cannot be
shown. It is possible to examine and reset the state of the currently traced predicates with

Twelf.Trace.show ();
Twelf.Trace.reset ();

11.6 Timing Statistics

Twelf has a few utilities to collect run-time statistics which are useful mainly for the
developers. They are collected in the structure Timers. Timing information is cumulative
in an ML session.

Twelf.Timers.show ();
Show the value of timers and reset them to zero.

Twelf.Timers.reset ();
Simply reset all timers to zero.

Twelf.Timers.check ();
Display the value of timers, but do not reset them.

Caution: Normally, the various times are exclusive, except that the runtime includes the
garbage collection time which is shown separately. However, there is a problem the time
for printing the answer substitution to a query is charged both to Printing and Solving.

11.7 Twelf Signature

For reference, here is the ML signature TWELF of the Twelf structure which defines most
functions and flags relevant to loading and executing Twelf programs.
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signature TWELF =
sig
structure Print :
sig
val implicit : bool ref (* false, print implicit args *)
val depth : int option ref (* NONE, limit print depth *)
val length : int option ref (* NONE, limit argument length *)
val indent : int ref (* 3, indentation of subterms *)
val width : int ref (* 80, line width *)

val sgn : unit -> unit (* print signature *)
val prog : unit -> unit (* print signature as program *)
val subord : unit -> unit (* print subordination relation *)
val domains : unit -> unit (* list constraint domains *)

structure TeX : (* print in TeX format *)
sig

val sgn : unit -> unit (* print signature *)
val prog : unit -> unit (* print signature as program *)

end
end

structure Trace :
sig
datatype ’a Spec = (* trace and breakpoint spec *)

None (* no tracing, default *)
| Some of ’a list (* list of clauses and families *)
| All (* trace all clauses and families *)

val trace : string Spec -> unit (* trace clauses and families *)
val break : string Spec -> unit (* break at clauses and families *)
val detail : int ref (* 0=none, 1=default, 2=unify *)

val show : unit -> unit (* show trace, break, and detail *)
val reset : unit -> unit (* reset trace, break, and detail *)

end

structure Timers :
sig
val show : unit -> unit (* show and reset timers *)
val reset : unit -> unit (* reset timers *)
val check : unit -> unit (* display, but not no reset *)

end

structure OS :
sig
val chDir : string -> unit (* change working directory *)
val getDir : unit -> string (* get working directory *)
val exit : unit -> unit (* exit Twelf and ML *)

end
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structure Compile :
sig
val optimize : bool ref (* true, optimize clauses *)

end

structure Table :
sig
datatype Strategy = Variant | Subsumption

val strategy : Strategy ref (* Variant, tabling strategy *)
val strengthen : bool ref (* false, tabling optimization *)

val top : unit -> unit (* top-level for tabled queries *)
end

structure Recon :
sig
datatype TraceMode = Progressive | Omniscient
val trace : bool ref (* false, trace term reconstruction *)
val traceMode : TraceMode ref (* Omniscient, trace mode *)

end

structure Prover :
sig
datatype Strategy = RFS | FRS (* F=Fill, R=Recurse, S=Split *)
val strategy : Strategy ref (* FRS, strategy used for %prove *)
val maxSplit : int ref (* 2, bound on splitting *)
val maxRecurse : int ref (* 10, bound on recursion *)

end

val chatter : int ref (* 3, chatter level *)
val doubleCheck : bool ref (* false, check internal types *)
val unsafe : bool ref (* false, allow %assert w/o proof *)

datatype Status = OK | ABORT (* return status *)

val reset : unit -> unit (* reset global signature *)
val loadFile : string -> Status (* load file *)
val readDecl : unit -> Status (* read declaration interactively *)
val decl : string -> Status (* print declaration of constant *)

val top : unit -> unit (* top-level for queries *)
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structure Config :
sig
type config (* configuration *)
val suffix : string ref (* suffix of configuration files *)
val read : string -> config (* read config file *)
val load : config -> Status (* reset and load configuration *)
val append : config -> Status (* load configuration (w/o reset) *)
val define : string list -> config (* define configuration *)

end

val make : string -> Status (* read and load configuration *)

val version : string (* Twelf version *)
end; (* signature TWELF *)
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12 Twelf Server

The Twelf server is a stand-alone command interpreter which provides the functionality
of the Twelf structure in ML (see Chapter 11 [ML Interface], page 61), but allows no
ML definitions. It is significantly smaller than Standard ML and is the recommended
way to interact with Twelf except for developers. Its behavior regarding configurations is
slightly different in that the server maintains a current configuration, rather than allowing
the binding of names to configurations. Configuration are defined with the Config.read
command which takes a configuration filename as argument.

In Emacs, the Twelf server typically runs in a process buffer called *twelf-server*.
The user can select this buffer and directly type commands to the Twelf server. This style of
interaction is inherited from the comint package for Emacs, but typically one works through
advanced commands in Twelf mode (see Section 13.1 [Twelf Mode], page 73).

The Twelf server prompts with %% OK %% or %% ABORT %% depending on the success of
failure of the previous operation. It accepts commands and their arguments on one line,
except that additional Twelf declarations which may be required are read separately, follow-
ing the command line. Reading declarations can be forcibly terminated with the end-of-file
token ‘%.’.

12.1 Server Types

The server commands employ arguments of the following types.

file The name of a file, relative to the current working directory

id A Twelf identifier

reconTraceMode
Either Progressive or Omniscient (see Section 4.7 [Tracing Reconstruction],
page 17)

strategy Either FRS or RFS (see Section 10.4 [Search Strategies], page 58)

tableStrategy
Either Variant or Subsumption (see Section 5.9 [Tabled Logic Programming],
page 26)

bool Either true or false

nat A natural number (starting at 0)

limit Either * (to indicate no limit) or a natural number

12.2 Server Commands

The Twelf server recognized the following commands.

set parameter value
Set parameter to value, where parameter is one of the following (explained in
Section 11.3 [Environment Parameters], page 62).
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chatter nat
doubleCheck bool
unsafe bool
Print.implicit bool
Print.depth limit
Print.length limit
Print.indent nat
Print.width nat
Trace.detail nat
Compile.optimize bool
Recon.trace bool
Recon.traceMode reconTraceMode
Prover.strategy strategy
Prover.maxSplit nat
Prover.maxRecurse nat
Table.strategy tableStrategy

get parameter
Print the current value of parameter (see table above).

Trace.trace id1 ... idn
Trace given constants.

Trace.traceAll
Trace all constants.

Trace.untrace
Untrace all constants.

Trace.break id1 ... idn
Set breakpoint for given constants.

Trace.breakAll
Break on all constants.

Trace.unbreak
Remove all breakpoints.

Trace.show
Show current trace and breakpoints.

Trace.reset
Reset all tracing and breaking.

Print.sgn
Print current signature.

Print.prog
Print current signature as program.

Print.subord
Print current subordination relation.

Print.domains
Print registered constraint domains.
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Print.TeX.sgn
Print current signature in TeX format.

Print.TeX.prog
Print current signature in TeX format as program.

Timers.show
Print and reset timers.

Timers.reset
Reset timers.

Timers.check
Print, but do not reset timers.

OS.chDir file
Change working directory to file.

OS.getDir
Print current working directory.

OS.exit Exit Twelf server.

quit Quit Twelf server (same as exit).

Config.read file
Read current configuration from file.

Config.load
Load current configuration.

Config.append
Load current configuration without prior reset.

make file Read and load current configuration from file.

reset Reset global signature.

loadFile file
Load Twelf file file.

decl id Show constant declaration for id.

top Enter interactive query loop (see Section 5.3 [Interactive Queries], page 20).

Table.top
Enter interactive loop for tables queries (see Section 5.9 [Tabled Logic Program-
ming], page 26).

help Show available server commands, parameters, and server types.
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13 Emacs Interface

The Twelf mode for Emacs provides some functions and utilities for editing Twelf source
and for interacting with an inferior Twelf server process which can load configurations,
files, and individual declarations and track the source location of errors. It also provides an
interface to the tags package which allows simple editing of groups of files, constant name
completion, and locating of constant declarations within the files of a configuration.

Note that in order to use the Emacs interface you need to include the line
(load "directory/emacs/twelf-init.el")

in your ‘.emacs’ file, where directory is the Twelf root directory.

13.1 Twelf Mode

The Twelf mode in Emacs provides support for editing and indentation, syntax highlight-
ing (including colors) (see Section 13.13 [Syntax Highlighting], page 79), and communication
commands for interacting with a Twelf server running as an inferior process to Emacs. It
defines a menu which is added to the menu bar, usually at the top of each Emacs frame.

Many commands apply to the current declaration, which is the declaration in which we
find the Emacs cursor (not the cursor of the window system). If the cursor is between
declarations, the declaration after point is considered current. From the point of view
of Emacs, single declarations never include consecutive blank lines, which provides some
insulation against missing closing delimiters.

Normally, Twelf mode is entered automatically when a Twelf source file is edited (see
Section 13.14 [Emacs Initialization], page 79), but it can also be switched on or off directly
with M-x twelf-mode.

M-x twelf-mode

Toggle Twelf mode, the major mode for editing Twelf code.

13.2 Editing Commands

The editing commands in Twelf mode partially analyse the structure of the text at the
cursor position as Twelf code and try to indent accordingly. This is not always perfect.

〈TAB〉
M-x twelf-indent-line

Indent current line as Twelf code. This recognizes comments, matching delim-
iters, and standard infix operators.

〈DEL〉
M-x backward-delete-char-untabify

Delete character backward, changing tabs into spaces.

M-C-q

M-x twelf-indent-decl

Indent each line of the current declaration.

M-x twelf-indent-region

Indent each line of the region as Twelf code.
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13.3 Type Checking Commands

The Twelf mode provides simple commands which cause the server to load or reload the
current configuration, the file edited in the current buffer, or just the declaration at point.
Each of these command can be preceded by a prefix argument (for example, C-u C-c C-c)
which will select the Twelf server buffer after completion of the command. The Twelf server
buffer can also be forced to be shown with the C-c C-u Emacs command.

C-c C-c

M-x twelf-save-check-config

Save its modified buffers and then check the current Twelf configuration. With
prefix argument also displays Twelf server buffer. If necessary, this will start
up an Twelf server process.

C-c C-s

M-x twelf-save-check-file

Save buffer and then check it by giving a command to the Twelf server. In
Twelf Config minor mode, it reconfigures the server. With prefix argument also
displays Twelf server buffer.

C-c C-d

M-x twelf-check-declaration

Send the current declaration to the Twelf server process for checking. With
prefix argument also displays Twelf server buffer.

C-c c

M-x twelf-type-const

Display the type of the constant before point. Note that the type of the constant
will be ‘absolute’ rather than the type of the particular instance of the constant.

C-c C-u

M-x twelf-server-display

Display Twelf server buffer, moving to the end of output. With prefix argument
also selects the Twelf server buffer.

13.4 Printing Commands

M-x twelf-print-signature

Prints the current signature in the Twelf server buffer.

M-x twelf-print-program

Prints the current signature as a program in the Twelf server buffer.

M-x twelf-print-subord

Prints the current subordination relation in the Twelf server buffer.

M-x twelf-print-tex-signature

Prints the current signature in TeX style. The output appears in the Twelf
server buffer.

M-x twelf-print-tex-program

Prints the current signature as a program in TeX style. The output appears in
the Twelf server buffer.
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13.5 Tracing Commands

The Twelf Emacs mode provides a simple interface to the tracer. While tracing or
breakpoints are on, you should be in the Emacs server buffer to type your input directly to
the server as described in Section 11.5 [Tracing and Breakpoints], page 64.

M-x twelf-trace-trace

Read list of constants and trace them.

M-x twelf-trace-trace-all

Trace all clauses and families.

M-x twelf-trace-untrace

Untrace all clauses and families.

M-x twelf-trace-break

Read list of constants and set breakpoints.

M-x twelf-trace-break-all

Set breakpoints on all clauses and families.

M-x twelf-trace-unbreak

Remove all breakpoints.

M-x twelf-trace-show

Show tracing and breakpoint information.

13.6 Error Tracking

Error messages by the Twelf server are flagged with the filename and an educated guess
as to the source of the error (see Section 4.6 [Error Messages], page 16). These can be
interpreted by Emacs to jump directly to the suspected site.

Sometimes, the server buffer and the the server itself believe to have different working
directories. In that case, error tracking may not be able to find the file, and an explicit call
to OS.chDir or M-x cd in the server buffer may be required.

C-c ‘

M-x twelf-next-error

Find the next error by parsing the Twelf server or Twelf-SML buffer. Move the
error message on the top line of the window; put the cursor at the beginning of
the error source. If the error message specifies a range, the mark is placed at
the end.

C-c =

M-x twelf-goto-error

Go to the error reported on the current line or below. Also updates the error
cursor to the current line.
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13.7 Server State

The server state consists of the current configuration and a number of parameters de-
scribed in Chapter 12 [Twelf Server], page 69. The current configuration is often set implic-
itly, with the C-c C-c command in a configuration buffer, but it can also be set explicitly.

C-c <
M-x twelf-set

Sets the Twelf parameter PARM to VALUE. When called interactively, prompts
for parameter and value, supporting completion.

C-c >
M-x twelf-get

Prints the value of the Twelf parameter PARM. When called interactively,
prompts for parameter, supporting completion.

C-c C-i

M-x twelf-server-interrupt

Interrupt the Twelf server process.

M-x twelf-server

Start an Twelf server process in a buffer named *twelf-server*. Any previously
existing process is deleted after confirmation. Optional argument PROGRAM
defaults to the value of the variable twelf-server-program. This locally re-binds
‘twelf-server-timeout’ to 15 secs.

M-x twelf-server-configure

Initializes the Twelf server configuration from CONFIG-FILE. A configuration
file is a list of relative file names in dependency order. Lines starting with %
are treated as comments. Starts a Twelf servers if necessary.

M-x twelf-reset

Reset the global signature of Twelf maintained by the server.

M-x twelf-server-quit

Kill the Twelf server process.

M-x twelf-server-restart

Restarts server and re-initializes configuration. This is primarily useful during
debugging of the Twelf server code or if the Twelf server is hopelessly wedged.

M-x twelf-server-send-command

Restarts server and re-initializes configuration. This is primarily useful during
debugging of the Twelf server code or if the Twelf server is hopelessly wedged.

13.8 Info File

The content of this file in Info format can be visited directly and does not need to be
tied into the Info tree. See the documentation for the Emacs info package for more info
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C-c C-h

M-x twelf-info

Visit the Twelf User’s Guide in info format in Emacs. With a prefix argument
it prompts for the info file name, which defaults to the value of the twelf-
info-file variable.

13.9 Tags Files

Tags files provide a convenient way to group files, such as Twelf configurations. See the
documentation for the Emacs etags package for more information.

M-x twelf-tag

Create tags file for current configuration. If the current configuration is
sources.cfg, the tags file is TAGS. If current configuration is named FILE.cfg,
tags file will be named FILE.tag Errors are displayed in the Twelf server
buffer.

M-.

M-x find-tag TAG

Selects the buffer that the tag is contained in and puts point at its definition.

C-x 4 .

M-x find-tag-other-window TAG

Selects the buffer that TAG is contained in in another window and puts point
at its definition.

C-c q

M-x tags-query-replace FROM TO

Query-replace-regexp FROM with TO through all files listed in tags table.

C-c s

M-x tags-search REGEXP

Search through all files listed in tags table for match for REGEXP.

M-,

M-x tags-loop-continue

Continue last C-c s or C-c q command.

13.10 Twelf Timers

The following commands obtain the runtime statistics of the the Twelf server.

M-x twelf-timers-reset

Reset the Twelf timers.

M-x twelf-timers-show

Show and reset the Twelf timers.

M-x twelf-timers-check

Show the Twelf timers without resetting them.
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13.11 Twelf-SML Mode

There is some support for interacting with Twelf, even when it is run within ML, rather
than as a stand-alone server. You can start an SML in which you intend to run Twelf with
M-x twelf-sml; the buffer will then be in Twelf-SML mode.

If you intend to send command to a buffer running Twelf in SML (rather than the Twelf
server), you can switch to a minor mode 2Twelf-SML with M-x twelf-to-twelf-sml.

M-x twelf-sml

Run an inferior Twelf-SML process in a buffer *twelf-sml*. If there is a process
already running in *twelf-sml*, just switch to that buffer. With argument,
allows you to change the program which defaults to the value of twelf-sml-
program. Runs the hooks from twelf-sml-mode-hook (after the comint-mode-
hook is run).

M-x twelf-to-twelf-sml-mode

Toggles minor mode for sending queries to Twelf-SML instead of Twelf server.

C-c C-e

M-x twelf-sml-send-query

Send the current declaration to the inferior Twelf-SML process as a query.
Prefix argument means switch-to-twelf-sml afterwards.

C-c C-r

M-x twelf-sml-send-region

Send the current region to the inferior Twelf-SML process. Prefix argument
means switch-to-twelf-sml afterwards.

C-c 〈RETURN〉
M-x twelf-sml-send-newline

Send a newline to the inferior Twelf-SML process. If a prefix argument is given,
switches to Twelf-SML buffer afterwards.

C-c ;

M-x twelf-sml-send-semicolon

Send a semi-colon to the inferior Twelf-SML process. If a prefix argument is
given, switched to Twelf-SML buffer afterwards.

C-c d

M-x twelf-sml-cd DIR

Make DIR become the Twelf-SML process’ buffer’s default directory and fur-
thermore issue an appropriate command to the inferior Twelf-SML process.

M-x twelf-sml-quit

Kill the Twelf-SML process.

13.12 Emacs Variables

A number of Emacs variables can be changed to customize the behavior of Twelf mode.
The list below is not complete; please refer to the Emacs Lisp sources in emacs/twelf.el
for additional information.
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twelf-indent
Indent for Twelf expressions.

twelf-server-program
Default Twelf server program.

twelf-info-file
Default Twelf info file.

twelf-mode-hook
List of hook functions to run when switching to Twelf mode.

twelf-server-mode-hook
List of hook functions to run when switching to Twelf Server mode.

twelf-sml-program
Default Twelf-SML program.

twelf-sml-mode-hook
List of hook functions for Twelf-SML mode.

13.13 Syntax Highlighting

Twelf also provides syntax highlighting, which helps make Elf code more readable. This
highlighting can use different colors and faces. Unfortunately, the necessary libraries are at
present not standardized between XEmacs and FSF Emacs, which means that highlighting
support is less general and less portable than the plain Twelf mode.

At present, highlighting has not been extensively tested in various versions of Emacs, but
the font-lock mode provided in ‘emacs/twelf-font.el’ seems to work at least in XEmacs
version 19.16 and FSF Emacs version 19.34. The alternative highlight mode provided in
‘emacs/twelf-hilit’ appears to work in FSF Emacs 19.34.

Unlike other font-lock modes, Twelf’s fontification is not ‘electric’ in that it does not
fontify as one types. One has to explicitly issue a command to fontify the current Twelf
declaration or current buffer, since single-line highlighting is too error-prone and multi-line
immediate highlighting is not well supported in current versions of font lock mode.

C-c C-l

M-x twelf-font-fontify-decl

Fontifies the current Twelf declaration.

C-c l

M-x twelf-font-fontify-buffer

Fontitifies the current buffer as Twelf code

M-x twelf-font-unfontify

Removes fontification from current buffer.

13.14 Emacs Initialization

If Twelf has been properly installed, you can use the Twelf’s Emacs interface with the
default settings simply by adding the line



80 Twelf User’s Guide

(load "directory/emacs/twelf-init.el")

to your ‘.emacs’ file, where directory is the Twelf root directory. In order to customize
the behavior, you might copy the file ‘emacs/twelf-init.el’ or its contents and change it
as appropriate.

13.15 Command Summary

--- Editing Commands ---
TAB twelf-indent-line
DEL backward-delete-char-untabify
M-C-q twelf-indent-decl

--- Type Checking ---
C-c C-c twelf-save-check-config
C-c C-s twelf-save-check-file
C-c C-d twelf-check-declaration
C-c c twelf-type-const
C-c C-u twelf-server-display

--- Error Tracking ---
C-c ‘ twelf-next-error
C-c = twelf-goto-error

--- Syntax Highlighting ---
C-c C-l twelf-font-fontify-decl
C-c l twelf-font-fontify-buffer

--- Server State ---
C-c < twelf-set
C-c > twelf-get
C-c C-i twelf-server-interrupt
M-x twelf-server
M-x twelf-server-configure
M-x twelf-server-quit
M-x twelf-server-restart
M-x twelf-server-send-command

--- Info ---
C-c C-h twelf-info

--- Timers ---
M-x twelf-timers-reset
M-x twelf-timers-show
M-x twelf-timers-check

--- Tags (standard Emacs etags package) ---
M-x twelf-tag
M-. find-tag (standard binding)
C-x 4 . find-tag-other-window (standard binding)
C-c q tags-query-replace (Twelf mode binding)
C-c s tags-search (Twelf mode binding)
M-, tags-loop-continue (standard binding)

visit-tags-table, list-tags, tags-apropos
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--- Communication with inferior Twelf-SML process (not Twelf Server) ---
M-x twelf-sml
C-c C-e twelf-sml-send-query
C-c C-r twelf-sml-send-region
C-c RET twelf-sml-send-newline
C-c ; twelf-sml-send-semicolon
C-c d twelf-sml-cd
M-x twelf-sml-quit

--- Variables ---
twelf-indent
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14 Installation

At present, Twelf has been tested in SML of New Jersey (version 110 or higher), Poly/ML
and MLton, all of which implement Standard ML (revised 1997) and the Standard ML
Basis Library. The instructions below apply to a Unix system. For instructions for other
architectures or updates please check the file ‘INSTALL’ at the Twelf home page and in the
Twelf root directory after unpacking the distribution.

On a Unix system you unpack the sources with
gunzip twelf-1-4.tar.gz
tar -xf twelf-1-4.tar
cd twelf
make

This builds the Twelf server (see Chapter 12 [Twelf Server], page 69) for your current
architecture and makes it accessible as ‘bin/twelf-server’. The make command is different
for SML/NJ versions 110.20 or higher, for PolyML, and for MLton; see the list below. The
make also installs the Twelf Emacs interface (see Chapter 13 [Emacs Interface], page 73),
but you must add a line

(load "directory/emacs/twelf-init.el")

to your ‘.emacs’ file, where directory is the root directory into which you installed Twelf.
Note that the Twelf installation cannot be moved after it has been compiled with make,
since absolute pathnames are built into the executable scripts.

If you would like to use Twelf as a structure in SML, you can then call
make twelf-sml

which creates ‘bin/twelf-sml’ for the Twelf-SML mode (see Section 13.11 [Twelf-SML
Mode], page 78). Calling make clean will remove temporary files created by the SML
compiler, but not the executable file.

SML of New Jersey
See http://www.smlnj.org/

Because of minor incompatibilites between the officially released version 110.0.3
and newer versions (110.20 or higher) you have to compile Twelf for newer
version of SML/NJ with with

make -f smlnj/Makefile

Poly/ML See http://www.polyml.org/

For Poly/ML you have to compile Twelf with
make -f polyml/Makefile

MLton See http://www.mlton.org/

For MLton, you have to compile Twelf with
make -f mlton/Makefile
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15 Examples

We give here only a brief reference to the examples in the ‘examples/’ subdirectory
of the distribution. Each example comes in a separate subdirectory whose name is listed
below.

‘arith’ Associativity and commutative of unary addition.

‘ccc’ Cartesian-closed categories (currently incomplete).

‘church-rosser’
The Church-Rosser theorem for untyped lambda-calculus.

‘compile’ Various compilers starting from Mini-ML.

‘cut-elim’
Cut elimination for intuitionistic and classical logic.

‘fol’ Simple theorems in first-order logic.

‘guide’ Examples from Users’ Guide.

‘incll’ Logic programming in ordered logic.

‘kolm’ Double-negation interpretation of classical in intuitionistic logic.

‘lp’ Logic programming, uniform derivations.

‘lp-horn’ Horn fragment of logic programming.

‘mini-ml’ Mini-ML, type preservation and related theorems.

‘polylam’ Polymorphic lambda-calculus.

‘prop-calc’
Natural deduction and Hilbert propositional calculus

‘units’ Mini-ML extended with units (currently incomplete).

In each directory or subdirectory you can find a file ‘sources.cfg’ which defines the
standard configuration, usually just the basic theory. The ‘test.cfg’ which also defines an
extended configuration with some test queries and theorems. Most examples also have a
‘README’ file with a brief explanation and pointer to the literature.
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16 History

While the underlying type theory has not changed, the Twelf implementation differs from
older Elf implementation in a few ways. Mostly, these are simplifications and improvements.
The main feature which has not yet been ported is the Elf server interface to Emacs.
Also, while the type checker is more efficient now, the operational semantics does not yet
incorporate some of the optimizations of the older Elf implementations and is therefore
slower. The principal differences of Twelf 1.2 and the obsolete Elf 1.5 are given below,
followed by the new features of Twelf 1.3. New features in Twelf 1.4 are given in Section 1.1
[New Features], page 1.

Syntax (see Chapter 3 [Syntax], page 7)
The quote ‘’’ character is no longer a special character in the lexer, and ‘=’
(equality) is now a reserved identifier. The syntax of %name declarations has
changed by allowing only one preferred name to be specified. Also, %name,
%infix, %prefix and %postfix declarations must be terminated by a period
‘.’ which previously was optional. Further, single lines comments now must
start with ‘%whitespace’ or ‘%%’ in order to avoid misspelled keywords of the
form ‘%keyword’ to be ignored.

Type theory
Elf 1.5 had two experimental features which are not available in Twelf: poly-
morphism and the classification of type as a type.

Definitions (see Section 3.3 [Definitions], page 10)
Twelf offers definitions which were not available in Elf.

Searching for definitions (see Section 5.2 [Solve Declaration], page 20)
Elf had a special top-level query form sigma [x:A] B which searched for a solu-
tion M : A and then solved the result of substituting M for x in B. In Twelf this
mechanism has been replaced by a declaration %solve c : A which searches for
a solution M : A and then defines c = M : A, where the remaining free variables
are implicitly universally quantified.

Query declarations (see Section 5.1 [Query Declaration], page 19)
Twelf allows queries in ordinary Elf files as ‘%query’ declarations. Queries are
specified with an expected number of solutions, and the number of solutions to
search for, which can be used to test implementations.

Operational semantics (see Section 5.5 [Operational Semantics], page 22)
Twelf eliminates the distinction between static and dynamic signatures. In-
stead, dependent function types {x:A} B where x occurs in the normal form of
B are treated statically, while non-dependent function type A -> B or B <- A or
{x:A} B where x does not occur in B are treated dynamically.

Modes (see Chapter 7 [Modes], page 37)
Twelf offers a mode checker which was only partially supported in Elf.

Termination (see Chapter 8 [Termination], page 41)
Twelf offers a termination checker which can verify that certain programs rep-
resent decision procedures.
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Theorem prover (see Chapter 10 [Theorem Prover], page 55)
Although very limited at present, an experimental prover for theorems and
meta-theorems (that is, properties of signatures) is now available. It does not
yet support lemmas or meta-hypothetical reasoning, which are currently under
development.

Emacs interface (see Chapter 13 [Emacs Interface], page 73)
The Elf mode has remained basically unchanged, but the Elf server interface
has not yet been ported.

The version 1.3 from September 13, 2000 incorporated the following major changes from
Twelf 1.2 from August 27, 1998.

Constraints (see Chapter 6 [Constraint Domains], page 29).
Type reconstruction and the logic programming engine (but not yet the the-
orem prover) allow various constraint domains in the style of constraint logic
programming languages. The main ones are equalities and inequalities over
rationals and integers.

Tracing and Breakpoints (see Section 11.5 [Tracing and Breakpoints], page 64)
The logic programming engine now support tracing and setting of breakpoints
for illustration and debugging purposes.

Theorem Prover (see Chapter 10 [Theorem Prover], page 55)
The theorem prover now allows quantification over regular context. The theo-
rem prover will also use previously proved theorems with %prove) and ignore
those with %establish, which is otherwise equivalent. In unsafe mode, %assert
can be used to claim theorems. However, at present no longer generates proof
terms.

Reduction Checking (see Section 8.2 [Reduction Declaration], page 43)
The termination checker has been extended to verify if output arguments to a
predicate are smaller than some inputs with the %reduces declaration.

Signature Printing (see Section 11.4 [Signature Printing], page 64)
Signatures can now be printed, also in TeX format.

Abbreviations (see Section 3.3 [Definitions], page 10)
Added abbreviations (%abbrev) which, unlike definition, do not need to be
strict.

Name Preferences (see Section 3.5 [Name Preferences], page 11)
Name preference declarations (%name) now allow an optional second argument
for naming of parameters.
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